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1. Introduction

Let (M,d) be a complete metric space; and x ⊢ ϕ(x), some function from

M to R+ := [0,∞[ with

ϕ is d-lsc over M : lim inf
n

ϕ(xn) ≥ ϕ(x), whenever xn → x. (1.1)

Let also T : M →M be a selfmap of M ; and put

Fix(T ) = {x ∈M ;x = Tx}, Per(T ) = ∪{Fix(Tn);n ≥ 1};

each point of the former (latter) will be called fixed (periodic) under T . The

following 1975 fixed point result in Caristi and Kirk [9] is basic for us.

Theorem CK. Suppose that

d(x, Tx) ≤ ϕ(x) − ϕ(Tx), ∀x ∈M (T is (d, ϕ)-contractive). (1.2)
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Then, necessarily,

Fix(T ) = Per(T ) 6= ∅ (T is strongly fp-admissible); (1.3a)

hence, in particular,

Fix(T ) 6= ∅ (T is fp-admissible). (1.3b)

The original proof of this result is by transfinite induction; see also Wong

[42]. (It works as well for highly specialized versions of Theorem CK; cf. Kirk

and Saliga [23]). Note that, in terms of the associated (to ϕ) order

(x, y ∈M) x ≤ y iff d(x, y) ≤ ϕ(x) − ϕ(y) (1.4)

the contractivity condition (1.2) reads

x ≤ Tx, for all x ∈M (i.e.: T is progressive). (1.5)

So, by the Bourbaki meta-theorem [6], this result is logically equivalent with

the Zorn maximality principle subsumed to the order (1.4); i.e., with Ekeland’s

variational principle [12]. Hence, the sequential type argument used in its proof

is also working in our framework; see also Pasicki [28]. A proof of Theorem

CK involving the chains of the structure (M,≤) may be found in Turinici

[38]; and its sequential translation has been developed in Dancs, Hegedus and

Medvegyev [11]. Further aspects involving the general case may be found in

Brunner [8] and Manka [25]; see also Taskovic [36], Valyi [41], Nemeth [26]

and Isac [17].

Now, the Caristi-Kirk fixed point theorem found (especially via Ekeland’s

approach) some basic applications to control and optimization, generalized dif-

ferential calculus, critical point theory and normal solvability; see the above

references for details. So, it must be not surprising that, soon after its for-

mulation, many extensions of Theorem CK were proposed. [These refer to its

standard version related to (1.3b); and referred to as Theorem CK(st). But,

only a few are concerned with the extended version of the same, related to

(1.3a); and referred to as Theorem CK(ex)]. For example, in the 1982 paper

by Ray and Walker [31], the following ”functional” variant of Theorem CK(st)

was obtained. Take some function b : R+ → R+ with the normality properties

b is decreasing and b(R+) ⊆ R0
+ :=]0,∞[ (1.6)
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B(∞) = ∞ (where B(t) =

∫ t

0
b(τ)dτ, t ≥ 0). (1.7)

Theorem RW. Suppose that, for some a ∈M one has

b(d(a, x))d(x, Tx) ≤ ϕ(x) − ϕ(Tx), for all x ∈M . (1.8)

Then, T has at least one fixed point in M .

Clearly, Theorem 1 includes Theorem CK(st), to which it reduces when

b = 1. The reciprocal inclusion also holds (cf. Park and Bae [27]). Summing

up, Theorem RW is but a logical equivalent of Theorem CK(st). Nevertheless,

for technical reasons, it is a preferred tool in many concrete circumstances; see

the quoted paper for details. [This result was re-discovered in 1999 by Zhong,

Zhu and Zhao [43]; but, no mention has been made about its equivalence with

Theorem CK(st)].

Now, it is our aim in this exposition to show that this reduction scheme

goes beyond the metrical setting. Precisely, (cf. Section 5) we shall establish

that the ”functional” versions of the fixed point results in Suzuki [34], Lin

and Du [24] or Turinici [40] are logical equivalents of these. This is also true

for the related statement in Kada, Suzuki and Takahashi [20]; note that the

corresponding statement solves an open problem in Petrusel [29]. The basic

tool for our developments is a fixed point result (in Section 3) obtained via

transitive versions of the Brezis-Browder ordering principle [7] (exposed in

Section 2). And the specific tool of these is the (already specified) concept of

normal function (discussed in Section 4). Further aspects will be delineated

elsewhere.

2. Transitive BB principles

Let M be some nonempty set. Take a quasi-order (i.e.: reflexive and transi-

tive relation) (≤) over M ; as well as a function x ⊢ ϕ(x) from M to R+. Call

the point z ∈M , (≤, ϕ)-maximal when

w ∈M and z ≤ w imply ϕ(z) = ϕ(w). (2.1)

A basic result about the existence of such points is the 1976 Brezis-Browder

ordering principle [7]:
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Proposition 1. Assume that

(M,≤) is sequentially inductive: each ascending

sequence in M has an upper bound (modulo (≤))
(2.2)

ϕ is (≤)-decreasing (x ≤ y =⇒ ϕ(x) ≥ ϕ(y)). (2.3)

Then a) for each u ∈ M there exists a (≤, ϕ)-maximal v ∈ M with u ≤ v,

aa) if T : M →M is (≤)-progressive (cf. (1.5)) we have (in addition) ϕ(v) =

ϕ(Tv).

