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1. INTRODUCTION

Throughout this paper, the standard notations and terminologies in non-
linear analysis (see [14], [15], [7]) are used. For the convenience of the reader
we recall some of them.

Let (X, d) be a metric space. In the sequel we will use the following symbols:

P(X):={Y C X|Y is nonempty}, Py(X):={Y € P(X)| Y is closed}.

Let A and B be nonempty subsets of the metric space (X,d). The gap
between these sets is

D(A, B) = inf{d(a,b)| a € A, b e B}.

In particular, D(zg, B) = D({zo}, B) (where z¢p € X) is called the distance
from the point z to the set B.
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Also, if A, B € P,(X), then one denote
d(A, B) :=sup{d(a,b)| a € A, b€ B}.

The Pompeiu-Hausdorff generalized distance between the nonempty closed
subsets A and B of the metric space (X, d) is defined by the following formula:
H(A,B) := inf d(a,b inf d(a,b)}.

(A, B) max{ilelg inf d(a, )72161313 inf d(a,b)}

The symbol T': X — Y means T': X — P(Y), i. e. T is a multivalued
operator from X to Y. We will denote by G(T) := {(z,y) € X x Y|y € T'(z)}
the graph of T'. The multivalued operator T is said to be closed if G(T) is
closed in X x Y.

For T : X — P(X) the symbol Fr := {z € X| € T(z)} denotes the fixed
point set of the multivalued operator T', while (SF)r := {z € X| {z} =T(z)}
is the strict fixed point set of T. Also, for x € X, we denote F"(z) :=
F(F"Y(x)), n € N*, where F(x) := {z}.

If F: X — Py(X) is a multi-valued operator then F is said to be a-

contraction if
a € [0,1] and for z,y € X = H(F(z), F(y)) < ad(z,y).

The aim of this paper is to give some fixed point theorems for multivalued
operators on a set endowed with two metrics. For the singlevalued case, see
R. P. Agarwal, D. O’'Regan [1], I. A. Rus, A. Petrusel, G. Petrusgel [14] and
the references therein.

2. MULTIVALUED CONTRACTION ON A SET WITH TWO METRICS

Our first main result is a multivalued version of Maia’s fixed point theorem.
Theorem 2.1 Let X be a nonempty set, d and p two metrics on X and
T:X — P(X) be a multivalued operator. We suppose that:
(i) (X,d) is a complete metric space;
(ii) there exists ¢ > 0 such that d(x,y) < cp(z,y), for each z,y € X;
(i13) T : (X,d) — (P(X), Hy) is closed;
(i) there exists o € [0, 1] such that H,(F(x), F(y)) < ap(z,y), for each
z,y € X.

Then we have:

(a’) FT 7é (Z);
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(b) for each x € X and each y € T'(x) there exists a sequence (Tp)neN
such that:
(1) zo =z, 1 =y;
(2) xpi1 € T(xy), n € N;
(8) xn L g € T(z*), as n — 0.

Proof. As in the proof of Avramescu-Markin-Nadler’s theorem (see [3],
[6], [12]) hypothesis (iv) implies that there exists a Cauchy sequence (zy,)nen
in (X, p), such that (1) and (2) hold. From (ii) it follows that the sequence
(zn)nen is Cauchy in (X,d). Denote by z* € X the limit of this sequence.
From (i) and (iii) we get that x, 4o e T(z*), as n — oo. The proof is

complete. [J

Remark 2.1 In terms of the multivalued weakly Picard operators theory
(see [15], [12]), the conclusion of the above result takes the following form:
(a’)-(b°) T : (X,d) —o (X,d) is a multivalued weakly Picard operator.

The second main result of this section is the following theorem.
Theorem 2.2 Let X be a nonempty set, d and p two metrics on X and
T:X — P(X) be a multivalued operator. We suppose that:
(i) (X,d) is a complete metric space;
(i) there exists ¢ > 0 such that d(x,y) < cp(z,y), for each z,y € X;
(i) T : (X,d) — (P(X), Hy) is closed;
(i) there exists o € [0, 1] such that Hy(T(x),T(y)) < ap(x,y), for each
z,y € X;
(v) (SF)r #0.
Then we have:
(a) Fr = (SF)r = {«"};
(b) H,(T"(z),z*) < a™ - p(x,x*), for each n € N and each v € X;
(c) p(z,2*) < 1= Hy(x,T(x)), for each x € X;
(d) the fized point problem is well-posed for T with respect to D,,.
Proof. (a)-(b) From (iv) we have that if * € (SF)r then (SF)r = {z*},
see I. A. Rus [12], pp. 87. Also, by taking y := z* in (iv) we have
that H,(T(x),2*) < ap(x,x*), for each x € X. By induction we get that
H,(T"(x),z*) < op(x,x*), for each v € X. Consider now y* € Fr. Then:
p(y*,x*) < Hy(T™(x),2*) < op(x,x*) — 0, as n — oo. Hence y* = z*.
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(c) We successively have: p(z,2*) < Hy(z,T(x)) + H,(T(x),z*) <
H,(z,T(x)) + ap(z,2*). Hence p(z,2*) < 2= - Hy(z,T(z)), for each z € X.

