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Abstract. In this paper, we deal with the problem of finding a common fixed point of

a family of relatively nonexpansive mappings. We, first of all, discuss the properties of

strongly relatively nonexpansive mappings and show a strong convergence theorem for a

sequence of relatively nonexpansive mappings under some conditions. Using this result, we

obtain a strong convergence theorem for a finite family of relatively nonexpansive mappings.

Furthermore, we apply our result to the problem of finding a zero of a maximal monotone

operator.
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1. Introduction

Throughout this paper, we denote by N the set of positive integers. Let E

be a real smooth Banach space and let J be the duality mapping on E. Let
φ : E × E → R be a function defined by

φ(x, y) = ‖x‖2 − 2 〈x, Jy〉+ ‖y‖2 for all x, y ∈ E.

Let C be a nonempty closed convex subset of E and let T be a mapping of
C into E. We denote by F (T ) and F̂ (T ) the sets of fixed points of T and
asymptotic fixed points of T , respectively. A mapping T : C → E is said to
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be relatively nonexpansive [3, 10] if F (T ) = F̂ (T ) and φ(p, Tx) ≤ φ(p, x) for
all p ∈ F (T ) and x ∈ C. A mapping T : C → E is said to be nonexpansive if
‖Tx− Ty‖ ≤ ‖x− y‖ for all x, y ∈ C. Nakajo and Takahashi [12] proved the
following strong convergence theorem for finding a fixed point of a nonexpan-
sive mapping in a Hilbert space by using the hybrid method in mathematical
programming.

Theorem 1.1 ([12]). Let C be a nonempty closed convex subset of a real
Hilbert space H and let T be a nonexpansive mapping of C into itself such
that F (T ) is nonempty. Let {xn} be a sequence in C defined by

x1 = x ∈ C;

yn = αnxn + (1− αn)Txn;

Cn = {z ∈ C : ‖z − yn‖ ≤ ‖z − xn‖};

Qn = {z ∈ C : 〈xn − z, x− xn〉 ≥ 0};

xn+1 = PCn∩Qn(x)

for n ∈ N, where 0 ≤ αn ≤ a < 1 for all n ∈ N and PCn∩Qn are the metric
projections of H onto Cn ∩Qn for all n ∈ N. Then {xn} converges strongly to
z = PF (T )(x), where PF (T ) is the metric projection of H onto F (T ).

Later, Matsushita and Takahashi [11] extended this theorem to that of
a Banach space in the case when T is a relatively nonexpansive mapping.
On the other hand, Reich [15] and Kohsaka and Takahashi [8] proved weak
convergence theorems for finding common fixed points of finite families of
relatively nonexpansive mappings in Banach spaces.

In this paper, motivated by Matsushita and Takahashi [11], Reich [15],
and Kohsaka and Takahashi [8], we establish strong convergence theorems by
hybrid methods for finding common fixed points of families of relatively non-
expansive mappings in Banach spaces. For proving them, we obtain some
important properties of relatively nonexpansive mappings in Banach spaces.
Further, using the methods developed in [5,11–13], we prove a strong conver-
gence theorem for a sequence of relatively nonexpansive mappings satisfying
some conditions. Using this result, we obtain a strong convergence theorem
for a finite family of relatively nonexpansive mappings. Furthermore, we apply
the result to the problem of finding a zero of a maximal monotone operator.
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2. Preliminaries

Throughout this paper, N denotes the set of positive integers, R the set
of real numbers, E a real Banach space with norm ‖ · ‖, E∗ the dual of E,
and 〈x, f〉 the value of f ∈ E∗ at x ∈ E. For convenience, the norm of E∗

is also denoted by ‖ · ‖. Let {xn} be a sequence in E. Strong convergence of
{xn} to x ∈ E is denoted by xn → x and weak convergence by xn ⇀ x. The
(normalized) duality mapping J of E into 2E∗ is defined by

Jx = {x∗ ∈ E∗ : 〈x, x∗〉 = ‖x‖2 = ‖x∗‖2}

for x ∈ E.
A Banach space E is said to be strictly convex if ‖x‖ = ‖y‖ = 1 and x 6= y

imply ‖(x + y)/2‖ < 1. A Banach space E is said to be uniformly convex if
for any ε > 0, there exists δ > 0 such that ‖x‖ = ‖y‖ = 1 and ‖x− y‖ ≥ ε

imply ‖(x + y)/2‖ ≤ 1− δ. We know that a uniformly convex Banach space is
reflexive and strictly convex. Let {xn} and {yn} be two bounded sequences in
a uniformly convex Banach space E. It is known that limn→0 ‖xn − yn‖ = 0
if λ ∈ (0, 1) and λ ‖xn‖2 + (1− λ) ‖yn‖2 −‖λxn + (1− λ)yn‖2 → 0 as n →∞.
It is also known that if E is a uniformly convex Banach space, then xn → x

whenever xn ⇀ x and ‖xn‖ → ‖x‖, where {xn} is a sequence in E.
Let U = {x ∈ E : ‖x‖ = 1}. The norm ‖ · ‖ of E is said to be Gâteaux

differentiable if the limit

lim
t→0

‖x + ty‖ − ‖x‖
t

(2.1)

exists for all x, y ∈ U . In this case a Banach space E is said to be smooth.
The norm of E is said to be uniformly Fréchet differentiable if the limit (2.1)
is attained uniformly for x, y ∈ U . In this case a Banach space E is said to
be uniformly smooth. It is known that the duality mapping J of E has the
following properties (see [19]):

