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1. INTRODUCTION

The Gronwall inequality was generalized in various directions. In [12]-[14],
I.A. Rus established some new operatorial inequalities for Picard and weakly
Picard operators. The theory of Picard operators (PO, for short) is very useful
in studying the properties of the solutions of Volterra integral equations.

In this paper we presented a generalization of the results from [5] and [10].
The notions and notations from [13], [14] are used. Two important results
established in [13], [14] are Lemma 1.1 and Lemma 1.2.

Lemma 1.1. (ILA. Rus [13]) (Abstract Gronwall lemma). Let (X, —, <) be
an ordered L-space and A : X — X an operator. We suppose that

(i) A is PO;

(ii) A is increasing.

If we denote by % the unique fized point of A, then

(a) v < A(z) = = <ak;

(b) x> Alx) = = >a%.
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Lemma 1.2. (I.A. Rus [14]) (Abstract Gronwall-comparison lemma). Let
(X, —, <) be an ordered L-space and A, B : X — X two operators. We suppose
that:

(i) A and B are POs;

(ii) A is increasing;

(iii) A < B.

Then
r< A(z) = z<uzp,

xp 18 the unique fized point of B.

2. MAIN RESULTS

2.1. Volterra integral equations
In what follows we consider the integral equation

1
u(ajl,xg,...,zn):h(xl,xg,...,xn)—|—/ Ki(s1,29, ..., xn)u(s1,22,...,Ty)ds]
0

1 To
—i—/ / Ko(s1,82,x3,...,xn)u(s1, 82,23, ...,2,)ds1dsy + -+
0 0

1 To Tn
—I—/ / / K, (81,82, ..., 8p)u(s1,82,...,8,)ds1dsy . ..ds,, (2.1)
0 0 0

where we suppose that a; > 0,7 = 1,n, D = H[O,ai], h € C(D,R), K; €

C(D) for i € {1,2,...,n}. There exists for ;ﬁli € {l,...,n}, Mg, > 0
such that |K;(z)| < Mg,, V = € D. Equation (2.1) is a generalization of the
corresponding equation from [5] and [10].

Theorem 2.1. If K; € C(D), h € C(D), i € {1,2,...,n}, then equation
(2.1) has in C(D) a unique solution v, and A™(u) converge uniformly to u*
as n — oo, for allu € C(D).

Proof. Let A: C(D) — C(D) be the operator defined by
A(u)(x1,...,zy) := second part of (2.1).

If we consider the Banach space (C(D),| - ||g) where || - ||z is the Bielecki
norm

llu|| g := max(Ju(x)|e” "), for 7 > 0, (2.2)
zeD
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then the operator A is Lipschitz with the constant
1
LA:;(MKI+MK2a2+"‘+MKHa2...CLn). (2.3)

Thus A is a contraction with respect to || - ||g, for 7 > 0 suitable chosen.
Therefore A is PO in the L-space (C'D, w%) and the conclusion follows from
the Banach fixed point theorem.

Theorem 2.2. We suppose that h € C(D,Ry), K; € C(D,Ry), fori €
{1,2,...,n}. Then

(a) uy(x) >0, VaeD;

(b) If h(z1,...,xn), Ki(z1,...,2,) are increasing with respect to
Tit1,---, T, © € {1,...,n — 1}, then u’ is increasing.

Proof. (a) Let up € C(D,Ry) and uy, := A"(up), n € N*. Then from (2.1)
we have that u,(z) > 0, for all x € D and u,, is increasing. By Theorem 2.1,
(un)nen converges uniformly to v’ (un untf u%). So, we have (a).

(b) The conclusion follows immediately from (a) and from (2.1).

2.2. Volterra integral inequations

Consider now the inequation
u < A(u). (2.4)

By definition a solution of (2.4) is a lower solution of (2.1).
Theorem 2.3. We suppose that conditions of Theorem 2.2 are satisfied. If
u € C(D,Ry) is a lower solution of (2.1), then

u(x) <u*(x), (2.5)

where

T
u*(az):h(fv)Jr/O Ki(s1,x9,...,xn)h(81,22,...,2p)

x1
X exp (/ Kl(tl,l’g,...,wn)dtl—i--”—i-
S1

T1 T2 T
+/ / / Kn(tl,SQ,...,Sn)dtldSQ...dsn) dsy+ -+
S1 0 0

1 Tn 1
+/ . / Kn(s)h(s) exp </ Kl(tl, o, ..., xn)dtl
0 0 s1
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T T2 1 Tn
+/ / KQ(tl,tQ,iL‘g,...,I’n)dtldtQ + —l—/ / Kn(t)dt> ds,
1 2 1 n (26)

t = (t1,...,tp), dt = dty...dtn, s = (S1,...,8p), ds = dsy...ds,, x =
(T1,...,Tp).

