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1. Introduction

In [7] is presented the following initial value problem : x′(t) = f(t, x(t)) +
t∫

t−τ

g(t, s, x(s))ds, t ∈ [0, b]

x(t) = ϕ(t), t ∈ [−τ, 0],
(1)

where is solved using spline functions. This problem was studied also in [4],
where was obtained the existence and uniqueness on C[0, b], of the solution of
(1), using the Banach’s fixed point theorem.
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In this paper we propose a generalization of this integral equation obtain-
ing a nonlinear Volterra neutral delay integro-differential equation and the
following initial value problem : x′(t) = f(t, x(t), x′(t− τ)) +

t∫
t−τ

g(t, s, x(s), x′(s))ds, t ∈ [0, b]

x(t) = ϕ(t), t ∈ [−τ, 0].
(2)

Here we propose a new point of view in the study of the existence and unique-
ness of the solution of this initial value problem, using a bidimensional variant
of the Perov’s fixed point theorem (this theorem appear in [10] (where appear
for the first time), [11], [12] and [5]). The use of the Perov’s fixed point theo-
rem is founded on the remark that the space C1[0, b] with the norm of uniform
convergence is not complete. This manner was also used by us in [2] and [8],
to obtain the existence, uniqueness and approximation of the positive solution
and the smooth dependence by parameter of this solution, of the following
initial value problem x (t) =

t∫
t−τ

f (s, x (s) , x′ (s)) ds, t ∈ [0, T ]

x (t) = ϕ (t) , t ∈ [−τ, 0]

which is a model for the spread of certain infectious disease with seasonally
contact rate.

Results on the existence and uniqueness of the solution of nonlinear Volterra
integro-differential equations and of corresponding initial value problems was
obtained in [3], [6], [9], [13] and [14], using classic tools. Potential applications
of the problem (1) and of his generalization (2) can be found in [7].

By a generalized metric, denoted by d, on a nonempty set X we understand
a function d : X ×X → Rn which fulfills the conditions :

d (x, y) ≥ 0Rn , ∀x, y ∈ X, and d (x, y) = 0Rn ⇔ x = y

d (x, y) = d (y, x) , ∀x, y ∈ X

d (x, y) ≤ d (x, z) + d (z, y) , ∀x, y, z ∈ X,

where for x = (x1, x2, ..., xn) and y = (y1, y2, ..., yn) from Rn we have by
definition, that

x ≤ y ⇐⇒ xi ≤ yi, ∀i = 1, n.
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The pair (X, d) will be called generalized metric space. To establish the exis-
tence and uniqueness of the solution for (1), we will use the following gener-
alization of the Banach’s fixed point theorem :

Theorem 1. (Perov, see [11], [5], [1])Let (X, d) a complete generalized metric
space such that d (x, y) ∈ Rn. Suppose that A : X → X is a map for which
exists a matrix Q ∈Mn (R) such that:

d (A (x) , A (y)) ≤ Q · d (x, y) ,∀x, y ∈ X.

If all the eigenvalues of Q lies in the open unit disc of R2 ( that is the operator
A became a Q-contraction ), then A has an unique fixed point x∗ and the
sequence of successive approximations, xm = Am (x0) , converges to x∗ for any
x0 ∈ X. Moreover, for any m ∈ N∗ the following estimation holds

d (xm, x∗) ≤ Qm (In −Q)−1 d (x0, x1) . (3)

A variant on normed spaces (with generalized complete norm of Tcheby-
chev’s type) of this theorem was used in [1], to obtain the existence and unique-
ness of the boundary value problem :{

y′′ (x) = f (x, y (x) , y′ (x)) , x ∈ [a, b]
y (a) = 0, y (b) = 0.

