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Introduction

Let (X, ρ) be a complete metric space. A mapping A : X → X is said to

be nonexpansive if

ρ(Ax, Ay) ≤ ρ(x, y) for all x, y ∈ X.

It is called a strict contraction if there is a constant c ∈ [0, 1) such that

ρ(Ax, Ay) ≤ cρ(x, y) for all x, y ∈ X.

A mapping A : X → X is called contractive if there exists a decreasing function

φA : [0,∞) → [0, 1] such that

φA(t) < 1 for all t > 0

and

ρ(Ax, Ay) ≤ φA(ρ(x, y))ρ(x, y) for all x, y ∈ X.
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According to Banach’s fixed point theorem, every strict contraction has a

unique fixed point. In 1962 Rakotch [5] proved that this is also true if the

mapping is assumed to be merely contractive. Since it is not difficult to show

that if a mapping has a strictly contractive power, then it has a unique fixed

point, it is natural to ask if each contractive mapping has a strictly contractive

power. In the first section of our paper we answer this question in the negative.

It is also known that if a mapping is contractive, then its iterates converge,

uniformly on bounded sets, to its unique fixed point. This is also true even

if only a certain power of A is contractive. On the other hand, even if a

nonexpansive mapping has a fixed point, its iterates do not necessarily con-

verge to it. Therefore it is also natural to ask if a nonexpansive mapping with

uniformly convergent iterates must have a contractive power. In the second

section of our paper we answer this second question also in the negative.

When (X, ρ) is compact and the iterates of a nonexpansive self-mapping

converge, then these iterates must converge uniformly (Theorem 3.1). Our

last example (see Section 3) shows that this is not true in general if X is

merely complete.

The notion of a contractive mapping, as well as its modifications and ap-

plications, were studied by many authors. See, for example, [3]. We also

note that the fixed point problem for such mappings is well-posed [7]. It is

also known [6, 8] that most (in the sense of Baire category) nonexpansive map-

pings are, in fact, contractive. On the other hand, the set of strict contractions

is of the first category in the space of all nonexpansive mappings, at least in

Hilbert space [1, 2]. For more information on generic aspects of metric fixed

point theory see, for instance, [4, 9, 10].

1. A contractive mapping with no strictly contractive powers

Let

X = [0, 1] and ρ(x, y) = |x − y| for each x, y ∈ X.

In this section we will construct a contractive mapping A : [0, 1] → [0, 1] such

that none of its powers is a strict contraction.

We begin by setting

A(0) = 0. (1.1)
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Next, we define, for each natural number n, the mapping A on the interval

[(n + 1)−1, n−1] by

A((n+1)−1+t) = (n+2)−1+t(n−1−(n+1)−1)−1((n+1)−1−(n+2)−1) (1.2)

for all t ∈ [0, n−1 − (n + 1)−1].

It is clear that for each natural number n,

A(n−1) = (n + 1)−1, (1.3)

the restriction of A to the interval [(n + 1)−1, n−1] is affine, and that the

mapping A : [0, 1] → [0, 1] is well defined.

First, we show that A is nonexpansive, that is, |Ax − Ay| ≤ |x − y| for all

x, y ∈ [0, 1].

Indeed, if x ∈ [0, 1], then

|Ax − A(0)| ≤ |x|. (1.4)

Assume now that n is a natural number and that

x, y ∈ [(n + 1)−1, n−1]. (1.5)

By (1.2) and (1.5),

|Ax−Ay| = |(n+2)−1+(x−(n+1)−1)(n−1−(n+1)−1)−1((n+1)−1−(n+2)−1)

−[(n + 2)−1 + (y − (n + 1)−1)(n−1 − (n + 1)−1)−1((n + 1)−1 − (n + 2)−1)]|

= |x − y|(n−1 − (n + 1)−1)−1((n + 1)−1 − (n + 2)−1)

= |x − y|n(n + 1)((n + 1)(n + 2))−1 = |x − y|n(n + 2)−1.

Thus for each natural number n and each x, y ∈ [(n + 1)−1, n−1],

|Ax − Ay| ≤ |x − y|n(n + 2)−1. (1.6)

Together with (1.4) this last inequality implies that

|Ax − Ay| ≤ |x − y| for all x, y ∈ [0, 1], (1.7)

as claimed.