In particular, when (2.3) is taken in the stronger sense

ϕ is strictly (≤)-decreasing (x ≤ y, x 6= y =⇒ ϕ(x) > ϕ(y)) (2.4)

the concept (2.1) means

w ∈M, z ≤ w =⇒ z = w [z is (≤)-maximal]; (2.5)

and the Brezis-Browder ordering principle includes directly Caristi-Kirk’s [9]

(Theorem CK(ex)). Note that Codom(ϕ) ⊆ R+ is not essential for the con-

clusion above; cf. Carja and Ursescu [10]. Further aspects may be found in

Altman [1], Anisiu [2] and Turinici [39]; see also Kang and Park [21].

Now, Proposition 1 is applicable to all questions handled by Theorem CK.

In addition, it may solve problems not attainable by the quoted statement (cf.

Section 5). These, as a rule, require transitive variants of Proposition 1. To

describe them, we need some conventions. Let (∇) be some transitive (over

M) relation (x∇y and y∇z imply x∇z). The relation

(x, y ∈M) x ≤ y iff either x = y or x∇y (2.6)

is a quasi-order on M ; which, in addition, fulfills

[(x∇y, y ≤ z) or (x ≤ y, y∇z)] =⇒ x∇z. (2.7)

Denote, for simplicity reasons

M(x,∇) = {y ∈M ;x∇y} (the x-section of (∇)), x ∈M .

Further, take a function ϕ : M → R+. The (∇)-decreasing property for it is

that of (2.3) (with (∇) in place of (≤)). Note that, by (2.6) above,

ϕ is (∇)-decreasing ⇐⇒ ϕ is (≤)-decreasing.
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Further, call the point z ∈M , (∇, ϕ)-maximal, provided

w ∈M and z∇w imply ϕ(z) = ϕ(w). (2.8)

For a non-trivial concept, we must take z as (∇)-starting (in the sense:

M(z,∇) 6= ∅); for, otherwise, z is vacuously (∇, ϕ)-maximal. Note that such

a requirement holds whenever z is (∇)-reflexive (i.e.: z∇z). Again by (2.6),

the generic property holds

(for each z ∈M) (∇, ϕ)-maximal ⇐⇒ (≤, ϕ)-maximal.

As a consequence, maximality results involving our transitive relation (∇) are

deductible from the Brezis-Browder principle (written for its associated quasi-

order (≤)). The key moment of this approach is that of (2.2) being assured.

It would be useful to have this condition expressed in terms of (∇). Call the

sequence (xn), ascending (modulo (∇)) when

xn∇xn+1,∀n (or, equivalently: xn∇xm if n < m).

Note the generic (sequential) relation

ascending (modulo (∇)) =⇒ ascending (modulo (≤)).

The reciprocal is not in general true. For example, the constant sequence

(xn = a;n ∈ N) is ascending (modulo (≤)); but not ascending (modulo (∇)),

whenever a∇a is false. Further, given the sequence (xn) in M , let us say that

u ∈M is an upper bound (modulo (∇)) of it provided

xn∇u, for all n (written as: (xn)∇u).

If u is generic in this convention, we say that (xn) is bounded above (modulo

(∇)). As before, the relation below is clear

bounded above (modulo (∇)) =⇒ bounded above (modulo (≤)).

(The converse is not in general valid). Finally, let the concept of sequential

inductivity for (M,∇) be that of (2.2) [with (∇) in place of (≤)].

Lemma 1. Under the specified setting,

(M,∇) sequentially inductive ⇐⇒ (M,≤) sequentially inductive. (2.9)
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Proof. The right to left implication is clear, via (2.7); so, it remains the

opposite one. Assume (M,∇) is sequentially inductive; and let (xn) be an

ascending (modulo (≤)) sequence in M :

xn ≤ xn+1,∀n (or, equivalently: xn ≤ xm, whenever n ≤ m).

If this sequence is stationary beyond a certain rank

∃k such that: ∀n > k one has xn = xk

we are done; because (xn) ≤ u(= xk). Otherwise,

∀p, ∃q > p, such that xp 6= xq (hence xp∇xq).

Consequently, a subsequence (yn = xi(n)) of (xn) may be constructed with the

property of being ascending (modulo (∇)); wherefrom (yn)∇t for some t ∈M .

But then, (xn) ≤ t; hence the conclusion. �

We are now in position to give an appropriate answer to the posed question.

Call the selfmap T : M →M , (∇)-progressive if (1.5) holds with (∇) in place

of (≤).

Proposition 2. Assume that (M,∇) is sequentially inductive and ϕ is

(∇)-decreasing. Then

b) for each (∇)-starting u ∈ M there exists a (∇, ϕ)-maximal v ∈ M with

u∇v

bb) if T : M →M is (∇)-progressive we have (in addition) ϕ(v) = ϕ(Tv).

Proof. Let (≤) stand for the quasi-order (2.6). By the remarks above (and

Lemma 1), Proposition 1 is applicable to (M,≤) and ϕ.

b) Let u ∈ M be (∇)-starting. For the arbitrary fixed u1 ∈ M(u,∇) there

exists v ∈M with

u1 ≤ v( i.e.: either u1 = v or u1∇v); and v is (≤, ϕ)-maximal.

