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1. Introduction

In this paper we discuss the solution set of the Volterra integral equation

y(t) = h(t) +

∫ t

0
k(t, s) f(s, y(s)) ds for t ∈ [0,∞) (1.1)

where f : [0,∞) × R
M → R

M and the matrix valued function k : {(s, t) :

0 ≤ s ≤ t < n} → LM×M [0, n] for each n ∈ N = {1, 2, ...}; here M ∈ N .

Basically we show that if f is bounded by a L1
loc-Carathéodory function and

if a sequence of differential equations have maximal solutions then the solution
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set of (1.1) is an Rδ set. Two approaches will be presented in this paper and

our results extend those in [1-4].

2. Solution set

The following result can be found in [6].

Theorem 2.1. Let X be a closed set in a Fréchet space (E, d), and F : X → E

a continuous compact operator. Assume there exists a sequence {Un}n of closed

convex sets in E such that

∀n ∈ N = {1, 2, ....}, 0 ∈ Un; (2.1)

lim
n→∞

diam(Un) = 0, (2.2)

and there exists a sequence {Fn}n of operators Fn : X → E, such that

∀n ∈ N, ∀x ∈ X, F (x) − Fn(x) ∈ Un; (2.3)

I − Fn is a homeomorphism of the set (I − Fn)−1(Un) onto Un. (2.4)

Then {x ∈ X : x = F (x)} is an Rδ set.

Remark 2.1. Recall a nonempty set A is contractible provided there exists

x0 ∈ A and a homotopy H : A × [0, 1] → A such that H(x, 1) = x and

H(x, 0) = x0 for every x ∈ A. A set A is called an Rδ set provided there

exists a decreasing sequence {An}
∞
1 of nonempty compact, contractible sets

such that A = ∩{An : n = 1, 2, ...}.

In this section E = C([0,∞),RM ) will be the space of continuous functions

defined on the interval [0,∞) with values in R
M . Now E is a Fréchet space

with the topology given by the complete family of seminorms {pm}m≥1, or,

equivalently, by the distance d defined by

d(x, y) =
∞
∑

m=1

1

2m

pm(x − y)

1 + pm(x − y)
,

for x, y ∈ E; here pm(x) = sup{|x(t)| : t ∈ [0, m]} ≡ |x|m for x ∈ E.

Let X be a nonempty closed subset of E. We consider an operator F : E →

E. Define the sequence of operators {Fn}n, Fn : E → E, as follows:

Fn(x)(t) = F (x)(rn(t)), for x ∈ E and t ≥ 0, (2.5)
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where

rn(t) =

{

0, if t ∈ [0, 1/n];

t − 1
n , if t > 1/n.

(2.6)

In [4] (see also [2, Chapter 6]) we established the following result using Theo-

rem 2.1.

Theorem 2.2. Assume that E = C([0,∞),RM ) and that F : X → E is a

continuous and compact operator. Also assume that the following conditions

hold:

(i) ∃u0 ∈ R
M such that F (x)(0) = u0, for all x ∈ X;

(ii) ∀ǫ > 0, ∀x, y ∈ X, if x(t) = y(t), ∀t ∈ [0, ǫ], then F (x)(t) = F (y)(t),

∀t ∈ [0, ǫ] (i.e. F is an abstract Volterra operator);

(iii) if y ∈ E satisfies y = F (y), then y ∈ X;

(iv) ∃η > 0 such that ∀n, if y ∈ E satisfies y = Fn(y)+z, where pm(z) ≤ η,∀m,

then y ∈ X.

Then Fix(F ) is an Rδ set.

Now we discuss the topological structure of the solution set of the Volterra

integral equation

y(t) = h(t) +

∫ t

0
k(t, s) f(s, y(s)) ds for t ∈ [0,∞). (2.7)

Throughout f : [0,∞) × R
M → R

M and the matrix valued function k :

{(s, t) : 0 ≤ s ≤ t < n} → LM×M [0, n] for each n ∈ N = {1, 2, ...}.

We now use Theorem 2.2 to obtain a new existence result for (2.7). First

recall a function g : [0, n] × R → R (n ∈ N fixed) is a L1-Carathéodory

function if

(a). the map t 7→ g(t, y) is measurable for all y ∈ R,

(b). the map y 7→ g(t, y) is continuous for a.e. t ∈ [0, n],

and

(c). for any r > 0, ∃µr ∈ L1[0, n] such that |y| ≤ r implies |g(t, y)| ≤ µr(t)

for a.e. t ∈ [0, n].