2. Main results

Consider the product functional space X = C[−τ, b]× C[−τ, b], where

C[−τ, b] = {f : [−τ, b] −→ R : f continuous }

On this space we define the generalized metric

dB : X ×X −→ R2,

by

dB((x1, y1), (x2, y2)) = (‖x1 − x2‖B , ‖y1 − y2‖B), (4)

where the Bielecki’s type norm on C[−τ, b] is,

‖u‖B = max{|u(t)| · e−θ(t+τ) : t ∈ [−τ, b]}, ∀u ∈ C[−τ, b], (5)

where θ > 0 is convenable chosen.
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We observe that (X, dB) is complete generalized metric space ( see [5], [10]
). Consider the following initial value problem

(
x(t)
y(t)

)
=



ϕ(0) +
t∫
0

f(s, x(s), y(s− τ))ds+

+
t∫
0

(
η∫

η−τ

g(η, s, x(s), y(s))ds

)
dη ,

f(t, x(t), y(t− τ)) +
t∫

t−τ

g(t, s, x(s), y(s))ds


, t ∈ [0, b]

(x(t), y(t)) = (ϕ(t), ϕ′(t)), t ∈ [−τ, 0].
(6)

We define the map A : X −→ X by, A = (A1, A2) with

(A1(x(t), y(t)), A2(x(t), y(t))) = (ϕ(t), ϕ′(t)), ∀t ∈ [−τ, 0] (7)

and

A1(x(t), y(t)) = ϕ(0) +

t∫
0

f(s, x(s), y(s− τ))ds

+

t∫
0

 η∫
η−τ

g(η, s, x(s), y(s))ds

 dη (8)

A2(x(t), y(t)) = f(t, x(t), y(t− τ)) +

t∫
t−τ

g(t, s, x(s), y(s))ds, ∀t ∈ [0, b].

(9)
We will impose the following conditions :

(CC) ( continuity conditions ) :

f ∈ C([0, b]× R× R), g ∈ C([0, b]× [−τ, b]× R× R), ϕ ∈ C1[−τ, 0]

(BC) ( boundedness condition ) : ∃M,K > 0 such that

|f(t, u, v)| ≤ M, ∀(t, u, v) ∈ [0, b]× R× R

and

|g(t, s, u, v)| ≤ K, ∀(t, s, u, v) ∈ [0, b]× [−τ, b]× R× R.
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(CPC) ( compatibility condition ) :

ϕ′(0) = f(0, ϕ(0), ϕ′(−τ)) +

0∫
−τ

g(0, s, ϕ(s), ϕ′(s))ds (10)

(LC) ( Lipschitz conditions ) : ∃α, β > 0 and ∃L1, L2 > 0 such that

|f(t, u1, v1)− f(t, u2, v2)| ≤ α |u1 − u2|+ β |v1 − v2| ,
,∀t ∈ [0, b], ∀u1, u2, v1, v2 ∈ R

and
|g(t, s, u1, v1)− g(t, s, u2, v2)| ≤ L1 |u1 − u2|+ L2 |v1 − v2| ,

,∀(t, s) ∈ [0, b]× [−τ, b], ∀u1, u2, v1, v2 ∈ R.

Theorem 2. In the conditions (CC), (CPC) and (LC), the initial value
problem (6) have in C[−τ, b] × C[−τ, b] an unique solution (x∗, y∗) such that
x∗ ∈ C1[−τ, b] and (x∗)′ = y∗.

Proof. For t ∈ [−τ, 0] we have

|A1(x1, y1)(t)−A1(x2, y2)(t)| = 0 (11)

and
|A2(x1, y1)(t)−A2(x2, y2)(t)| = 0. (12)

For t ∈ [0, b] we obtain,

|A1(x1, y1)(t)−A1(x2, y2)(t)| ≤

≤
t∫

0

|f(s, x1(s), y1(s− τ)− f(s, x2(s), y2(s− τ))| ds+

+

t∫
0

 η∫
η−τ

|g(η, s, x1(s), y1(s))− g(η, s, x2(s), y2(s))| ds

 dη ≤

≤
t∫

0

[α |x1(s)− x2(s)| · e−θ(s+τ) · eθ(s+τ) + β |y1(s− τ)− y2(s− τ)| · e−θs · eθs·

·eθτ · e−θτ ]ds +

t∫
0

(

η∫
η−τ

[L1 |x1(s)− x2(s)| · e−θ(s+τ) · eθ(s+τ)+

+L2 |y1(s)− y2(s)| · e−θ(s+τ) · eθ(s+τ)]ds)dη ≤
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≤
t∫