Next, we show that the power Am is not a strict contraction for any integer

m ≥ 1. Assume the converse. Then there would exist a natural number m

and c ∈ (0, 1) such that for each x, y ∈ [0, 1],

|Amx − Amy| ≤ c|x − y|. (1.8)
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Since

(m + i)(m + i + 1)i−1(i + 1)−1 → 1 as i → ∞,

there is an integer p ≥ 4 such that

p(p + 1) > (p + m)(p + m + 1)c. (1.9)

By (1.3), (1.1) and (1.9),

Am(p−1) − Am((p + 1)−1) = (p + m)−1 − (p + m + 1)−1

= (p + m)−1(p + m + 1)−1 > cp−1(p + 1)−1 = c(p−1 − (p + 1)−1),

which contradicts (1.8).

The contradiction we have reached proves that Am is not a strict contraction

for any integer m ≥ 1.

Finally, we show that A is contractive. Let ǫ ∈ (0, 1). We claim that there

exists c ∈ (0, 1) such that

|Ax − Ay| ≤ c|x − y| for each x, y ∈ [0, 1] satisfying |x − y| ≥ ǫ. (1.10)

Indeed, choose a natural number p ≥ 4 such that

p > 18ǫ−2, (1.11)

and assume that

x, y ∈ [0, 1], |x − y| ≥ ǫ. (1.12)

We may assume without loss of generality that

y > x. (1.13)

There are two cases:

x < (4p)−1; (1.14)

x ≥ (4p)−1. (1.15)

Assume that (1.14) holds. There exists a natural number n such that

(1 + n)−1 < y ≤ n−1. (1.16)

By (1.16), (1.13) and (1.12),

ǫ ≤ y ≤ 1/n, (n + 2)−1 ≥ (3n)−1 ≥ ǫ/3. (1.17)

By (1.16) and (1.2),

Ay = (n + 2)−1 + (y − (n + 1)−1)(n−1 − (n + 1)−1)−1((n + 1)−1 − (n + 2)−1)
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= (n+2)−1+(y−(n+1)−1)n(n+1)(n+1)−1(n+2)−1 ≤ y−(n+1)−1+(n+2)−1

and

y − Ay ≥ (n + 1)−1(n + 2)−1.

When combined with (1.17), the above inequality implies that

Ay − Ax ≤ Ay ≤ y − (n + 1)−1(n + 2)−1 ≤ y − (n + 2)−2 ≤ y − ǫ2/9. (1.18)

By (1.14), (1.11) and (1.18),

(1 − 18−1ǫ2)(y − x) ≥ (1 − 18−1ǫ2)y − x ≥ (1 − 18−1ǫ2)y − (4p)−1

≥ y − ǫ2/18 − (4p)−1 ≥ y − ǫ2/18 − ǫ2/18 ≥ Ay − Ax.

Thus we have shown that if (1.14) holds, then

|Ax − Ay| ≤ (1 − ǫ2/18)|x − y|. (1.19)

Now assume that (1.15) holds. By (1.15) and (1.13),

x, y ∈ [(4p)−1, 1].

In view of (1.6), the Lipschitz constant of the restriction of A to the interval

[(4p)−1, 1] does not exceed (4p + 2)(4p + 4)−1 and therefore we have

|Ax − Ay| ≤ (4p + 2)(4p + 4)−1|x − y|.

By this inequality and (1.19), we see that, in both cases,

|Ax − Ay| ≤ max{(1 − ǫ2/18), (4p + 2)(4p + 4)−1}|x − y|.

Since this inequality holds for each x, y ∈ X satisfying (1.12), we conclude

that (1.10) is satisfied and therefore A is indeed contractive, as claimed.

2. A power convergent mapping with no contractive powers

Once again, let X = [0, 1] and let ρ(x, y) = |x− y| for all x, y ∈ X. We will

construct a mapping A : [0, 1] → [0, 1] such that

|Ax − Ay| ≤ |x − y| for all x, y ∈ [0, 1],

Anx → 0 as n → ∞, uniformly on [0, 1],

and for each integer m ≥ 0, the power Am is not contractive.