This, along with (2.7), yields u∇v; and proves the first part.

bb) Each point of M is (∇)-starting; so, by the previous argument, we are

done. �

Clearly, the Brezis-Browder principle [7] (Proposition 1) follows from Propo-

sition 2. The reciprocal inclusion also holds, by the argument above; hence
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these results are logically equivalent. Nevertheless, a direct use of Proposi-

tion 2 is more profitable in all concrete situations involving explicitly (∇); cf.

Section 5.

An interesting completion of this statement is to be given under the remarks

following Proposition 1. Precisely, after the model of (2.5), we may introduce

the concept of (∇)-maximal element (with (∇) in place of (≤)); this is a

stronger version of the concept (2.8). As before, it is effective only if z is (∇)-

starting; for, otherwise, z is vacuously (∇)-maximal. To get a result involving

such points, we need an extra condition upon our data:

(∇) is ϕ-sufficient: z∇x∇y, ϕ(z) = ϕ(x) = ϕ(y) =⇒ x = y. (2.10)

Proposition 3. Suppose that conditions of Proposition 2 hold, as well as

(2.10). Then

c) for each (∇)-starting u ∈ M there exists a (∇)-maximal w ∈ M with

u∇w

cc) if T : M →M is (∇)-progressive, we have (in addition) w ∈ Fix(T )

ccc) each (∇)-progressive selfmap is strongly fp-admissible.

Proof. c) By Proposition 2, there must be some (∇, ϕ)-maximal v ∈ M

with u∇v. If v is (∇)-maximal, we are done (with w = v); so, it remains the

alternative of v fulfilling the opposite property:

v∇w (hence ϕ(v) = ϕ(w)), for some w ∈M \ {v}.

In this case, w is our desired element. Assume not: w∇y, for some y ∈M , y 6=

w. By the preceding relation we get v∇y (hence ϕ(v) = ϕ(y)). Summing up,

v∇w∇y and ϕ(v) = ϕ(w) = ϕ(y); wherefrom (by (2.10)) w = y, contradiction.

Hence, the claim c) is proved.

cc) Each point of M is (∇)-starting; wherefrom, all is clear.

ccc) By the previous argument, Fix(T ) 6= ∅; so, it remains to show that

Per(T ) ⊆ Fix(T ). Let z ∈ Per(T ) be arbitrary fixed; so (by definition) z =

T k(z), for some k ≥ 1. By the (∇)-progressivity condition (imposed upon T ),

z∇Tz∇...∇T k(z) = z; wherefrom z∇Tz∇z.

This (by the (∇)-decreasing property of ϕ, yields ϕ(z) = ϕ(Tz); so that (by

simply taking (2.10) into account) z = Tz (hence, z is fixed under T ). The

proof is thereby complete. �



348 MIHAI TURINICI

The obtained statement is nothing but a ”transitive” form of the Bourbaki

maximality principle [6] for these structures; cf. Hazen and Morin [16]. It may

be also viewed as a counterpart of the ”reflexive” type version of Proposition 1

obtained in Bae, Cho and Yeom [3]. Further aspects were delineated in Gajek

and Zagrodny [14]; see also Sonntag and Zalinescu [33].

3. Main results

Let M be some nonempty set. By a pseudometric over it we shall mean

any map e : M ×M → R+. Suppose that we fixed such an object; which, in

addition, is triangular

e(x, z) ≤ e(x, y) + e(y, z), for all x, y, z ∈M .

Let also ϕ : M → R+ be some function For an easy reference, we shall for-

mulate the basic regularity condition involving our data. This will necessitate

some conventions and auxiliary facts. Call the sequence (xn) in M , strongly

e-asymptotic when

the series
∑

n

e(xn, xn+1) converges (in R).

Further, let the e-Cauchy property of this object be the usual one

∀δ > 0,∃n(δ), such that n(δ) ≤ p < q =⇒ e(xp, xq) ≤ δ.

The generic relation below is clear (by the triangular property of e)

(for each sequence) strongly e-asymptotic =⇒ e-Cauchy; (3.1)

but the converse is not in general true. Nevertheless, in many conditions

involving all such objects, this is retainable. A concrete example is to be

constructed under the lines below. Let us introduce an e-convergence structure

over M by

xn
e

−→ x iff e(xn, x) → 0 as n→ ∞.

We consider the regularity condition

(e, ϕ) is weakly descending complete: for each strongly

e-asymptotic sequence (xn) in M with (ϕ(xn)) descending

there exists x ∈M with xn
e

−→ x and lim
n
ϕ(xn) ≥ ϕ(x).

(3.2)
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By (3.1) above, it includes its (stronger) counterpart

(e, ϕ) is descending complete: for each e-Cauchy sequence

(xn) in M with (ϕ(xn)) descending there exists x ∈M

with the properties xn
e

−→ x and lim
n
ϕ(xn) ≥ ϕ(x).

(3.3)

A remarkable fact to be added is that the reciprocal inclusion also holds:

Lemma 2. Under the specified conditions,

(3.2) =⇒ (3.3); hence (3.2) ⇐⇒ (3.3).

Proof. Assume that (3.2) holds; and let (xn) be an e-Cauchy sequence

in M with (ϕ(xn)) descending. By the very definition of this property, there

must be a subsequence (yn = xi(n)) of (xn) with

(yn) is strongly e-asymptotic; and (ϕ(yn)) is descending.