0

[α ‖x1 − x2‖B · e
θ(s+τ) + β ‖y1 − y2‖B · e

θ(s+τ) · e−θτ ]ds+

+

t∫
0

 η∫
η−τ

[L1 ‖x1 − x2‖B · e
θ(s+τ) + L2 ‖y1 − y2‖B · e

θ(s+τ)]ds

 ≤

≤
(

α

θ
‖x1 − x2‖B +

β

θ
e−θτ · ‖y1 − y2‖B

) t∫
0

θeθ(s+τ)ds+

+
(

L1

θ
‖x1 − x2‖B +

L2

θ
‖y1 − y2‖B

) t∫
0

 η∫
η−τ

θeθ(s+τ)]ds

 dη ≤

≤
(

α

θ
‖x1 − x2‖B +

β

θ
e−θτ · ‖y1 − y2‖B

)
· eθ(t+τ)+

+
(

L1

θ2
‖x1 − x2‖B +

L2

θ2
‖y1 − y2‖B

)
·
(
eθ(t+τ) − eθτ −

(
eθt − 1

))
≤

≤
[(

α

θ
+

L1

θ2

)
‖x1 − x2‖B +

(
β

θ
· e−θτ +

L2

θ2

)
‖y1 − y2‖B

]
·eθ(t+τ), ∀t ∈ [0, b],

which lead to

‖A1(x1, y1)−A1(x2, y2)‖B ≤

≤
(

α

θ
+

L1

θ2

)
‖x1 − x2‖B +

(
β

θ
· e−θτ +

L2

θ2

)
‖y1 − y2‖B . (13)

On the other hand, for t ∈ [0, b], we have,

|A2(x1, y1)(t)−A2(x2, y2)(t)| ≤

≤ |f(t, x1(t), y1(t− τ))− f(t, x2(t), y2(t− τ))|+

+

t∫
t−τ

|g(t, s, x1(s), y1(s))− g(t, s, x2(s), y2(s))| ds ≤

≤ α |x1(t)− x2(t)|·e−θ(t+τ)·eθ(t+τ)+β |y1(t− τ)− y2(t− τ)|·e−θt·eθt·eθτ ·e−θτ+

+

t∫
t−τ

[L1 |x1(s)− x2(s)|·e−θ(s+τ)·eθ(s+τ)+L2 |y1(s)− y2(s)|·e−θ(s+τ)·eθ(s+τ)]ds

≤ α ‖x1 − x2‖B · e
θ(t+τ) + β ‖y1 − y2‖B · e

θ(t+τ) · e−θτ+
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+
(

L1

θ
‖x1 − x2‖B +

L2

θ
‖y1 − y2‖B

) t∫
t−τ

θeθ(s+τ)ds ≤

≤
(
α ‖x1 − x2‖B + βe−θτ ‖y1 − y2‖B

)
eθ(t+τ)

+
(

L1

θ
‖x1 − x2‖B +

L2

θ
‖y1 − y2‖B

)
[eθ(t+τ) − eθt]

<

[(
α +

L1

θ

)
‖x1 − x2‖B +

(
β · e−θτ +

L2

θ

)
‖y1 − y2‖B

]
· eθ(t+τ).

Then,
‖A2(x1, y1)−A2(x2, y2)‖B ≤

≤
(

α +
L1

θ

)
‖x1 − x2‖B +

(
β · e−θτ +

L2

θ

)
‖y1 − y2‖B . (14)

From (11), (12), (13) and (14) we obtain for any (x1, y1), (x2, y2) ∈ X, the
inequality,

dB(A(x1, y1), A(x2, y2)) ≤

(
α
θ + L1

θ2
β
θ · e

−θτ + L2
θ2

α + L1
θ β · e−θτ + L2

θ

)
· dB((x1, y1), (x2, y2)).

(15)
The eigenvalues of the matrix

Q =

(
α
θ + L1

θ2
β
θ · e

−θτ + L2
θ2

α + L1
θ β · e−θτ + L2

θ

)
are λ1 = 0 and

λ2 =
α

θ
+

L1

θ2
+ β · e−θτ +

L2

θ
> 0.