• It is single-valued if E is smooth;
• it is surjective if E is reflexive;
• it is injective if E is strictly convex, i.e., Jx∩Jy = ∅ for x, y ∈ E with

x 6= y;
• it is uniformly norm-to-norm continuous on every bounded set if E is

uniformly smooth.
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From these facts, it is obvious that the duality mapping J−1 of E∗ is single-
valued and bijective if E is smooth, strictly convex, and reflexive. Further-
more, we know the following: Let {xn} and {yn} be bounded sequences of a
uniformly smooth Banach space E. Then

‖xn − yn‖ → 0 implies ‖Jxn − Jyn‖ → 0 (2.2)

as n → ∞. We know that a Banach space E is uniformly convex if and only
if E∗ is uniformly smooth. Thus we also obtain the following: Let {xn} and
{yn} be bounded sequences of a uniformly convex and smooth Banach space
E. Then the duality mapping J−1 of E∗ is uniformly norm-to-norm continuous
on every bounded set and thus

‖Jxn − Jyn‖ → 0 implies ‖xn − yn‖ =
∥∥J−1Jxn − J−1Jyn

∥∥ → 0 (2.3)

as n →∞; see [19] for more details.
Let E be a smooth Banach space. We use the following function φ : E×E →

R defined by

φ(x, y) = ‖x‖2 − 2 〈x, Jy〉+ ‖y‖2

for x, y ∈ E; see [1]. By the definition of φ, we immediately obtain

(‖x‖ − ‖y‖)2 ≤ φ(x, y) ≤ (‖x‖+ ‖y‖)2

for all x, y ∈ E. Let E be a strictly convex, smooth, and reflexive Banach
space and C a nonempty closed convex subset of E. It is known that, for each
x ∈ E, there is a unique point x0 ∈ C such that

φ(x0, x) = min{φ(y, x) : y ∈ C}.

Such a point x0 is denoted by ΠCx and ΠC is said to be the generalized
projection of E onto C; see [1] and [5]. We know some lemmas, which are
used for the proofs of our main results.

Lemma 2.1 ([1] and [5]). Let E be a strictly convex, smooth, and reflexive
Banach space and C a nonempty closed convex subset of E. Let ΠC be the
generalized projection of E onto C, x ∈ E and x0 ∈ C. Then x0 = ΠCx if
and only if

〈x0 − y, Jx− Jx0〉 ≥ 0

for all y ∈ C.
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Lemma 2.2 ([1] and [5]). Let E be a strictly convex, smooth, and reflexive
Banach space and C a nonempty closed convex subset of E. Let ΠC be the
generalized projection of E onto C. Then

φ(y, ΠCx) + φ(ΠCx, x) ≤ φ(y, x) (2.4)

for all x ∈ E and y ∈ C.

Lemma 2.3 (Kamimura-Takahashi [5]). Let E be a smooth and uniformly
convex Banach space. Let {xn} and {yn} be two sequences in E with
limn→∞ φ(xn, yn) = 0. If {xn} or {yn} is bounded, then limn→∞ ‖xn − yn‖ =
0.

Let {xn} and {yn} be two bounded sequences of a smooth Banach space E.
We have

0 ≤ φ(xn, yn) = ‖xn‖2 − 2 〈xn, Jyn〉+ ‖yn‖2

= ‖xn‖2 − ‖yn‖2 − 2 〈xn − yn, Jyn〉 .

Thus φ(xn, yn) → 0 whenever ‖xn − yn‖ → 0. From this fact combined
with (2.2), (2.3) and Lemma 2.3, we conclude the following: Let {xn} and
{yn} be two bounded sequences of a uniformly convex and uniformly smooth
Banach space E. Then

‖xn − yn‖ → 0 ⇔ ‖Jxn − Jyn‖ → 0 ⇔ φ(xn, yn) → 0. (2.5)

Let E be a Banach space. A multi-valued mapping A of E into E∗ is said to
be a monotone operator if 〈x− y, x∗ − y∗〉 ≥ 0 for all x, y ∈ D(A), x∗ ∈ Ax,
and y∗ ∈ Ay, where D(A) = {x ∈ E : Ax 6= ∅}, which is called the effective
domain of A. A monotone operator A ⊂ E × E∗ is said to be maximal if its
graph is not properly contained in the graph of any other monotone operators
of E × E∗. The following result is well-known.