To this end, let

A(0) = 0 (2.1)
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and for t ∈ [2−1, 1], set

A(t) = t − 1/4. (2.2)

Clearly,

A(1) = 3/4 and A(1/2) = 1/4. (2.3)

For t ∈ [4−1, 2−1), set

A(t) = 4−1 − 16−1 + (t − 4−1)4−1. (2.4)

Clearly, A is continuous on [4−1, 1] and

A(4−1) = 4−1 − 16−1. (2.5)

Now let n ≥ 2 be a natural number. We will define the mapping A on the

interval [2−2n

, 2−2n−1

]. For each t ∈ [2−2n+1, 2−2n−1

], set

A(t) = t − 2−2n

. (2.6)

Clearly,

A(2−2n+1) = 2−2n

and A(2−2n−1

) = 2−2n−1

− 2−2n

. (2.7)

For t ∈ [2−2n

, 2−2n+1), set

A(t) = 2−2n

−2−2n+1

+(t−2−2n

)22n

(2−2n+1

) = 2−2n

−2−2n+1

+2−2n

(t−2−2n

).

(2.8)

It is clear that

A(2−2n

) = 2−2n

− 2−2n+1

and

lim
t→(2−2n+1)+

A(t) = 2−2n

− 2−2n+1

+ 2−2n

(2−2n+1 − 2−2n

) = 2−2n

. (2.9)

It follows from (2.6)-(2.9) that the mapping A is continuous on each one of

the intervals [2−2n

, 2−2n−1

], n = 2, 3, . . . . It is not difficult to check that A is

well defined on [0, 1] and that it is increasing.

By (2.2) and (2.4), for each x ∈ [1/4, 1] we have Ax < x. We will now show

that this inequality holds for all x ∈ (0, 1].

Let n ≥ 2 be an integer and let x ∈ [2−2n

, 2−2n−1

]. It is clear that Ax < x

if x ∈ [2−2n+1, 2−2n−1

]. If x ∈ [2−2n

, 2−2n+1), then by (2.6) and (2.7),

Ax < A(2−2n+1) ≤ 2−2n

≤ x.
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Thus Ax < x for all x ∈ [2−2n

, 2−2n−1

] and for any integer n ≥ 2. Therefore

we have indeed shown that

Ax < x for all x ∈ (0, 1], (2.10)

as claimed.

Next, we will show that

|Ax − Ay| ≤ |x − y| for each x, y ∈ [0, 1]. (2.11)

If x = 0 and y > 0, then

|Ay − Ax| = Ay ≤ y = |y − x|. (2.12)

Assume that x, y ∈ (0, 1]. Note that the restrictions of the mapping A to

the interval [1/4, 1] and to all the intervals [2−2n, 2−2n−1

], where n ≥ 2 is an

integer, are Lipschitz with Lipschitz constant one. This obviously implies that

the mapping A is 1-Lipschitz on all of (0, 1]. Therefore (2.11) is true.

Let x ∈ (0, 1]. By (2.10), the sequence {Anx}∞n=1 is decreasing and there

exists the limit

x∗ = lim
n→∞

Anx.

Clearly, Ax∗ = x∗. If x∗ > 0, then by (2.10), Ax∗ < x∗, a contradiction. Thus

x∗ = 0 and limn→∞ An(1) = 0. Since the mapping A is increasing, this implies

that

Anx → 0 as n → ∞, uniformly on [0, 1].

Finally, we will show that for each integer m ≥ 1, the power Am is not con-

tractive.

Indeed, let m ≥ 1 be an integer. It is sufficient to show that there exist

x, y ∈ [0, 1] such that

x 6= y and |Amx − Amy| = |x − y|.

To this end, choose a natural number n ≥ m + 4 such that

22n−1

− 3 ≥ m + 2. (2.13)

Using induction and (2.6), we can show that for each integer

i ∈ {1, . . . , 22n−1

− 2},

Ai(2−2n−1

) = 2−2n−1

− i2−2n

≥ 2−2n+1
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and

Ai(2−2n−1

) ∈ [2−2n+1, 2−2n
−1].