This, along with (3.2), yields an element y ∈ M fulfilling yn
e

−→ y and

lim
n
ϕ(yn) ≥ ϕ(y). It is now clear (by the choice of (xn)) that the point y

has all the desired in (3.3) properties. �

Now, call v ∈ M , Brezis-Browder (in short: BB) - variational (modulo

(e, ϕ)) provided

x ∈M, e(v, x) ≤ ϕ(v) − ϕ(x) =⇒ ϕ(v) = ϕ(x) (hence e(v, x) = 0). (3.4)

Some basic properties of this concept are collected in

Lemma 3. Suppose that v ∈ M is BB-variational (modulo (e, ϕ)). Then,

the following are true

e(v, x) ≥ ϕ(v) − ϕ(x), for all x ∈M (3.5)

e(v, x) > ϕ(v) − ϕ(x), for each x ∈M with e(v, x) > 0. (3.6)

Proof. The latter part is clear, by definition; so, it remains to establish

the former one. Assume this would be false; i.e.,

e(v, x) < ϕ(v) − ϕ(x), for some x ∈M . (3.7)

This, along with (3.4), yields ϕ(v) = ϕ(x); wherefrom 0 ≤ e(v, x) < 0, contra-

diction. So, (3.7) cannot hold; and the conclusion follows. �

Finally, let (∇ = ∇ϕ) stand for the transitive relation (over M)

(x, y ∈M) x∇y iff e(x, y) ≤ ϕ(x) − ϕ(y). (3.8)
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Remember that u ∈M is called (∇)-starting if M(u,∇) 6= ∅; i.e.,

e(u, x) ≤ ϕ(u) − ϕ(x), for at least one x ∈M .

This will be also referred to as u is starting (modulo (e, ϕ)). Note that the

written property holds under

u is (∇)-reflexive: u∇u;

which, in our terms, amounts to e(u, u) = 0; and is referred to as: u is reflexive

(modulo e). Further, call the selfmap T : M →M , (e, ϕ)-contractive provided

(1.2) holds (with e in place of d). Clearly, this is equivalent with T being

(∇)-progressive (see above).

We are now in position to state a pseudometric variational principle useful

in the sequel.

Theorem 1. Let the general conditions upon (e, ϕ) be accepted; as well as

(3.3) (or equivalently, (3.2)). Then

i) for each starting (modulo (e, ϕ)) u ∈ M there exists a BB-variational

(modulo (e, ϕ)) v = v(u) ∈M with

e(u, v) ≤ ϕ(u) − ϕ(v) (hence ϕ(u) ≥ ϕ(v)). (3.9)

ii) if T : M →M is (e, ϕ)-contractive we have (in addition)

ϕ(v) = ϕ(Tv), e(v, Tv) = 0. (3.10)

Proof. We claim that (∇, ϕ) fulfills conditions of Proposition 2 on M . In

fact, ϕ is (∇)-decreasing ; so, it remains to show that (M,∇) is sequentially

inductive. Let (xn) be an ascending (modulo (∇)) sequence in M :

e(xn, xm) ≤ ϕ(xn) − ϕ(xm), whenever n < m. (3.11)

The sequence (ϕ(xn)) is descending in R+; hence a Cauchy one. In addition,

by (3.11), (xn) is an e-Cauchy sequence in M . Putting these together, it

follows (via (3.3)) that there must be some y ∈M with

xn
e

−→ y and lim
n
ϕ(xn) ≥ ϕ(y). (3.12)

Fix some rank n. By (3.11) and the triangular property of e, one has

e(xn, y) ≤ e(xn, xm) + e(xm, y) ≤ ϕ(xn) − ϕ(xm) + e(xm, y),∀m > n.
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This, along with (3.12), yields by a limit process (relative to m)

e(xn, y) ≤ ϕ(xn) − lim
m
ϕ(xm) ≤ ϕ(xn) − ϕ(y) (i.e.: xn∇y).

As n was arbitrarily chosen, one deduces that (xn)∇y; and this proves our

claim. By Proposition 2 it then follows that conclusions b) and bb) given

there must hold with respect to (∇, ϕ)-maximal points v ∈M . It suffices now

remarking that

v is (∇, ϕ)-maximal (on M) ⇐⇒ v is BB-variational (modulo (e, ϕ))

to get all the conclusions above. �

Now, the regularity condition (3.2) holds under

(e, ϕ) is weakly complete:

for each strongly e-asymptotic sequence (xn) in M

there exists x ∈M with xn
e

−→ x and lim inf
n

ϕ(xn) ≥ ϕ(x).

(3.13)

This, in the particular case when

e is (in addition) reflexive (e(x, x) = 0,∀x ∈M),

tells us that the variational portion of Theorem 1 includes the ordering prin-

ciple in Tataru [37]. Moreover, the fixed point portion of the same includes a

related statement in Turinici [40] when e is sufficient (e(x, y) = 0 =⇒ x = y).

The question of the converse inclusions being also true remains open; we con-

jecture that the answer is positive.