Lemma 2.4 (Rockafellar [16]). Let E be a strictly convex, smooth, and reflex-
ive Banach space and A ⊂ E × E∗ a monotone operator. Then A is maximal
if and only if R(J + rA) = E∗ for all r > 0, where R(J + rA) denotes the
range of J + rA.

Let E be a strictly convex, smooth, and reflexive Banach space and A ⊂
E × E∗ a maximal monotone operator. Let r > 0 and x ∈ E be given. Using
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Lemma 2.4, we know that there exists a unique xr ∈ D(A) such that

Jx ∈ Jxr + rAxr.

Thus we may define a single-valued mapping Jr : E → D(A) by Jrx = xr, that
is, Jr = (J + rA)−1J . Such Jr is said to be the resolvent of A for r. The set
of all zeros of A is denoted by A−10, that is, A−10 = {x ∈ E : Ax 3 0}. It
is known that A−10 is a closed convex subset of E and A−10 = F (Jr), where
F (Jr) is the fixed point set of Jr. It is also known that

1
r
(J − JJr)x ∈ AJrx (2.6)

for all r > 0 and x ∈ E; see [5–7].

3. Strongly Relatively Nonexpansive Mappings

Let E be a smooth Banach space, C a nonempty closed convex subset
of E, and T a mapping of C into E. The set of all fixed points of T is
denoted by F (T ). A point p ∈ C is said to be an asymptotic fixed point
of T [15] if C contains a sequence {xn} which converges weakly to p and
limn→∞ ‖xn − Txn‖ = 0. The set of all asymptotic fixed points of T is denoted
by F̂ (T ).

A mapping T of C into E is said to be relatively nonexpansive [3, 10, 11] if
F (T ) = F̂ (T ) and φ(p, Tx) ≤ φ(p, x) for all x ∈ C and p ∈ F (T ). It is known
that F (T ) is a closed convex subset of E if T is relatively nonexpansive and E

is strictly convex and smooth; see [11, Proposition 2.4]. It is also known that
the generalized projection ΠC of E onto C is relatively nonexpansive if E is
smooth, strictly convex, and reflexive. A mapping T of C into E is said to be
strongly relatively nonexpansive if it is relatively nonexpansive and

lim
n→∞

φ(Txn, xn) = 0

whenever {xn} is a bounded sequence of C and limn→∞(φ(p, xn)−φ(p, Txn)) =
0 for some p ∈ F (T ); see [15].

Example 3.1. Let E be a smooth, strictly convex, and reflexive Banach space
and C a nonempty closed convex subset of E. Let T : C → E be a relatively
nonexpansive mapping that satisfies the following:

φ(p, Tx) + φ(Tx, x) ≤ φ(p, x)
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or equivalently:

〈p− Tx, Jx− JTx〉 ≤ 0

for all p ∈ F (T ) and x ∈ C. Then T is strongly relatively nonexpansive.
Thus it follows from (2.4) that the generalized projection ΠC of E onto C

is an example of strongly relatively nonexpansive mappings. Let Jr be the
resolvent of a maximal monotone operator A ⊂ E × E∗ for r > 0. We know
that

φ(u, Jrx) + φ(Jrx, x) ≤ φ(u, x)

for all u ∈ A−10 and x ∈ E; see [7, Lemma 3.1]. Moreover, suppose that E is
uniformly smooth. In this case we also know that Jr is relatively nonexpansive
with respect to A−10; see [11, Theorem 4.3] for more details. From these
facts, we see that resolvents of a maximal monotone operator are also strongly
relatively nonexpansive.

Before proving the first theorem, we need the following:

Lemma 3.2. Let E be a smooth Banach space and C a nonempty closed
convex subset of E. Let S be a strongly relatively nonexpansive mapping of C

into E, T a relatively nonexpansive mapping of C into E, and U a mapping
of C into E defined by Ux = J−1(λJSx + (1 − λ)JTx) for x ∈ C, where
λ ∈ (0, 1) is a constant. Suppose F (S) ∩ F (T ) 6= ∅. Let {xn} be a bounded
sequence in C and w ∈ F (S) ∩ F (T ). If φ(w, xn) − φ(w,Uxn) → 0, then
φ(w, xn)− φ(w,Sxn) → 0, φ(w, xn)− φ(w, Txn) → 0, and φ(Sxn, xn) → 0 as
n → 0.

Proof. Let x ∈ C be given. Since ‖ · ‖2 is a convex function on E and both T

and S are relatively nonexpansive, we have

φ(w,Ux) = ‖w‖2 − 2 〈w, JUx〉+ ‖Ux‖2

≤ ‖w‖2 − 2 〈w, λJSx + (1− λ)JTx〉+ λ ‖Sx‖2 + (1− λ) ‖Tx‖2

= λφ(w,Sx) + (1− λ)φ(w, Tx)

≤ λφ(w,Sx) + (1− λ)φ(w, x) ≤ φ(w, x).