We have,

0 < λ2 < 1 ⇐⇒ h(θ) = θ2 − (α + L2)θ − L1 > θ2β · e−θτ .

The equation θ2− (α + L2)θ−L1 = 0 have the roots θ1 < 0 and θ2 > 0, and
the the peak V (α+L2

2 ,−∆
4 ), where

∆ = (α + L2)2 + 4L1.

If we represent geometric the graphs of the functions h(θ) and u(θ) = θ2β·e−θτ ,
then we see that there exists an unique point θ∗ > θ2 such that h(θ∗) = u(θ∗)
and h(θ) > θ2β · e−θτ , ∀θ > θ∗ ( on the other hand, this fact follows from
the properties :

h(θ) < 0,∀θ ∈ [0, θ2), u(θ) > 0,∀θ > 0,
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lim
θ→∞

h(θ) = ∞, lim
θ→∞

θ2β · e−θτ = 0

and because the function u(θ) = θ2β · e−θτ have in θ = 0 global minimum and
in θ = 2

τ a local maximum ). If we choose a value θ > θ∗, then the operator
A = (A1, A2) given by (7), (8), (9) is Q-contraction, and has an unique fixed
point (x∗, y∗) ∈ X, according to Theorem 1. The pair (x∗, y∗) will be the
unique solution of the initial value problem (6), hence for any t ∈ [0, b] and
any η ∈ [0, b],

x∗(t) = ϕ(0) +

t∫
0

f(s, x∗(s), y∗(s− τ))ds +

t∫
0

 η∫
η−τ

g(η, s, x∗(s), y∗(s))ds

 dη

(16)
and

y∗(t) = f(t, x∗(t), y∗(t− τ)) +

t∫
t−τ

g(t, s, x∗(s), y∗(s))ds, ∀t ∈ [0, b]. (17)

Using the continuity conditions (CC) and the compatibility condition (CPC),
since x∗, y∗ ∈ C[−τ, b] and x∗(t) = ϕ(t), ∀t ∈ [−τ, 0], we infer that x∗ ∈
C1[−τ, b]. If we derive by t the equality (16), we obtain,

(x∗)′(t) = f(t, x∗(t), y∗(t− τ)) +

t∫
t−τ

g(t, s, x∗(s), y∗(s))ds, ∀t ∈ [0, b]

and together the equality (17) follows that (x∗)′ = y∗.

Now, at the final of the proof, let see how can obtain the point θ∗.

We have

h(θ) = θ2β · e−θτ ⇐⇒ θ = H(θ) = α + L2 + θβ · e−θτ +
L1

θ

that is θ∗ a fixed point of H. Moreover,

H ′(θ) < 0 ⇐⇒ −L1

θ2
+ β · e−θτ (1− θτ) < 0.

If θ ≥ 1
τ then H ′(θ) < 0 and H ′( 1

τ ) = −τ2L1 < 0. So, H ′(θ) < 0 ∀θ ≥ 1
τ .

If 1
τ < θ2 then we can take θ = H(θ2) > θ∗ and for any θ > θ we have

0 < λ2 < 1.

If 1
τ > θ2 then we have two possibilities :

1) If h( 1
τ ) < 1

τ2 ·βe−1 then we take θ = H( 1
τ ) > θ∗ and for any θ > θ we have
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0 < λ2 < 1.

2) If h( 1
τ ) > 1

τ2 · βe−1 then it is clear that 1
τ > θ∗ and for any θ > 1

τ we will
have 0 < λ2 < 1.

Consequently, in the conditions of the enunciation we can choose θ ( which
can be H(θ2), or H( 1

τ ), or 1
τ ) such that 0 < λ2 < 1, ∀θ > θ. �

Corollary 3. In the conditions (CC), (CPC) and (LC), the initial value prob-
lem (2) have in C[−τ, b] an unique solution x∗, such that the pair (x∗, (x∗)′)
is approximated by the sequence of successive approximations ((xm, ym))m∈N,

where

(x0(t)), y0(t)) =

{
(ϕ(t), ϕ′(t)), t ∈ [−τ, 0]
(ϕ(0), ϕ′(0)), t ∈ [0, b]