Let us now return to our initial setting. An interesting completion of The-

orem 1 is to be done under the lines of Section 2. Precisely, let us say that v

is Ekeland (in short: E) - variational (modulo (e, ϕ)) provided

x ∈M, e(v, x) ≤ ϕ(v) − ϕ(x) =⇒ v = x. (3.14)

This concept is stronger than the one introduced via (3.4). To get a cor-

responding form of Theorem 1 involving such points we have to impose (in

addition to (3.2)/(3.3)) a regularity condition like

e is transitively sufficient (e(z, x) = e(z, y) = 0 =⇒ x = y). (3.15)

Theorem 2. Let the specified conditions be in force. Then

j) for each starting (modulo (e, ϕ)) u ∈ M there exists an E-variational

(modulo (e, ϕ)) w = w(u) ∈M with the property (3.9) (relative to w)
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jj) if T : M →M is (e, ϕ)-contractive, we have (in addition)

w = Tw (hence, w is fixed under T ) and e(w,w) = 0 (3.16)

jjj) each (e, ϕ)-contractive selfmap is strongly fp-admissible.

Proof. As already shown, conditions of Proposition 2 hold over M for the

couple (∇, ϕ). On the other hand, the special regularity condition (2.10) also

holds, via (3.15). Summing up, Proposition 3 is applicable to (M,∇) and

ϕ; wherefrom, the conclusions c), cc) and ccc) stated there must hold with

respect to (∇)-maximal points w ∈M . It suffices now remarking that

w is (∇)-maximal ⇐⇒ w is E-variational (modulo (e, ϕ))

to derive the written conclusions. �

As before, the regularity condition (3.3) holds under

(e, ϕ) is complete: for each e-Cauchy sequence (xn) in M

there exists x ∈M with xn
e

−→ x and lim inf
n

ϕ(xn) ≥ ϕ(x).
(3.17)

The corresponding variant of Theorem 2 may be viewed as an ”absolute”

version of the variational (and its subsequent fixed point) principle in Kada,

Suzuki and Takahashi [20] (cf. Section 5). In particular, (3.17) holds under

e is complete and ϕ is e-lsc (cf. (1.1)). (3.18)

Note that, in such a case, the fixed point portion of Theorem 2 includes directly

the Caristi-Kirk fixed point theorem [9] (Theorem CK(ex)). The reciprocal

of this also holds (cf. Jachymski [19]); but the resulting metric structure is

strongly connected with the initial selfmap T . Further aspects of structural

nature may be found in Isac [17] and Nemeth [26]; see also Hamel [15, Ch 4]

and Khanh [22].

4. Normal functions

(A) Let b : R+ → R+ be some normal function (cf. (1.6)+(1.7)). In

particular, it is Riemann integrable on each compact interval of R+ and∫ q

p

b(ξ)dξ = (q − p)

∫ 1

0
b(p+ τ(q − p))dτ, 0 ≤ p < q <∞. (4.1)

Some basic facts involving the couple (b, B) (where B : R+ → R+ is that of

(1.7)) are specified in
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Lemma 4. The following are true

B is a continuous order isomorphism of R+;

hence, so is B−1(=its functional inverse)
(4.2)

b(s) ≤ (B(s) −B(t))/(s− t) ≤ b(t), ∀t, s ∈ R+, t < s (4.3)

B is almost concave:

t ⊢ [B(t+ s) −B(t)] is decreasing on R+, ∀s ∈ R+
(4.4)

B is concave: B(t+ λ(s− t)) ≥ (1 − λ)B(t) + λB(s),

for all t, s ∈ R+ with t < s and all λ ∈ [0, 1]
(4.5)

B is sub-additive (hence B−1 is super-additive). (4.6)

The proof is immediate, by (4.1) above; so, we do not give details. Note

that the properties (4.4) and (4.5) are equivalent to each other, under (4.2).

This follows at once from the (non-differential) mean value theorem in Bantas

and Turinici [4].

(B) Now, let M be some nonempty set; and e : M ×M → R+, a triangular

pseudometric over it (cf. Section 3). Further, let Γ : M → R+ be chosen

according to

Γ is almost e-nonexpansive (Γ(x) − Γ(y) + e(x, y) ≥ 0,∀x, y ∈M) (4.7)

Γ is e-continuous (Γ(xn) → Γ(x), whenever xn
e

−→ x). (4.8)

Given the function ϕ : M → R+, let us attach it the function ψ = ψ(B,Γ;ϕ)

from M to R+ according to

ψ(x) = B−1[B(Γ(x)) + (ϕ(x) − ϕ∗)] − Γ(x), x ∈M ; (4.9)

or equivalently (in the implicit way)

ϕ(x) = ϕ∗ + [B(Γ(x) + ψ(x)) −B(Γ(x))], x ∈M . (4.10)

(Here, as usually, ϕ∗ = inf[ϕ(M)]). An essential question to be solved is

that of transferring the regularity properties (3.2)/(3.3) from ϕ to ψ (or vice

versa). Unfortunately, this is not (in general) possible; because the descending

sequence (ϕ(xn)) is not in general transformed into a descending sequence

(ψ(xn)). This forces us working with the ”non-descending” counterparts of

these properties; i.e., with (3.13)/(3.17). The following answer to this question

is available.
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Lemma 5. Let the sequence (xn) in M and the point x ∈ M be such that

xn
e

−→ x. Then

ϕ(x) ≤ lim inf
n

ϕ(xn) ⇐⇒ ψ(x) ≤ lim inf
n

ψ(xn). (4.11)

As a consequence, the completeness properties above are retainable in passing

from ϕ to ψ (and vice versa); i.e.,

(e, ϕ) is weakly complete ⇐⇒ (e, ψ) is weakly complete (4.12)

(e, ϕ) is complete ⇐⇒ (e, ψ) is complete. (4.13)

Proof. Assume that the left part of (4.11) holds; but the right part of the

same would be false:

0 ≤ lim inf
n

ψ(xn) < β < ψ(x), for some β.