This shows that

0 ≤ λ(φ(w, xn)− φ(w,Sxn)) ≤ φ(w, xn)− φ(w,Uxn)
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for every n ∈ N. Thus we conclude that φ(w, xn)− φ(w,Sxn) → 0. Since S is
strongly relatively nonexpansive, we also have φ(Sxn, xn) → 0. Similarly, we
obtain φ(w, xn)− φ(w, Txn) → 0. �

Theorem 3.3. Let E be a uniformly convex and uniformly smooth Ba-
nach space and C a nonempty closed convex subset of E. Let S be a
strongly relatively nonexpansive mapping of C into E, T a relatively non-
expansive mapping of C into E, and U a mapping of C into E defined by
Ux = J−1(λJSx + (1 − λ)JTx) for x ∈ C, where λ ∈ (0, 1) is a constant.
If F (S) ∩ F (T ) is nonempty, then U is strongly relatively nonexpansive and
F (U) = F̂ (U) = F (S) ∩ F (T ).

Proof. We first prove F̂ (U) ⊂ F̂ (S) ∩ F̂ (T ). Let z ∈ F̂ (U). Then there exists
a sequence {zn} in C such that zn ⇀ z and

‖zn − Uzn‖ → 0 (3.1)

as n → ∞. Note that {zn} is bounded and hence {Szn}, {Tzn}, and {Uzn}
are also bounded. Choose w ∈ F (S) ∩ F (T ) arbitrarily. Since E is uniformly
smooth and

φ(w,Uzn)− φ(w, zn) = ‖Uzn‖2 − ‖zn‖2 − 2 〈w, JUzn − Jzn〉 ,

it follows that φ(w,Uzn)−φ(w, zn) → 0 as n →∞. Thus Lemmas 3.2 and 2.3
imply that

‖Szn − zn‖ → 0 (3.2)

as n → ∞. Since S is relatively nonexpansive, we conclude that z ∈ F̂ (S).
On the other hand, we have

(1− λ) ‖Jzn − JTzn‖ = ‖Jzn − (λJSzn + (1− λ)JTzn)− λ(Jzn − JSzn)‖

≤ ‖Jzn − JUzn‖+ λ ‖Jzn − JSzn‖ .

From (3.2), (3.1) and (2.2), we know that both ‖Jzn − JUzn‖ and
‖Jzn − JSzn‖ converge to 0 as n →∞. Therefore we have ‖Jzn − JTzn‖ → 0
and hence ‖zn − Tzn‖ → 0 because of (2.3). Thus, we conclude that z ∈ F̂ (T ).
From all observations above, we have

F̂ (S) ∩ F̂ (T ) = F (S) ∩ F (T ) ⊂ F (U) ⊂ F̂ (U) ⊂ F̂ (S) ∩ F̂ (T )

and hence F (S) ∩ F (T ) = F (U) = F̂ (U). From this fact, it is easy to check
that U is relatively nonexpansive.
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Let us prove that U is strongly relatively nonexpansive. Let {xn} be a
bounded sequence in C and p ∈ F (U). Suppose that φ(p, xn)−φ(p, Uxn) → 0.
We only have to show that φ(Uxn, xn) → 0. Lemma 3.2 implies that

φ(p, xn)− φ(p, Sxn) → 0 and φ(p, xn)− φ(p, Txn) → 0.

This shows that

λ ‖JSxn‖2 + (1− λ) ‖JTxn‖2 − ‖λJSxn + (1− λ)JTxn‖2

= λ ‖Sxn‖2 + (1− λ) ‖Txn‖2 − ‖Uxn‖2

= λ(φ(p, Sxn)− φ(p, xn)) + (1− λ)(φ(p, Txn)− φ(p, xn))

− (φ(p, Uxn)− φ(p, xn)) → 0

as n → ∞. Since E∗ is uniformly convex and both {JSxn} and {JTxn}
are bounded, we obtain ‖JSxn − JTxn‖ → 0. On the other hand, it follows
from Lemmas 3.2 and 2.3 that ‖Sxn − xn‖ → 0. Using (2.2), we conclude
‖JSxn − Jxn‖ → 0. These facts imply that

‖Jxn − JUxn‖ = ‖(1− λ)(JSxn − JTxn) + Jxn − JSxn‖

≤ (1− λ) ‖JSxn − JTxn‖+ ‖Jxn − JSxn‖ → 0.