Put

x = 2−2n−1

and y = A(2−2n−1

).

Then for i = 1, . . . , 22n−1

− 3, we have

|Aix − Aiy| = |x − y|,

and in view of (2.13),

|Amx − Amy| = |x − y|.

Thus the power Am is not contractive, as asserted.

3. A nonexpansive mapping with nonuniformly convergent powers

Theorem 3.1. Let (X, ρ) be a compact metric space, let a mapping A :

X → X satisfy

ρ(Ax, Ay) ≤ ρ(x, y) for each x, y ∈ X, (3.1)

and let xA ∈ X satisfy

Anx → xA as n → ∞, for each x ∈ X.

Then Anx → xA as n → ∞, uniformly on X.

Proof. Let ǫ > 0. For each x ∈ X, there is a natural number n(x) such

that

ρ(Anx, xA) ≤ ǫ/2 for all integers n ≥ n(x). (3.2)

Let

x, y ∈ X with ρ(x, y) < ǫ/2. (3.3)

By (3.2) and (3.3), for each integer n ≥ n(x),

ρ(Any, xA) ≤ ρ(Any, Anx) + ρ(Anx, xA) < ǫ/2 + ǫ/2.

Thus the following property holds:

(P) For each x ∈ X, each integer n ≥ n(x), and each y ∈ X satisfying

ρ(x, y) < ǫ/2, we have

ρ(Any, xA) < ǫ.

Since X is compact, there exist finitely many points x1, . . . , xq ∈ X such

that

∪q
i=1{y ∈ X : ρ(y, xi) < ǫ/2} = X.



THREE EXAMPLES IN METRIC FIXED POINT THEORY 331

Assume that y ∈ X and that the integer n ≥ max{n(xi) : i = 1, . . . , q}. Then

there is j ∈ {1, . . . , q} such that ρ(y, xj) < ǫ/2. By property (P),

ρ(Any, xA) < ǫ.

This completes the proof of Theorem 3.1. �

Example. Let X be the set of all sequences (x1, x2, . . . , xn, . . . ) such that
∞∑

i=1

|xi| ≤ 1, and set

ρ(x, y) = ρ((xi), (yi)) =
∞∑

i=1

|xi − yi|.

In other words, (X, ρ) is the closed unit ball of ℓ1. Clearly, (X, ρ) is a complete

metric space. Define

A(x1, x2, . . . , xn, . . . ) = (x2, x3, . . . , xn, . . . ), x = (x1, x2, . . . ) ∈ X.

Then the mapping A is nonexpansive, and for each x ∈ X, Anx → 0 as n → ∞.

However, if n is a natural number and en is the n-th unit vector of X, then

ρ(Anen+1, 0) = 1.
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[4] E. Matoušková, S. Reich and A. J. Zaslavski, Genericity in nonexpansive mapping the-

ory, Advanced Courses of Mathematical Analysis, World Scientific, Hackensack, NJ,

2004, 81-98.

[5] E. Rakotch, A note on contractive mappings, Proc. Amer. Math. Soc., 13(1962), 459-

465.

[6] S. Reich and A. J. Zaslavski, Almost all nonexpansive mappings are contractive, C. R.

Math. Rep. Acad. Sci. Canada, 22(2000), 118-124.



332 SIMEON REICH AND ALEXANDER J. ZASLAVSKI

[7] S. Reich and A. J. Zaslavski, Well-posedness of fixed point problems, Far East J. Math.

Sci., Special Volume (Functional Analysis and its Applications), Part III, 2001, 393-401.

[8] S. Reich and A. J. Zaslavski, The set of noncontractive mappings is σ-porous in the

space of all nonexpansive mappings, C. R. Acad. Sci. Paris, 333(2001), 539-544.

[9] S. Reich and A. J. Zaslavski, Generic aspects of metric fixed point theory, Handbook of

Metric Fixed Point Theory, Kluwer, Dordrecht, 2001, 557-575.

[10] S. Reich and A. J. Zaslavski, Many nonexpansive mappings are strict contractions,

Abstract and Applied Analysis, World Scientific, River Edge, NJ, 2004, 305-311.

Received: April 13, 2006; Accepted: April 28, 2006.