By the definition of lim inf, there must be a sequence (yn) of (xn) with yn
e

−→ x

and 0 ≤ ψ(yn) < β, for all n. This, in turn, yields a subsequence (zn) of (yn)

(hence of (xn)) with

zn
e

−→ x and λ := lim
n
ψ(zn) exists (hence 0 ≤ λ ≤ β < ψ(x)).

So, by the implicit formula (4.10) and the continuity of Γ (cf. (4.8))

lim
n
ϕ(zn) = ϕ∗ + [B(Γ(x) + λ) −B(Γ(x))] <

ϕ∗ + [B(Γ(x) + ψ(x)) −B(Γ(x))] = ϕ(x);

in contradiction with the initial choice of our data. Hence, the left to right

implication of (4.11) is retainable. The right to left implication is deductible

in a similar way; wherefrom, (4.11) follows. The remaining part is clear, by

the definition of the involved concepts. �

An interesting property of the couple (ϕ,ψ) to be discussed here is of vari-

ational nature. Precisely, we have:

Lemma 6. Under these conventions,

b(Γ(x))e(x, y) ⊳ ϕ(x) − ϕ(y) =⇒ e(x, y) ⊳ ψ(x) − ψ(y). (4.14)

(Here, (⊳) is either of the relations {≤, <}).
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Proof. Let the points x, y ∈ M be as in the premise of this implication.

By (4.3) and the implicit formula (4.10), this yields

B(Γ(x) + e(x, y)) −B(Γ(x))⊳

[B(Γ(x) + ψ(x)) −B(Γ(x))] − [B(Γ(y) + ψ(y)) −B(Γ(y))];

or equivalently (by a simple re-arrangement)

B(Γ(x) + e(x, y)) + [B(Γ(y) + ψ(y)) −B(Γ(y))] ⊳ B(Γ(x) + ψ(x)).

On the other hand, the almost e-nonexpansivity condition (4.7) gives Γ(x) +

e(x, y) ≥ Γ(y); so, by (4.4) above

B(Γ(x) + e(x, y) + ψ(y)) −B(Γ(x) + e(x, y)) ≤ B(Γ(y) + ψ(y)) −B(Γ(y)).

A simple combination with the previous relation yields

B(Γ(x) + e(x, y) + ψ(y)) ⊳ B(Γ(x) + ψ(x)).

It suffices now taking (4.2) into account to get the desired conclusion. �

A qualitative type version of this may be given as follows. Call the point

u ∈M , starting (modulo (b,Γ; e, ϕ)) when

b(Γ(u))e(u, x) ≤ ϕ(u) − ϕ(x), for some x ∈M . (4.15)

Then, the conclusion of Lemma 6 gives a relation (useful in the sequel)

starting (modulo (b,Γ; e, ϕ)) =⇒ starting (modulo (e, ψ)). (4.16)

In particular, when e : M ×M → R+ is symmetric over M , the regularity

conditions (4.7)+(4.8) may be written as

|Γ(x) − Γ(y)| ≤ e(x, y), ∀x, y ∈M (non-expansiveness). (4.17)

And then, the choice

Γ(x) = e(a, x), x ∈M , for some a ∈M , (4.18)

is in agreement with it. Note that, in such a case Lemma 6 includes the

statement in Park and Bae [27]. Further aspects may be found in Suzuki [34];

see also Turinici [40].



356 MIHAI TURINICI

5. Relative CK theorems

We are now in position to get an appropriate ”relative” answer to the ques-

tions in Section 1.

(A) Let (M,d) be a complete metric space; and e : M ×M → R+, some

triangular pseudometric over M . We shall say that this object is a KST-metric

(modulo d) provided

each e-Cauchy sequence is d-Cauchy (hence d-convergent) (5.1)

[(yn) is e-Cauchy, yn
d

−→ y] =⇒ lim inf
n

e(x, yn) ≥ e(x, y),∀x ∈M . (5.2)

If, in addition, e is transitively sufficient; i.e.,

e(z, x) = e(z, y) = 0 =⇒ x = y (cf. (3.15))

then e will be referred to as a strong KST-metric (modulo d). Further, take

some function ϕ : M → R+. The following auxiliary fact will be needed.

Lemma 7. Assume that e is some KST-metric (modulo d) over M and

ϕ is d-lsc (cf. (1.1)). Then, (e, ϕ) is descending complete (in the sense of

(3.3)); as well as complete (cf. (3.17)).

Proof. Let (xn) be some e-Cauchy sequence in M with (ϕ(xn)) descending.

From (5.1), (xn) is d-Cauchy; so, by completeness,

xn
d

−→ y as n→ ∞, for some y ∈M .

We claim that this is our desired point for (3.3). In fact, let γ > 0 be arbitrary

fixed. By the choice of (xn), there exists k = k(γ) so that

e(xp, xm) ≤ γ, for each p ≥ k and each m > p.

