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Abstract. In this paper, we prove the following result: Let X be a real Hilbert space and let

J : X → R be a C
1 functional, such that 0 is a global maximum of J and J

′ is Lipschitzian

with Lipschitz constant less than 2. Then, 0 is the unique fixed point of J
′.
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Here and in the sequel, (X, 〈·, ·〉) is a real Hilbert space and J : X → R is a

C1 functional whose derivative is Lipschitzian in X, with Lipschitz constant

L.

In this paper, we are interested in the question of knowing when the operator

J ′ has a unique fixed point.

The classical answer to such a question is, of course, to assume that L < 1,

in which case the fact that J ′ is the derivative of a functional has no role at

all.

When L ≥ 1, the question becomes quite delicate, the most immediate

counterexample being provided by J(x) = 1
2‖x‖

2.

The contribution that we offer in this paper is as follows:
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Theorem 1. If L < 1 and if u ∈ X is a global maximum of J , then u is the

unique solution of the equation

x = J ′(x) + P (J ′(x)) + u ,

where P : X → X is an arbitrary operator satisfying

‖P (x)‖ ≤ ‖x‖

for all x ∈ X.

Clearly, from Theorem 1, we get

Corollary 1. If L < 2 and if 0 is a global maximum of J , then 0 is the unique

fixed point of J ′.

We will draw Theorem 1 from the following more general result:

Theorem 2. Assume that L ≤ 1 and that u ∈ X is a global maximum of J .

Then, for every y ∈ X\{u} there exists a global minimum x̂ of the functional

x → 1
2‖x − y‖2 − J(x)

such that

‖x̂ − y‖ < ‖u − y‖ .

So, in particular, one has

x̂ = J ′(x̂) + y .

Proof. Fix y ∈ X \ {u}. For each x ∈ X, set

f(x) = 1
2‖x − y‖2 − J(x)

and

g(x) = 1
2‖x − y‖2 − 1

2‖u − y‖2 .

Of course, the functions f, g are C1 and their derivatives are

f ′(x) = x − J ′(x) − y

and

g′(x) = x − y .

For each x, z ∈ X, we have

〈f ′(x) − f ′(z), x − z〉 = ‖x − z‖2 − 〈J ′(x) − J ′(z), x − z〉 ≥ (1 − L)‖x − z‖2 .
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Therefore, since L ≤ 1, the operator f ′ is monotone and hence f is convex.

Thus, f is also weakly lower semicontinuous, being continuous. Then, since

g−1(] −∞, 0]) is weakly compact, there exists x̂ ∈ g−1(] −∞, 0]) such that

f(x̂) = inf
g−1(]−∞,0])

f .

Since g(y) < 0, the Slater condition is verified, and so, by a classical result

([2], Corollary 2.9.4) there exists λ ≥ 0 such that

f ′(x̂) + λg′(x̂) = 0 .

So

(1 + λ)(x̂ − y) − J ′(x̂) = 0 .

Note that x̂ 6= u. Otherwise, if x̂ = u, we would have J ′(x̂) = J ′(u) = 0, and

so x̂ = y which yields the contradiction y = u. Since g(u) = 0, the above

argument shows that

f(x̂) < f(u) ,

that is
1
2‖x̂ − y‖2 − J(x̂) < 1

2‖u − y‖2 − J(u) .

Recalling that u is a global maximum of J , we then infer that

1
2‖x̂ − y‖2 < 1

2‖u − y‖2 .

This shows that x̂ is a local minimum of f . Hence, by convexity, x̂ is a global

minimum of f , and the proof is complete. �

Continue to assume that L ≤ 1 and that u is a global maximum of J .

Consider the operator T : X → X defined by

T (x) = x − J ′(x)

for all x ∈ X, and consider also the set

Au = {x ∈ X : ‖J ′(x)‖ < ‖x − J ′(x) − u‖} .

With these notations, from Theorem 2, we clearly get

X \ {u} ⊆ T (Au) . (1)

When T is injective, we have
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Corollary 2. If the operator T is injective (in particular, if L < 1), then

Au = X \ {u} . (2)

Proof. Clearly, u 6∈ Au. So, let x ∈ X \ {u}. Since T (u) = u and T is

injective, we have T (x) 6= u. Consequently, by (1), T (x) ∈ T (Au), from which,

by injectivity again, we get x ∈ Au, as claimed. �

It is worth noticing the following consequence of Corollary 2.

Corollary 3. If the operator T is injective and if u 6= 0, then the norm of

any possible solution of the equation J ′(x) = u is strictly greater than ‖u‖.

Proof. Let x ∈ X be such that J ′(x) = u. Since u 6= 0, it clearly follows

that x 6= u. Consequently, thanks to (2), we have

‖u‖ = ‖J ′(x)‖ < ‖x − J ′(x) − u‖ = ‖x‖ ,

as claimed. �

We now give the

Proof of Theorem 1. Let x∗ ∈ X be such that

x∗ = J ′(x∗) + P (J ′(x∗)) + u .