So, we have that ‖Jxn − JUxn‖ → 0 and therefore φ(Uxn, xn) converges to 0
by (2.5). This completes our proof. �

It is clear that the identity mapping I on C is strongly relatively nonexpan-
sive. Putting S = I in Theorem 3.3, we immediately obtain the following:

Corollary 3.4. Let E be a uniformly convex and uniformly smooth Banach
space and C a nonempty closed convex subset of E. Let T be a relatively
nonexpansive mapping of C into E, and U a mapping of C into E defined
by Ux = J−1(λJx + (1 − λ)JTx) for x ∈ C, where λ ∈ (0, 1) is a constant.
If F (T ) is nonempty, then U is strongly relatively nonexpansive and F (U) =
F̂ (U) = F (T ).

By induction and Theorem 3.3, we get the following result:

Corollary 3.5. Let E be a uniformly convex and uniformly smooth Banach
space and C a nonempty closed convex subset of E. Let {Sk}N

k=1 be a finite
family of relatively nonexpansive mappings of C into E, where N is some
positive integer. Let {λk}N

k=0 be a finite sequence in (0, 1) with
∑N

k=0 λk = 1.
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Let U be a mapping of C into E defined by Ux = J−1
∑N

k=0 λkJSkx for x ∈ C,
where S0 is the identity mapping on C. If

⋂N
k=1 F (Sk) is nonempty, then U

is strongly relatively nonexpansive and F (U) = F̂ (U) =
⋂N

k=1 F (Sk).

4. Strong Convergence Theorems

Using an iterative method developed in [5,11–13], we first prove the follow-
ing theorem for a sequence of relatively nonexpansive mappings.

Theorem 4.1. Let E be a uniformly convex and uniformly smooth Banach
space and C a nonempty closed convex subset of E. Let {Tn} be a sequence
of relatively nonexpansive mappings of C into E with

⋂∞
n=1 F (Tn) 6= ∅. Sup-

pose that for any nonempty bounded closed convex subset B of C and any
subsequence {Tni} of {Tn}, there exist a subsequence {Tnij

} of {Tni} and a
relatively nonexpansive mapping U of C into E such that

F (U) =
∞⋂

n=1

F (Tn) and lim
j→∞

sup
y∈B

∥∥∥Uy − Tnij
y
∥∥∥ = 0.

Let {xn} and {yn} be two sequences of E defined by the following:

x1 = x ∈ C;

yn = J−1(αnJxn + (1− αn)JTnxn);

Hn = {z ∈ C : φ(z, yn) ≤ φ(z, xn)};

Wn = {z ∈ C : 〈xn − z, Jx− Jxn〉 ≥ 0};

xn+1 = ΠHn∩Wn(x)

for each n ∈ N, where {αn} is a sequence in [0, 1] with lim supn→∞ αn < 1
and ΠHn∩Wn is the generalized projection of E onto Hn ∩ Wn. Then {xn}
converges strongly to ΠF (U)(x), where ΠF (U) is the generalized projection of E

onto F (U) =
⋂∞

n=1 F (Tn).

Proof. From the definition of Hn and Wn, it is clear that Hn and Wn are closed
convex subsets of C for every n ∈ N. First we show that

⋂∞
n=1 F (Tn) ⊂ Hn.

Since Tn is relatively nonexpansive, u ∈
⋂∞

n=1 F (Tn) implies

φ(u, yn) = ‖u‖2−2 〈u, αnJxn + (1− αn)JTnxn〉+‖αnJxn + (1− αn)JTnxn‖2

≤ αn(‖u‖2− 2 〈u, Jxn〉+ ‖Jxn‖2)+ (1−αn)(‖u‖2− 2 〈u, JTnxn〉+ ‖JTnxn‖2)

= αnφ(u, xn) + (1− αn)φ(u, Tnxn)
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≤ αnφ(u, xn) + (1− αn)φ(u, xn) = φ(u, xn).

Thus we know that
⋂∞

n=1 F (Tn) ⊂ Hn for every n ∈ N. We next show that⋂∞
n=1 F (Tn) ⊂ Wn. It is obvious that

⋂∞
n=1 F (Tn) ⊂ C = W1. Suppose

that u ∈
⋂∞

n=1 F (Tn) ⊂ Wk for some k ∈ N. Since xk+1 = ΠHk∩Wk
(x) and

u ∈ Hk ∩ Wk, we obtain 〈xk+1 − u, Jx− Jxk+1〉 ≥ 0 from Lemma 2.1. This
means that u ∈ Wk+1. Thus, by induction on k, we conclude that u ∈ Wn for
every n ∈ N. Therefore we see that

⋂∞
n=1 F (Tn) ⊂ Hn ∩Wn and Hn ∩Wn is

a nonempty closed convex subset of E for every n ∈ N.
We verify that {xn} is bounded and limn→∞ ‖xn − Tnxn‖ = 0. Again, let

u ∈
⋂∞

n=1 F (Tn) be fixed. Using Lemma 2.2 combined with the fact that
xn = ΠWn(x) and u ∈ Wn, we have

φ(u, xn) + φ(xn, x) ≤ φ(u, x).