(d) Let (zpn)nen be such that D,(z,,T(z,)) — 0, as n — oco. We have to
prove that p(z,,z*) — 0, as n — oo (see [10]).

Then we have:
p(n,x*) < Dp(xm T(zn)) + Hp(T(xn),T(x*)) < Dp($naT(xn)) + ap(xn, ™).

Hence we get p(zn,2*) < 1= - Dp(zn, T(2y)) — 0, as n — oco. O

Remark 2.2 For the implication (SF)p # 0 = (SF)p = {z*} in the theory
of multivalued generalized contractions see I. A. Rus [13] and A. Sintamarian
[16].

Remark 2.3 In the conditions of Theorem 2.2 we also have that:
(1) T:(X,d) — (X,d) is a multivalued weakly Picard operator;
(2) T : (X, p) — (X, p) is a multivalued Picard operator (see A. Petrusel,
I. A. Rus [9]).

A data dependence result is the following theorem.
Theorem 2.3 Let X be a nonempty set, d and p two metrics on X and
T,S: X — P(X) be two multivalued operators. We suppose that:

(i) (X,d) is a complete metric space;

(i) there exists ¢ > 0 such that d(x,y) < cp(z,y), for each z,y € X;

(i13) T : (X,d) — (P(X), Hy) is closed;

(i) there exists o € [0, 1] such that H,(T(x),T(y)) < ap(x,y), for each

z,y € X

(0) (SF)r £0;

(vi) Fs # ()

(vii) there exists n > 0 such that Hy(T(x),S(x)) < n, for each x € X.
Then H(Fr,Fs) <
Proof. Let y* € Fg. From the conclusion (c) of the above theorem we have

that:
ply*,a*) < thg - Hp(y*, T(y")) < 725 - Hp(S(y ),T(y*)) <

Hence H(Fr, Fg) = sup p(y*,z%) < il
y*€Fs 1-

—1a
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3. MULTIVALUED GENERALIZED CONTRACTION ON A SET WITH TWO
METRICS

Let (X, d) be a metric space and T': X — P.(X) be a multivalued operator.
For z,y € X, let us denote

Mg(xv y) ::max{d(x, y)’Dd(xv T(l‘))de(yv T(y))vé[Dd(x’ T(y)HDd(y’T(ﬂg))]}

Ciri¢ proved that if the space (X, d) is complete and if the multivalued operator
T : X — P,y(X) satisfies the following condition:

there exists a€ [0, 1] such that Hy(T(x),T(y)) <a-MJ(x,y), for each z,y€ X,

then Fip # () and for each x € X and each y € T'(z) there exists a sequence
(zn)nen such that:
(1) zo =z, a1 =y;
(2) Tpy1 € T(xy), n €N
(3) zp, Loy e T(xz*), as n — oo.
Next result is a multivalued version of Maia’s theorem for Cirié—type mul-
tivalued operators.
Theorem 3.1 Let X be a nonempty set, d, p two metrics on X and T :
X — P(X) be a multivalued operator. We suppose that:
(i) (X,d) is a complete metric space;
(i) there exists ¢ > 0 such that d(x,y) < cp(z,y), for each z,y € X;
(i13) T : (X,d) — (P(X), Hy) is closed;
(i) there exists o € [0,1] such that Hy(T(x),T(y)) < on;;F(x,y), for
each z,y € X.
Then we have:
(a) Fr #0;
(b) for each x € X and each y € T(x) there exists a sequence (Tp)neN
such that:
(1) zg =z, 1 =y;
(2) Tpi1 € T(xy), n €N;
(8) xn = T(z*), as n — 0.
Proof. As in the proof of Ciri¢’s theorem (see [2], Theorem 2), hypothesis
(iv) implies that there exists a Cauchy sequence (zp)nen in (X, p), such that
(I)and (2) hold. From (ii) it follows that the sequence (z,)nen is Cauchy in
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(X,d). Denote by z* € X the limit of this sequence. From (i) and (iii) we get

that z, 5 2* € T(xz*), as n — oo. The proof is complete. [J

Remark 3.1 In terms of the multivalued weakly Picard operators theory,
the conclusion of the above result takes the following form:
(a’)-(b°) T : (X,d) —o (X,d) is a multivalued weakly Picard operator.