(18)

and

(xm, ym) = A(xm−1, ym−1), ∀m ∈ N∗, (19)

with the following error estimation :

dB

((
xm

ym

)
,

(
x∗

(x∗)′

))
≤ λm−1

2

1− λ2
·

(
α
θ + L1

θ2
β
θ · e

−θτ + L2
θ2

α + L1
θ β · e−θτ + L2

θ

)
·

·dB

((
x0

y0

)
,

(
x1

y1

))
, ∀m ∈ N∗. (20)

Proof. From Theorem 2 and Theorem 1 (inequality (3)), we obtain for any
m ∈ N∗, the estimation :

dB

((
xm

ym

)
,

(
x∗

(x∗)′

))
≤ Qm (I2 −Q)−1 ·dB

((
x0

y0

)
,

(
x1

y1

))
. (21)

After elementary calculus we find

det(I2 −Q) = 1− β · e−θτ − α

θ
− L2

θ
− L1

θ2
= 1− λ2

Qm =
(

β · e−θτ +
α

θ
+

L2

θ
+

L1

θ2

)m−1

·Q = λm−1
2 ·Q, ∀m ∈ N∗

and

(I2 −Q)−1 =
1

1− λ2
·

(
1− β · e−θτ − L2

θ
β
θ · e

−θτ + L2
θ2

α + L1
θ 1− α

θ −
L1
θ2

)
.
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Hence,

Qm (I2 −Q)−1 =
λm−1

2

1− λ2
·Q, ∀m ∈ N∗,

from the inequality (21) we infer that the estimation (20) holds. Using the
Theorem 1 we obtain the following uniform convergence on (X, dB) :

(xm, ym) ⇒ (x∗, (x∗)′), for m →∞.

�

Remark 4. (i) In the conditions (CC)-(LC), the initial value problem (2)
have an unique bounded solution in C[−τ, b]. Indeed,

|x∗(t)| ≤ |ϕ(0)|+
t∫

0

∣∣f(s, x∗(s), (x∗)′(s− τ))
∣∣ ds

+

t∫
t−τ

∣∣g(t, s, x∗(s), (x∗)′(s))
∣∣ ds

≤ |ϕ(0)|+ Mb + Kτ, ∀t ∈ [0, b]

and x∗(t) = ϕ(t), ∀t ∈ [−τ, 0].
(ii) Also, we obtain a positive solution if we consider the above conditions and
the conditions ϕ(t) > 0, ∀t ∈ [−τ, 0],

f(t, u, v) > 0, ∀(t, u, v) ∈ [0, b]× R× R

and

g(t, s, u, v) > 0, ∀(t, s, u, v) ∈ [0, b]× [−τ, b]× R× R.

In this case we obtain 0 < x∗(t) ≤ ϕ(0) + Mb + Kτ, ∀t ∈ [0, b].

3. Uniform Lipschitz properties

Definition 5. Let I ⊂ R, interval and F (I, R) the set of all functions f : I →
R. A subset Y ⊂ F (I, R) is uniform Lipschitz on I if there exists L̇ > 0 such
that ∀f ∈ Y we have :

|f(u)− f(v)| ≤ L |u− v| , ∀u, v ∈ I.



APPROACHING NONLINEAR VOLTERRA DELAY 197

Theorem 6. In the conditions (CC)-(LC), if ϕ′ is Lipschitzian on [−τ, 0],
0 < β < 1 and if there exists γ > 0 such that

|f(t1, u, v)− f(t2, u, v)| ≤ γ |t1 − t2| , ∀t1, t2 ∈ [0, b], ∀u, v ∈ R,

then the sequence of successive approximations (ym)m∈N, given by (19) and
(18), is uniform Lipschitz on [0, b] and the derivative of the solution of the
initial value problem (2) is Lipschitzian on [−τ, b].

Proof. Consider the functions Fm : [0, b] → R, given by

Fm(t) = f(t, xm(t), ym(t− τ)), t ∈ [0, b].