Hence, for every n ∈ N,

(‖xn‖ − ‖x‖)2 ≤ φ(xn, x) ≤ φ(u, x) ≤ (‖u‖+ ‖x‖)2.

This means that both {φ(xn, x)} and {xn} are bounded. Then we may assume,
without loss of generality, that C is bounded. Using Lemma 2.2 combined with
the fact that xn+1 ∈ Wn and xn = ΠWn(x), we have

φ(xn+1, xn) + φ(xn, x) ≤ φ(xn+1, x) (4.1)

for every n ∈ N. This shows that {φ(xn, x)} is nondecreasing and hence it is
convergent. From (4.1), we have φ(xn+1, xn) ≤ φ(xn+1, x) − φ(xn, x). This
yields

lim
n→∞

φ(xn+1, xn) = 0. (4.2)

By the definition of Hn, we see that φ(xn+1, yn) ≤ φ(xn+1, xn). Therefore we
also obtain

lim
n→∞

φ(xn+1, yn) = 0. (4.3)

From the definition of yn, (4.2), (4.3), and (2.5), it follows that

(1− αn)(Jxn+1 − JTnxn) = Jxn+1 − Jyn − αn(Jxn+1 − Jxn) → 0.

Therefore we have ‖Jxn+1 − JTnxn‖ → 0 because of the assumption on {αn}.
This fact combined with (4.2) and (2.3) shows that

‖JTnxn − Jxn‖ ≤ ‖JTnxn − Jxn+1‖+ ‖Jxn+1 − Jxn‖ → 0
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and hence

lim
n→∞

‖Tnxn − xn‖ = 0. (4.4)

Since {xn} is bounded, there exists a subsequence {xni} of {xn} such that
xni ⇀ v. Let us show that v ∈

⋂∞
n=1 F (Tn). Let {Tni} be the subsequence

of {Tn} corresponding to {xni}. By assumption, for C and {Tni}, there exist
a subsequence {Tnij

} of {Tni} and a relatively nonexpansive mapping U of C

into E such that

F (U) =
∞⋂

n=1

F (Tn) (4.5)

and

lim
j→∞

sup
y∈C

∥∥∥Uy − Tnij
y
∥∥∥ = 0. (4.6)

It is clear that

‖Uxn − xn‖ ≤ ‖Uxn − Tnxn‖+ ‖Tnxn − xn‖

≤ sup
y∈C

‖Uy − Tny‖+ ‖Tnxn − xn‖

for every n ∈ N. From (4.4) and (4.6), we obtain

lim
j→∞

∥∥∥Uxnij
− xnij

∥∥∥ = 0.

By (4.5) and the relative nonexpansiveness of U , we conclude that v ∈ F (U) =⋂∞
n=1 F (Tn).
Finally, let us prove that xni ⇀ v implies v = z, where z = ΠF (U)(x). Since

z ∈ F (U) =
⋂∞

n=1 F (Tn) ⊂ Hn ∩Wn, it follows that

φ(xn+1, x) = min{φ(y, x) : y ∈ Hn ∩Wn} ≤ φ(z, x)

for every n ∈ N. From the fact that ‖ · ‖2 is weakly lower semicontinuous and
limn→∞ φ(xn, x) exists, we get

φ(v, x) = ‖v‖2 − 2 〈v, Jx〉+ ‖x‖2

≤ lim inf
i→∞

(‖xni‖
2 − 2 〈xni , Jx〉+ ‖x‖2)

= lim inf
i→∞

φ(xni , x)

= lim
n→∞

φ(xn, x)

≤ lim
n→∞

φ(z, x) = φ(z, x).
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Since v ∈ F (U) and {z} = argmin{φ(y, x) : y ∈ F (U)}, we see that z = v and
limn→∞ φ(xn, x) = φ(z, x). Therefore xn ⇀ z and hence

‖xn‖2 − ‖z‖2 = φ(xn, x)− φ(z, x) + 2 〈xn − z, Jx〉 → 0

as n →∞. This shows limn→∞ ‖xn‖ = ‖z‖. Since E is uniformly convex, we
conclude that limn→∞ xn = z. This completes our proof. �

Using Theorem 4.1 and Corollary 3.5, we obtain the following theorem.