A function g : [0,∞) × R → R is a L1
loc-Carathéodory function if (a), (b)

and (c) above hold when g is restricted to [0, n] × R for any n ∈ N .
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Theorem 2.3. Let k : {(s, t) : 0 ≤ s ≤ t < n} → LM×M [0, n] for each

n ∈ N = {1, 2, ...} and f : [0,∞) × R
M → R

M and suppose the following

conditions are satisfied:

h ∈ C([0,∞),RM ) (2.8)

y 7→ f(t, y) is continuous for a.e. t ∈ [0,∞) (2.9)

t 7→ f(t, y) is measurable for every y ∈ R
M (2.10)











for each n ∈ N, for each t ∈ [0, n] we have

that k(t, s) is measurable on [0, t] and k(t)

= ess sup |k(t, s)|, 0 ≤ s ≤ t, is bounded on [0, n]

(2.11)











for each n ∈ N, the map t 7→ kt is continuous

from [0, n] to L∞([0, n], LM×M [0, n]);

here kt(s) = k(t, s)

(2.12)



















there exists a L1
loc[0,∞) − Carathéodory function

g : [0,∞) × [0,∞) → [0,∞) such that

|f(t, x)| ≤ g(t, |x|) for a.e. t ∈ [0,∞)

and all x ∈ R
M

(2.13)

g(t, x) is nondecreasing in x for a.e. t ∈ [0,∞) (2.14)

and






















there exists η > 0, such that for each n ∈ N, the problem
{

v′(t) =
(

supt∈[0,n] k(t)
)

g(t, v(t)) a.e. t ∈ [0, n]

v(0) = |h|n + η

has a maximal solution rn(t) on [0, n] (here rn ∈ C[0, n])

(2.15)

Then the solution set of (2.7) is an Rδ set.

Remark 2.2. Recall a subset A of C([0,∞),RM ) is bounded if and only if

there exists there exists a positive continuous function φ : [0,∞) → R with

|x(t)| ≤ φ(t) for all t ∈ [0,∞), x ∈ A.

PROOF: Let E = C([0,∞),RM ),

X = {y ∈ C([0,∞) : |y(t)| ≤ rm(t), t ∈ [0, m], ∀m ∈ N}

and let F : E → E be defined by

F (y)(t) = h(t) +

∫ t

0
k(t, s) f(s, y(s))ds for t ∈ [0,∞).
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Notice X is a closed subset of E. Conditions (2.8) − (2.12) ensure that F is

well defined, F is a Volterra operator,

F (y)(0) = h(0), ∀y ∈ C([0,∞),RM ),

and the restriction F : C([0, m],RM ) → C([0, m],RM ) is continuous (see

[2]). In fact, F : X → C([0,∞),RM ) is continuous, because if {yj}j∈N is a

sequence in X and y0 ∈ C([0,∞),RM ) is such that yj → y0 in C([0,∞),RM )

as j → ∞, then yj → y0 in C([0, m],RM ) as j → ∞, for all m. Since

F : C([0, m],RM ) → C([0, m],RM ) is continuous, we then have that F (yj) →

F (y0) in C([0, m],RM ) as j → ∞, for all m. This implies that F (yj) → F (y0)

in C([0,∞),RM ) as j → ∞ .

We show now that F : X → C([0,∞),RM ) is compact, and that (iii) and

(iv) of Theorem 2.2 hold. First we show that

F : X → C([0,∞),RM ) is compact.

Let {yj}j∈N be a sequence in X and consider the sequence {F (yj)}j∈N in

F (X). Now X|[0,m] is bounded in C([0, m],RM ) for all m (see the definition

of X); here

X|[0,m] = {y|[0,m] : y ∈ X}.

The restriction F : X|[0,m] → C([0, m],RM ), is compact (see [2] or [5] where

it follows easily from the Arzela-Ascoli theorem), therefore F (X|[0,m]) is rela-

tively compact in C([0, m],RM ). For m = 1, there exists a subsequence N1 of

N , and there exists a z1 ∈ C([0, 1],RM ), such that

F (yj)|[0,1] → z1 in C([0, 1],RM ) as j → ∞ in N1.

Now consider the sequence {F (yj)}j∈N1
, restricted to [0, 2]. Since F (X|[0,2]) is

relatively compact in C([0, 2],RM ), there exists a subsequence N1 of N2, and

there exists a z2 ∈ C([0, 2],RM ), such that

F (yj)|[0,2] → z2 in C([0, 2],RM ) as j → ∞ in N2.

In addition,

z2|[0,1] = z1 on [0, 1].

By induction, assume the sequence {F (yj)}j∈Nk
and zk ∈ C([0, k],RM ) are

found such that Nk ⊆ Nk−1 ⊆ ... ⊆ N1 ⊆ N ,

F (yj)|[0,k] → zk in C([0, k],RM ) as j → ∞ in Nk,
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and

zk|[0,1] = zk−1 on [0, k − 1].

Since F (X|[0,k+1]) is relatively compact in C([0, k + 1],RM ), there exists a

subsequence Nk+1 of Nk, and there exists a zk+1 ∈ C([0, k + 1],RN ), such

that

F (yj)|[0,k+1] → zk+1 in C([0, k + 1],RM ) as j → ∞ in Nk+1.

In addition,

zk+1|[0,k] = zk on [0, k].

Now define z ∈ C([0,∞),RM ) by

z(t) = zk(t), t ∈ [k − 1, k), k = 1, 2, ... .