Passing to lim inf upon m one gets (via (5.2) and the relation above)

e(xp, y) ≤ γ, for each p ≥ k(= k(γ));

and since γ > 0 was arbitrarily chosen, xn
e

−→ y. On the other hand,

lim
n
ϕ(xn) ≥ ϕ(y) (if one takes (1.1) into account).

Hence the conclusion. �

Further, let T : M → M be a self-map. By simply combining these facts

with Theorem 2, one derives the following fixed point statement.
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Theorem 3. Let e be some strong KST-metric (modulo d), ϕ be d-lsc and

T be (e, ϕ)-contractive (i.e., (1.2) holds with e in place of d). Then

i) for each starting (modulo (e, ϕ)) u ∈ M there exists an E-variational

(modulo (e, ϕ)) w = w(u) ∈M with the properties

e(u,w) ≤ ϕ(u) − ϕ(w), w = Tw, e(w,w) = 0. (5.3)

ii) T is strongly fp-admissible.

A functional version of this result is now available by the developments in

Section 4. Precisely, take some normal function b : R+ → R+ (cf. (1.6)+(1.7));

and Γ : M → R+ be chosen according to (4.7)+(4.8). Let ψ = ψ(B; Γ;ϕ)

stand for the associated (to ϕ) function (from M to R+) introduced as in

(4.9)/(4.10).

Theorem 4. Let the couple (e, ϕ) be taken as in Theorem 3; and T : M →

M be (b,Γ; e, ϕ)-contractive

b(Γ(x))d(x, Tx) ≤ ϕ(x) − ϕ(Tx), for all x ∈M . (5.4)

Then

j) for each starting (modulo (b,Γ; e, ϕ)) u ∈M there exists an E-variational

(modulo (e, ψ)) w = w(u) ∈M with the properties

e(u,w) ≤ ψ(u) − ψ(w), w = Tw, e(w,w) = 0. (5.5)

jj) T is strongly fp-admissible.

Proof. By Lemma 7, (e, ϕ) is complete over M ; hence (cf. Lemma 5) so

is (e, ψ) (over the same). Moreover, as u ∈M is starting (modulo (b,Γ; e, ϕ))

over M , we have

b(Γ(u))e(u, x) ≤ ϕ(u) − ϕ(x), for some x ∈M ;

and this, by Lemma 6, yields

e(u, x) ≤ ψ(u) − ψ(x) (for the same x);

wherefrom u is starting (modulo (e, ψ)) over M . On the other hand, (5.4)

gives us (via Lemma 6) that T is (e, ψ)-contractive. Summing up, Theorem 2

is applicable to (M, e), ψ and T ; wherefrom, the proof is complete. �

(B) In the following, we shall give some particular cases of our develop-

ments, with a methodological value.
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B1) Let e : M ×M → R+ be some triangular pseudometric over M . Ac-

cording to Kada, Suzuki and Takahashi [20], we say that it is a w-distance

(modulo d) when

e is strongly d-sufficient: for each ε > 0, there exists

δ > 0 such that: e(z, x), e(z, y) ≤ δ =⇒ d(x, y) ≤ ε
(5.6)

y ⊢ e(x, y) is d-lsc on M (see above), ∀x ∈M . (5.7)

Clearly, any such object is a strong KST-metric (modulo d). Hence the related

fixed point statement in the quoted paper is a particular case of Theorem 3

above; in addition, this shows that any recursion to the nonconvex minimiza-

tion theorem in Takahashi [35] is avoidable. The functional version of it (i.e.,

the variant of Theorem 4 involving w-distances) seems to be new; it solves an

open problem raised by Petrusel [29].

B2) Let G : R+ → R+ be a function with the properties

G is continuous increasing and G−1(0) = {0} (5.8)

G is subadditive (G(t+ s) ≤ G(t) +G(s), ∀t, s ∈ R+); (5.9)

it will be referred to as a FL-function. Clearly, G(∞) > 0, in view of (5.8)

(the last part). We also note the useful property

for each ε > 0 there exists δ > 0 such that G(τ) < δ =⇒ τ < ε. (5.10)

As a consequence of this, the (standard) metric over M

e(x, y) = G(d(x, y)), x, y ∈M

has all the properties of a strong KST-metric (modulo d). The corresponding

version of Theorem 3 (involving FL-functions) is just the statement in Feng

and Liu [13]; which, in turn, rephrases the one in Jachymski [18]. (See the

quoted paper for details). Further aspects of vectorial nature were discussed

in Rozoveanu [32].

B3) Let again e : M × M → R+ be a triangular pseudometric over M .

According to Suzuki [34], we say that it is a τ -distance (modulo d) over M

when there exists a function η = η(e) from M ×R+ to R+ with the properties

t ⊢ η(x, t) is increasing on R+ and

lim
t→0

η(x, t) = 0 = η(x, 0), for all x ∈M
(5.11)
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lim
n

sup
m≥n

η(zn, e(zn, ym)) = 0 and yn
d

−→ y

imply [lim inf
n

e(x, yn) ≥ e(x, y), for each x ∈M ]
(5.12)

lim
n

sup
m≥n

e(xn, ym) = 0 and lim
n
η(xn, tn) = 0

imply lim
n
η(yn, tn) = 0

(5.13)

lim
n
η(zn, e(zn, xn)) = 0 and lim

n
η(zn, e(zn, yn)) = 0

imply lim
n
d(xn, yn) = 0.