Theorem 4.2. Let E be a uniformly convex and uniformly smooth Banach
space and C a nonempty closed convex subset of E. Let {Sk}N

k=1 be a finite
family of relatively nonexpansive mappings of C into E with

⋂N
k=1 F (Sk) 6= ∅,

where N is some positive integer. Let {λk
n} is a sequence in (0, 1) with two

indices n ∈ N and k = 0, . . . , N . Suppose that
∑N

k=0 λk
n = 1 for every n ∈ N

and inf{λk
n : n ∈ N} > 0 for every k = 0, . . . , N . Let {xn} and {yn} be two

sequences of E defined by the following:

x1 = x ∈ C;

yn = J−1(αnJxn + (1− αn)
∑N

k=0 λk
nJSkxn);

Hn = {z ∈ C : φ(z, yn) ≤ φ(z, xn)};

Wn = {z ∈ C : 〈xn − z, Jx− Jxn〉 ≥ 0};

xn+1 = ΠHn∩Wn(x)

for each n ∈ N, where {αn} is a sequence in [0, 1] with lim supn→∞ αn < 1,
ΠHn∩Wn is the generalized projection of E onto Hn∩Wn, and S0 is the identity
mapping on C. Then {xn} converges strongly to ΠF (x), where ΠF is the
generalized projection of E onto F =

⋂N
k=1 F (Sk).

Proof. Put Tn = J−1
∑N

k=0 λk
nJSk. Then Corollary 3.5 implies that each Tn

is (strongly) relatively nonexpansive and F (Tn) =
⋂N

k=1 F (Sk). Let B be a
nonempty bounded closed convex subset of C and {Tni} a subsequence of
{Tn}. Let {λk

ni
} be the subsequence of {λk

n} corresponding to {Tni}. By
assumption, for each k = 0, . . . , N , there exist λk ∈ (0, 1) and a subsequence
{λk

nij
} of {λk

ni
} such that limj→∞ λk

nij
= λk. Define a mapping U of C into E

by

U = J−1
N∑

k=0

λkJSk.
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Then Corollary 3.5 also implies that U is relatively nonexpansive and F (U) =⋂N
k=1 F (Sk). Hence F (U) =

⋂∞
n=1 F (Tn). Note that sup{‖Sky‖ : y ∈ B, k =

0, . . . , N} < ∞. Further we have

‖JUy − JTny‖ =

∥∥∥∥∥
N∑

k=0

(λk − λk
n)JSky

∥∥∥∥∥
≤

N∑
k=0

∣∣∣λk − λk
n

∣∣∣ ‖JSky‖

≤
N∑

k=0

∣∣∣λk − λk
n

∣∣∣ M

for all y ∈ B, where M = sup{‖Sky‖ : y ∈ B, k = 0, . . . , N}. Therefore

lim
j→∞

sup
y∈B

∥∥∥JUy − JTnij
y
∥∥∥ ≤ lim

j→∞

N∑
k=0

∣∣∣λk − λk
nij

∣∣∣ M = 0.

This shows that

lim
j→∞

sup
y∈B

∥∥∥Uy − Tnij
y
∥∥∥ = 0.

Using Theorem 4.1, we conclude that {xn} converges strongly to ΠF (U)(x) =
ΠF (x). �

Applying Theorem 4.1, we can also obtain the following result:

Theorem 4.3 (Matsushita-Takahashi [11]). Let E be a uniformly convex and
uniformly smooth Banach space and C a nonempty closed convex subset of E.
Let T be a relatively nonexpansive mapping of C into E with F (T ) 6= ∅ and
{αn} a sequence of real numbers such that αn ∈ [0, 1) for every n ∈ N and
lim supn→∞ αn < 1. Let {xn} and {yn} be two sequences of E defined by the
following: 

x1 = x ∈ C;

yn = J−1(αnJxn + (1− αn)JTxn);

Hn = {z ∈ C : φ(z, yn) ≤ φ(z, xn)};

Wn = {z ∈ C : 〈xn − z, Jx− Jxn〉 ≥ 0};

xn+1 = ΠHn∩Wn(x)
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for each n ∈ N, where ΠHn∩Wn is the generalized projection of E onto Hn∩Wn.
Then {xn} converges strongly to ΠF (T )(x), where ΠF (T ) is the generalized
projection of E onto F (T ).

Proof. Putting Tn = T for all n ∈ N, we have that {Tn} satisfies the condition
in Theorem 4.1. So, we obtain the desired result by using Theorem 4.1. �

Finally, we apply Theorem 4.1 to the problem of finding a zero of a maximal
monotone operator in a Banach space. This problem has been studied by many
researchers; see, for example, [9], [17], [14], [15], [18], [4, 5], [13], [6], [7], and
[10,11].

Before solving the problem, we begin with the following lemma:

Lemma 4.4. Let E be a strictly convex, smooth, and reflexive Banach space
and Jr the resolvent of a maximal monotone operator A ⊂ E × E∗ for r > 0.
Then

λφ(Jλx, Jµx) + µφ(Jµx, Jλx) ≤ (λ− µ)(φ(Jλx, x)− φ(Jµx, x))

for all x ∈ E and λ, µ > 0. In particular,

φ(Jλx, Jµx) ≤ |λ− µ|
λ

|φ(Jλx, x)− φ(Jµx, x)| (4.7)

for all x ∈ E and λ, µ > 0.