For the next results, let us denote

NJ () := max{d(z, ), Daly, T)), 3 [Dalr, T(w) + Daly, T(a))])

The second main result of this section is the following theorem.

Theorem 3.2 Let X be a nonempty set, T : X — P(X) be a multivalued
operator and d, p two metrics on X. We suppose that:

(i) (X,d) is a complete metric space;
(i) there exists ¢ > 0 such that d(x,y) < cp(z,y), for each z,y € X;
(i13) T : (X,d) — (P(X), Hy) is closed;
(i) there exists a € [0,1] such that H,(T(z),T(y)) < ochT(x,y), for
each x,y € X;
(0) (SF)r £0.
Then we have:
(a) Fr = (SF)r = {a"};
(b) H,(T"(z),2z*) < a™ - p(x,x*), for each n € N and each v € X;
(c) p(z,2*) < 1= Hy(x,T(x)), for each x € X;
(d) the fized point problem is well-posed for T with respect to D,,.

Proof. (a)-(b) From (iv) we have that if * € (SF)r then (SF)r = {x*}
Indeed, if y € (SF)r then p(z*,y) = Hy(T(z*),T(y)) < aNI(z*,y) =
max{p(z*,y), 5[p(z*,y) + p(y,z*)]} = a - p(z*,y). Hence y = z*.

For the second conclusion let’s take, in the condition (iv), y := x*. Then,
for each x € X, we have: H,(T(z),2*) = H,(T(z),T(z*)) < aNp’ (z,2*) =
a-max{p(z,z*), 3[D,(z*, T(2))+D,(T(z*),z)]}. We distinguish the following
two cases:

1) If the above maximum is p(z,2*) then we have H,(T(z),z*) < «
p(z,z*).

2) If the maximum is $[D,(z*, T(2))+D,(T(z*),z)], then H,(T(z),z*) <
o+ {[H, (2", T(x)) + p(a*,2)]. Hence Hy(T(z),2") < 52 p(a*,2).
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Since max{«, 3%} = a < 1, from both cases, we have that: H,(T(z),z*) <
ap(z,z*), for each z € X.

By induction we get that H,(T"(x),x
Consider now y* € Fp. Then: p(y*,2*) < H,(T"(z),
n — o0o. Hence y* = x*.

(c) We successively have: p(z,2*) < Hy(z,T(x)) + Hy(T(x),z*) <
Hy(z,T(z)) + ap(z,z*). Hence p(z,2*) < 12~ - Hy(z,T(z)), for each z € X.

(d) Let (zn)nen be such that D,(z,,T(x,)) — 0, as n — co. We have to

prove that p(z,,z*) — 0, as n — oo.

*), for each z € X.
< a"p(x,x*) — 0, as

Then we have:
p(@n, ") < Dp(an, T(xn)) + Hy(T(25), T(x")) < Dp(an, T(2n)) + ap(an, 7).

Hence we get p(zn, %) < 2= Dp(zn, T(2,)) — 0, as n — oo. O

Remark 3.2 In the conditions of Theorem 3.2 we also have that:
(1) T:(X,d) — (X,d) is a multivalued weakly Picard operator;
(2) T :(X,p) — (X,p) is a multivalued Picard operator.

A data dependence result for Cirié-type multivalued operators is the follow-
ing theorem.

Theorem 3.3 Let X be a nonempty set, d and p two metrics on X and
T,S: X — P(X) be two multivalued operators. We suppose that:

(i) (X,d) is a complete metric space;

(ii) there exists ¢ > 0 such that d(x,y) < cp(z,y), for each z,y € X;

(113) T : (X,d) — (P(X), Hy) is closed;

(i) there exists a € [0,1] such that H,(T(z),T(y)) < ochT(x,y), for

each z,y € X

(0) (SF)z £ 0;

(vi) Fs # ()

(vii) there exists n > 0 such that Hy(T(x),S(x)) < n, for each x € X.
Then H(Fr,Fs) <
Proof. Let y* € Fg. From the conclusion (c) of the previous theorem we

have that:
p(y* a*) < t25 - Hp(y*, T(y")) < 15 - Ho(S(y ),T(y*)) <

Hence H(Fr, Fg) = sup p(y*,z%) < il
y*€Fs 1-

—1a
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