(5.14)

Clearly, any w-distance (modulo d) is a τ -distance (modulo d); it will suffice

noting that, in such a case, (5.11)-(5.14) hold with η(x, t) = t, x ∈M, t ∈ R+.

On the other hand, as we already remarked, any w-distance (modulo d) is a

strong KST-metric (modulo d). So, it is natural asking of what can be said

about the relationships between these enlargements of our initial concept. The

answer to this is given in

Proposition 4. Let the specified conventions be in use. Then, each τ -

distance (modulo d) is necessarily a strong KST-metric (modulo d). So (com-

bining with a previous claim) we have the generic inclusions (over transitive

pseudometrics)

w-distance =⇒ τ -distance =⇒ strong KST-metric (modulo d).

Proof. Let e : M ×M → R+ be a τ -distance (modulo d); and η = η(e)

stand for some associated map fulfilling (5.11)-(5.14).

i) Call the sequence (xn) in M , (η, e)-Cauchy provided

lim
n

sup
m≥n

η(zn, e(zn, xm)) = 0, for some sequence (zn) ⊆M .

By [34, Lemma 3] we have the (generic) inclusion

[for each sequence] e-Cauchy =⇒ (η, e)-Cauchy. (5.15)

Adding the fact that (5.12) may be written as

(yn) is (η, e)-Cauchy and yn
d

−→ y imply

lim inf
n

e(x, yn) ≥ e(x, y),∀x ∈M ,
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proves (5.2). On the other hand, by [34, Lemma 1] the (generic) inclusion is

(in addition) true

[for each sequence] (η, e)-Cauchy =⇒ d-Cauchy; (5.16)

and this, coupled with a previous relation, yields (5.1); wherefrom e is a KST-

metric (modulo d).

ii) Let x, y, z ∈ M be such that e(z, x) = e(z, y) = 0. By (5.11), we have

η(z, e(z, x)) = η(z, e(z, y)) = 0; and this, added to (5.14), gives d(x, y) = 0

(hence x = y); so, (3.15) holds too. �

As a consequence of this, the fixed point statement (involving τ -distances)

obtained by the quoted author is deductible from Theorem 3 above. Its func-

tional version (i.e., the variant of Theorem 4 involving τ -distances) seems to

be new. Note that the proposed proofs are still depending on Suzuki’s reason-

ing concerning (5.15)+(5.16). It would be interesting to have alternate proofs

of these, so as to avoid Proposition 4 above; further aspects will be discussed

elsewhere.

B4) Let e : M ×M → R+ be a triangular pseudometric over M . According

to Lin and Du [24] we say that it is a τ -function (modulo d) provided (3.15)

holds and
x ∈M , yn → y and e(x, yn) ≤M, ∀n

(for some M = M(x) > 0) imply e(x, y) ≤M
(5.17)

lim
n

sup
m>n

e(xn, xm) = 0 and lim
n
e(xn, yn) = 0

imply lim
n
d(xn, yn) = 0.

(5.18)

By [24, Remark 1] each w-distance (modulo d) is a τ -function (modulo d). So

(as before) it is natural asking of the relationships between this last concept

and that of strong KST-metric (modulo d). The answer is contained in

Proposition 5. Let the specified conventions hold. Then, each τ -function

(modulo d) is a strong KST-metric (modulo d). So (combining with the above)

we have the generic inclusions (over transitive pseudometrics)

w-distance =⇒ τ -function =⇒ strong KST-metric (modulo d).

Proof. Let e : M×M → R+ be some τ -function (modulo d). By definition,

it fulfills (3.15); so, it remains to prove that (5.1)+(5.2) hold. The latter of
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these is immediate via (5.17). To verify the former, call the sequence (xn),

almost e-Cauchy when lim
n

sup
m>n

e(xn, xm) = 0. The implication below is clear,

by definition

[for each sequence] e-Cauchy =⇒ almost e-Cauchy.

On the other hand, by [24, Lemma 2.1]

[for each sequence] almost e-Cauchy =⇒ d-Cauchy. (5.19)

Combining with the above gives (5.1); and the claim follows. �

As a consequence of this, the fixed point statement (involving τ -functions)

obtained by the quoted authors is deductible from Theorem 3 above. Its func-

tional version (i.e., the variant of Theorem 4 involving τ -functions) seems to be

new. Note that the proposed proofs are still depending on Lin-Du’s reasoning

concerning (5.19). As before, it would be interesting to have alternate proofs of

such an implication. Concerning this aspect, note that the proof of (5.19) runs

as follows. Assume that (xn) is almost e-Cauchy. Putting (yn = xn+1;n ∈ N)

we have lim
n
e(xn, yn) = 0. This, along with (5.18) yields

d(xn, xn+1) → 0; hence (xn) is d-Cauchy.

However, the last inference seems to be not in general true; and this conclusion

is transferrable upon Lemma 2.1 (of the authors).

Finally, note that further extensions of such statements to multivalued maps

T : M → P(M) are available. These extend some related contributions due

to Petrusel and Sintamarian [30]; see also Birsan [5].
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