Proof. Let x ∈ E and λ, µ > 0 be fixed. From (2.6) and the monotonicity of
A, we have

0 ≤
〈

Jλx− Jµx,
1
λ

(J − JJλ)x− 1
µ

(J − JJµ)x
〉

=
1

λµ
〈Jλx− Jµx, µ(Jx− JJλx)− λ(Jx− JJµx)〉 .

So, we have

0 ≤ µ 〈Jλx− Jµx, Jx− JJλx〉 − λ 〈Jλx− Jµx, Jx− JJµx〉

and hence

0 ≤ (µ− λ) 〈Jλx− Jµx, Jx〉 − µ 〈Jλx− Jµx, JJλx〉+ λ 〈Jλx− Jµx, JJµx〉 .
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Therefore we obtain

− (λ 〈Jλx, JJµx〉+ µ 〈Jµx, JJλx〉)

≤ (µ− λ) 〈Jλx− Jµx, Jx〉 − µ ‖Jλx‖2 − λ ‖Jµx‖2 .

Applying this inequality, we have

λφ(Jλx, Jµx)

≤ λφ(Jλx, Jµx) + µφ(Jµx, Jλx)

= λ(‖Jλx‖2 − 2 〈Jλx, JJµx〉+ ‖Jµx‖2)

+ µ(‖Jµx‖2 − 2 〈Jµx, JJλx〉+ ‖Jλx‖2)

= (λ + µ)(‖Jλx‖2 + ‖Jµx‖2)− 2(λ 〈Jλx, JJµx〉+ µ 〈Jµx, JJλx〉)

≤ (λ + µ)(‖Jλx‖2 + ‖Jµx‖2)

+ 2((µ− λ) 〈Jλx− Jµx, Jx〉 − µ ‖Jλx‖2 − λ ‖Jµx‖2)

= λ(‖Jλx‖2 + ‖Jµx‖2 − 2 〈Jλx− Jµx, Jx〉 − 2 ‖Jµx‖2)

− µ(−‖Jλx‖2 − ‖Jµx‖2 − 2 〈Jλx− Jµx, Jx〉+ 2 ‖Jλx‖2)

= (λ− µ)(‖Jλx‖2 − 2 〈Jλx, Jx〉+ ‖x‖2 − ‖Jµx‖2 + 2 〈Jµx, Jx〉 − ‖x‖2)

= (λ− µ)(φ(Jλx, x)− φ(Jµx, x))

= |λ− µ| |φ(Jλx, x)− φ(Jµx, x)| .

This completes the proof. �

Using Theorem 4.1 and Lemma 4.4, we show the following strong conver-
gence theorem. A similar result was obtained in [11]; compare this theorem
with [11, Theorem 4.3]; see also [7, Theorem 3.3].

Theorem 4.5. Let E be a uniformly convex and uniformly smooth Banach
space, A ⊂ E × E∗ a maximal monotone operator with A−10 6= ∅, and Jr

the resolvent of A for r > 0. Let {rn} be a bounded sequence of positive real
numbers which is bounded away from 0. Let {xn} and {yn} be two sequences
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of E defined by the following:

x1 = x ∈ E;

yn = J−1(αnJxn + (1− αn)JJrnxn);

Hn = {z ∈ E : φ(z, yn) ≤ φ(z, xn)};

Wn = {z ∈ E : 〈xn − z, Jx− Jxn〉 ≥ 0};

xn+1 = ΠHn∩Wn(x)

for each n ∈ N, where {αn} is a sequence in [0, 1] with lim supn→∞ αn < 1
and ΠHn∩Wn is the generalized projection of E onto Hn ∩ Wn. Then {xn}
converges strongly to ΠA−10(x), where ΠA−10 is the generalized projection of
E onto A−10.

Proof. Put Tn = Jrn . Then each Tn is relatively nonexpansive and⋂∞
n=1 F (Tn) = A−10. Let B be a nonempty bounded closed convex subset

of E and {Tni} a subsequence of {Tn}. Let {rni} be the subsequence of {rn}
corresponding to {Tni}. By assumption, there exist s > 0 and a subsequence
{rnij

} of {rni} such that limj→∞ rnij
= s > 0. Let U be a mapping of E into

D(A) defined by U = Js. It is clear that U is also relatively nonexpansive and
F (U) = A−10. Hence F (U) =

⋂∞
n=1 F (Tn). Further we have, by (4.7),

sup
y∈B

φ(Jsy, Jrny) ≤ |s− rn|
s

sup
y∈B

|φ(Jsy, y)− φ(Jrny, y)| .

It is easy to check that {sup
y∈B

|φ(Jsy, y)− φ(Jrny, y)|} is bounded.

Thus it follows that

lim
j→∞

sup
y∈B

φ(Uy, Tnij
y) = 0.

This shows that
lim

j→∞
sup
y∈B

∥∥∥Uy − Tnij
y
∥∥∥ = 0.

Using Theorem 4.1, we conclude that {xn} converges strongly to ΠA−10(x). �
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