Let γ′ > 0 the Lipschitz constant of ϕ′ and δ > 0 such that |ϕ′(t)| ≤ δ, ∀t ∈
[−τ, 0].
Since,

xm(t) = ϕ(0) +

t∫
0

f(s, xm−1(s), ym−1(s− τ))ds+

+

t∫
0

 η∫
η−τ

g(η, s, xm−1(s), ym−1(s))ds

 dη

and

ym(t) = f(t, xm−1(t), ym−1(t− τ)) +

t∫
t−τ

g(t, s, xm−1(s), ym−1(s))ds, ∀t ∈ [0, b]

we have, for any m ∈ N∗,

|xm(t1)− xm(t2)| ≤
t2∫

t1

|f(s, xm−1(s), ym−1(s− τ))| ds+

+

t2∫
t1

 η∫
η−τ

|g(η, s, xm−1(s), ym−1(s))| ds

 dη

≤ (M + τK) · |t1 − t2| , ∀t1, t2 ∈ [0, b].

On the other hand,

|F0(t1)− F0(t2)| ≤ γ |t1 − t2|+ α |x0(t1)− x0(t2)|+ β |y0(t1)− y0(t2)| ≤

≤ (γ + αδ + βγ′) · |t1 − t2| = L0 · |t1 − t2| , ∀t1, t2 ∈ [0, b]



198 ALEXANDRU MIHAI BICA AND SORIN MUREŞAN

and

|F1(t1)− F1(t2)| ≤ γ |t1 − t2|+ α |x1(t1)− x1(t2)|+ β |y1(t1)− y1(t2)| .

with

|y1(t1)− y1(t2)| ≤ |f(t1, x0(t1), y0(t1 − τ))− f(t2, x0(t2), y0(t2 − τ))|+

+K · |t1 − t2| ≤ (K + L0) · |t1 − t2| , ∀t1, t2 ∈ [0, b].

Then,

|F1(t1)− F1(t2)| ≤ [γ + α(M + τK) + β(K + L0)] · |t1 − t2| , ∀t1, t2 ∈ [0, b].

By induction we infer that,

|Fm(t1)− Fm(t2)| ≤ [γ + α(M + τK) + β(K + Lm−1)] · |t1 − t2| =

= Lm · |t1 − t2| , ∀t1, t2 ∈ [0, b].

We see that,
L1 = γ + α(M + τK) + β(K + L0)

L2 = γ + α(M + τK) + β(K + L1) = γ + α(M + τK) + βK+

+β[γ + α(M + τK) + βK] + β2L0 =

= [γ + α(M + τK) + βK](1 + β) + β2L0

L3 = [γ + α(M + τK) + βK](1 + β + β2) + β3L0

and

Lm = [γ + α(M + τK) + βK](1 + β + ... + βm−1) + βmL0 = βmL0+

+[γ + α(M + τK) + βK] · 1− βm

1− β
<

γ + α(M + τK) + βK

1− β
+ L0 = L.

Then,
Lm ≤ L, ∀m ∈ N∗

and

lim
m→∞

Lm =
γ + α(M + τK) + βK

1− β
.

Consequently, for any m ∈ N∗ and t1, t2 ∈ [0, b] we have

|ym(t1)− ym(t2)| ≤ Lm−1 · |t1 − t2|+ K · |t1 − t2| ≤ (L + K) · |t1 − t2| (22)

and then,

−(L + K) · |t1 − t2| ≤ ym(t1)− ym(t2) ≤ (L + K) · |t1 − t2| , ∀m ∈ N∗. (23)
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Since, according to Theorem 2, we have

lim
m→∞

ym(t) = y∗(t) = (x∗)′(t), ∀t ∈ [0, b],

from inequality (23) we infer that

−(L + K) · |t1 − t2| ≤ (x∗)′(t1)− (x∗)′(t2) ≤ (L + K) · |t1 − t2|

and so,∣∣(x∗)′(t1)− (x∗)′(t2)
∣∣ ≤ (max(γ′, L + K)) · |t1 − t2| , ∀t1, t2 ∈ [−τ, b]. (24)

With the inequalities (22) and (24) the proof is complete. �

Remark 7. From the proof of the above theorem we see that, in the condi-
tions of this theorem, the sequence of successive kernels (Fm)m∈N, is uniform
Lipschitz on [0, b].
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