Proof. If we consider equation (2.1), and u¥ the unique fixed point of A,
then, by Lemma 1.1 we have

In what follows we shall prove that v*(z) < w*(x).
If we denote

T1
g(x) = / Ki(s1,29, ..., xp)uly(s1, 22, ..., xn)ds1 + -+
0

1 Ty
—l—/ / Kn(s1,.- s 8n)uly (81, -+, 8n)ds1 .. .dsp, ¢(0,22,...,2,) =0,
0 0

we have

wa(z) = h(z) + 9(x). (2.7)
Using (2.7) and the fact that g(z) is increasing, we obtain
dg z2
- < | Ki(z) + Ko (21, 82,23, ..., xp)dsy + -+
8$1 0

To Tn
—i—/ / Kn(xl,SQ,...,Sn)dSQ...dSn:| g(x)
0 0
—i—[Kl(xl,...,xn)h(xl,...,wn)

T2
—I—/ Ko(x1,82,23,...,2n)h(x1, 82, X3,...,2Tpn)ds2 + -+
0

To Tn
+/ / Kn(l'1782,...7Sn)h([]}'1,$2,...,Sn)dsg...dsn}. (2.8)
0 0
Let

f(x) = g(x) exp [— /Ow1 Ki(s1,x2,...,2,)ds1

1 T2 1 Tn
—/ / KQ(Sl,SQ,.%'g,...,xn)dsldSQ — e —/ / Kn(s)ds] . (2.9)
0 0 0 0

A simple calculation gives

of _[9g _ b
879%1 = [81’1 () <K1(93)+/0 Ky(z1,82,23,...,2,)ds2 + -+ -+
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To Tn
+/ / Kn(x1782,...,Sn)dSQ...dsn>:|
0 0
a1
X exp [—/ Kq(s1,®2,...,2n)ds1 — / / K, ( ] (2.10)

Using now (2.8) and (2.10) we obtain

0
7f < |: / KZ x1782,333,..., )h(xl,SQ,xg,...,xn)d32_|_..._|_

ox1 —
2 n
—i—/ / Kn(xl,SQ,...,sn)h(xl,SQ,...,sn)dSQ...dsn]
0 0

Xexp[—/olel(sl,:Eg,..., Jdsi — / / Ko ] (2.11)

Taking into account (2.9) it follows that

g(x) = f(z) exp [ /0 " Ki(s1, 0, . )dsy

T1 T2 z1 Tn
+/ / K2(81,82,(L‘3,...,l’n)dSldSQ—|—--'+/ / Kn(s)ds] .
0 0 0 0

Hence -
1
x) S/ Ki(s1,22,...,xn)h(s1,22,...,2p)

Xexp(/ Ki(t1, @9, ... xp)dty + - -+

/ / / Ky ( tl,sl,...,sn)dtld.Sg...dsn>d51+---+
—|—/ / K, (s)h(s)exp </ Ki(ti,mo, ..., x,)dty
0 0
T1 [T
+/ / Kg(tl,tg,xg,..., )dtldtz + - / / K dt) ds,
s1 so

(2.12)
and therefore
wy(z) < h(x) + a(x)
where a(z) is the right hand side of (2.12). If we denote ©w*(x) = h(x) + a(z),
then
wy(x) <u*(x).

On the other hand u(z) < v () implies u(z) < @*(z).
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Remark 1. If h(z) is increasing and strictly positive, then setting v(z) =
u(x)/h(x), from (2.1) we obtain

1
U(.f) < 1+/ K1(81,$2,...,$n)v($1,$2,...,$n)d3
0

T1  pxo
+/ / Ko(s1,82,x3,...,2,)v(81, 82,23, ...,Tp)ds1dse + -+ -+
0 0

N /0 » /0 Kon(s)o(s)ds. (2.13)

This is a particular case of equation (4.1) from [10], for & = 1. Moreover,

we have

v(z) < exp </01‘1 Ki(s1,29,...,@p)ds1 + - / / K,( >
and
u(x) < h(z)exp </Ow1 Ki(s1,29,...,2p)ds1 + - / / Ky >

(2.14)
Remark 2. If we consider the equation

1
u(ml,...,xn):h(xl,...,mn)—i—/ Fi(s1,22,...,&n,u(s1,z2,...,2,))ds1
0
x1 To
—1—/ / Fy(s1,82,@3, ..., Tn,u(s1,82,23,...,Ty))ds1dss + -+ -+
0

1 Tn
+/ / Fo(s1y..ySn,u(S1,...,8n))ds1 . ..dsp, (2.15)
0 0

and we take

where |K;(z)| < Mk,, for i € {1,2,...,n}, then the operator A is right hand
side of (2.15). By Lemma 1.2 we consider the operator B second part of (2.1)
and we obtain an analogous result.

Other applications were studied by R.P. Agarwal [1], [2], A. Buica [3], C.
Corduneanu [4], V. Lakshmikantham, S. Leela, A. A. Martynyuk [6], D. Popa,
N. Lungu [11], V. Ya. Stetsenko, M. Shaban [15] and M. Zima [16].
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