We then get

‖J ′(x∗)‖ ≥ ‖P (J ′(x∗))‖ = ‖x∗ − J ′(x∗) − u‖ .

Since L < 1, the operator T is injective and so, by Corollary 2, we have x∗ = u,

as claimed. �

Two remarks on the previous results are now in order.

The first remark concerns the validity of (2) when u is not a global maximum

of J . It is clear that if (2) holds for some u and if L < 1, then J ′(u) = 0.

Indeed, in this case, the operator T is surjective and so T (x) = u for some

x ∈ X. By (2), we necessarily have x = u, and so J ′(u) = 0. However, it

can happen that, though (2) holds for some u and L < 1, the point u is not a

global maximum of J . For instance, take X = R and

J(x) = −
1

2 + x2

for all x ∈ R. In this case, it is easy to see that L ≤ 1
2 , and (2) is clearly

satisfied with u = 0 which is a global minimum of J . However, it may happen
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that L < 1, that u is a global minimum of J and that (2) is violated. In

this connection, the simplest example is provided by J(x) = λ
2‖x‖

2, with
1
2 ≤ λ < 1. On the basis of the previous observations, it would then be

interesting to characterize, when L < 1, the set U of all u ∈ X for which (2)

holds.

The second remark concerns Corollary 1. For any real Hilbert space H,

denote by AH the set of all C1 functionals I : H → R such that 0 is a global

maximum of I and I ′ is Lipschitzian with Lipschitz constant less than 1. Set

γH = inf
I∈AH

inf{λ > 0 : x = λI ′(x) for some x 6= 0} .

Corollary 1 tells us that

2 ≤ γH

for any H. It would be interesting, of course, to know the exact value of γH .

We do not know the answer in general. But, in the case H = R, we have it.

This is provided by the following proposition which is due to M. Romeo ([1]).

Proposition 1. One has

γR = 3 .

Proof. Let I ∈ AR and let L < 1 be the Lipschitz constant of I ′. Replacing,

if necessary, I by I − I(0), we can assume that I(0) = 0. Fix λ ∈]0, 3]. Let us

prove that 0 is the unique solution of the equation

x = λI ′(x) .

Arguing by contradiction, assume that

x0 = λI ′(x0)

for some x0 6= 0. It is not restrictive to assume that x0 > 0 (otherwise,

we would work with the function x → I(−x)). Consider now the function

g : R → R defined by

g(x) =















−1
2x2 if x < 1

3x0,

1
2x2 − 2

3x0x + 1
9x2

0 if 1
3x0 ≤ x ≤ x0,

−1
2x2 + 4

3x0x − 8
9x2

0 if x0 < x.

Clearly, g ∈ C1(R). Let x > 0 with x 6= x0. Let us prove that

g′(x) < I ′(x) .
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We distinguish two cases. If 0 < x ≤ 1
3x0, we have

g′(x) = −x < −Lx ≤ I ′(x) .

If x > 1
3x0, we have

g′(x) = 1
3x0 − |x − x0| < 1

3x0 − L|x − x0|

= 1
3λI ′(x0) − L|x − x0| ≤ I ′(x0) − L|x − x0| ≤ I ′(x) .

So we get

I
(

4
3x0

)

=

∫

4
3x0

0
I ′(x)dx >

∫

4
3x0

0
g′(x)dx = g

(

4
3x0

)

= 0

which contradicts the fact that the function I is non-positive, since 0 is a

global maximum of I. From what we have just proven, it clearly follows that

3 ≤ γR .

Now, fix any µ > 1. Continue to consider the function g defined above (for a

fixed x0 > 0). Clearly, the function h = µ−1g belongs to AR and

x0 = 3µh′(x0) .

Of course, from this we infer that

γR ≤ 3µ

and the conclusion clearly follows. �

We conclude proving the following

Theorem 3. For any real Hilbert space H, with H 6= {0}, one has

2 ≤ γH ≤ 3 .

Proof. As we have already observed, the inequality 2 ≤ γH is a direct

consequence of Corollary 1. To prove the other inequality, let us fix any

ϕ ∈ AR and any λ > 0 such that

t = λϕ′(t)

for some t 6= 0. Fix also u ∈ H, with ‖u‖ = 1, and consider the functional I

defined by

I(x) = ϕ(〈u, x〉)
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for all x ∈ X. It is readily seen that I ∈ AH . In particular, note that

I ′(x) = ϕ′(〈u, x〉)u .

Finally, set

x̂ = tu = λϕ′(t)u .

Of course, x̂ 6= 0 and

〈u, x̂〉 = t,

and so

x̂ = λI ′(x̂) .

From this, it clearly follows that

γH ≤ γR

and so the desired inequality follows now from Proposition 1. �
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