The induction above shows that the sequence {F (yj)}j∈N contains a subse-

quence which converges in C([0,∞),RM ) to z ∈ C([0,∞),RM ). Therefore

F (X) is relatively compact in C([0,∞),RM ), and the operator F : X →

C([0,∞),RM ) is compact.

To see that (iv) of Theorem 2.2 is satisfied let η > 0 be given as in (2.15).

Now let n ∈ N and let y ∈ C([0,∞),RM ) be such that y(t) = Fn(y)(t)+z(t),

t ∈ [0,∞), where z is such that pm(z) ≤ η, ∀m, and

Fn(y)(t) =

{

h(0), if t ∈ [0, 1/n)

h
(

t − 1
n

)

+
∫ t−1/n
0 k

(

t − 1
n , s
)

g(s, y(s))ds, if t ∈ [1/n,∞).

Let m ∈ N be arbitrary. Then we have for x ∈ [0, m] that

|y(x)| ≤ |h|m +

(

sup
s∈[0,m]

k(s)

)

∫ x

0
g(s, |y(s)|) ds + η ≡ v(x).

Now (2.14) implies

v′(x) =

(

sup
s∈[0,m]

k(s)

)

g(x, |y(x)|) ≤

(

sup
s∈[0,m]

k(s)

)

g(x, v(x))

for almost everywhere x ∈ [0, m], so

{

v′(x) ≤
(

sups∈[0,m] k(s)
)

g(x, v(x)) for a.e. x ∈ [0, m]

v(0) = |h|m + η.
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Now [7, Theorem 1.10.2] guarantees that v(x) ≤ rm(x) for x ∈ [0, m], so

|y(x)| ≤ v(x) ≤ rm(x) for x ∈ [0, m]. We can do this argument for all

m ∈ N . Consequently (iv) of Theorem 2.2 holds.

To see that (iii) of Theorem 2.2 is satisfied let y ∈ C([0,∞),RM ) be such

that y(t) = F (y)(t) for t ∈ [0,∞). Let m ∈ N be arbitrary. Then we have for

x ∈ [0, m] that

|y(x)| ≤ |h|m +

(

sup
s∈[0,m]

k(s)

)

∫ x

0
g(s, |y(s)|) ds ≡ w(x).

Now (2.14) implies

w′(x) =

(

sup
s∈[0,m]

k(s)

)

g(x, |y(x)|) ≤

(

sup
s∈[0,m]

k(s)

)

g(x, w(x))

for almost everywhere x ∈ [0, m] and w(0) = |h|m ≤ |h|m + η where η is as

in (2.15), so

{

w′(x) ≤
(

sups∈[0,m] k(s)
)

g(x, w(x)) for a.e. x ∈ [0, m]

w(0) ≤ |h|m + η.

Now [7, Theorem 1.10.2] guarantees that w(x) ≤ rm(x) for x ∈ [0, m], so

|y(x)| ≤ w(x) ≤ rm(x) for x ∈ [0, m]. We can do this argument for all

m ∈ N . Consequently (iii) of Theorem 2.2 holds.

Now all the conditions in Theorem 2.2 are satisfied so the solution set of

(2.7) is an Rδ set. �

Remark 2.3. A special case of (2.7) is first order differential equations. In fact

in this case assumption (2.14) can be removed in Theorem 2.3 (see the ideas

in [1]).

An alternate approach to solution sets can be found in [3]. It is based on

Theorem 2.2 (so on Theorem 2.1) when X = E. For completeness we discuss

this approach now. In [3] we established the following result.

Theorem 2.4. Let F : C([0,∞),RM ) → C([0,∞),RM ) be a continuous,

compact map. Also assume that the following conditions hold:

(i) ∃u0 ∈ R
M with F (x)(0) = u0, for all x ∈ C([0,∞),RM );
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(ii) ∀ǫ > 0, ∀x, y ∈ C([0,∞),RM ), if x(t) = y(t), ∀t ∈ [0, ǫ], then F (x)(t) =

F (y)(t), ∀t ∈ [0, ǫ] (i.e. F is an abstract Volterra operator).

Then Fix(F ) is an Rδ set.

We remark that in application (see (2.7)

F : C([0,∞),RM ) → C([0,∞),RM )

is usually continuous, and completely continuous but it is rarely compact. As

a result we would like to relax the compactness assumption on F in Theorem

2.4. In applications we usually encounter the nonlinear operator equation

y(t) = L Fy(t) for t ∈ [0,∞); (2.16)

here L is an affine map. We will assume the following conditions are satisfied:

L F : C([0,∞),RM ) → C([0,∞),RM ) (2.17)

∃u0 ∈ R
M with L F (x)(0) = u0, for all x ∈ C([0,∞),RM ) (2.18)

{

∀ǫ > 0, ∀x, y ∈ C([0,∞),RM ), if x(t) = y(t) ∀t ∈ [0, ǫ]

then L F (x)(t) = L F (y)(t) ∀t ∈ [0, ǫ]
(2.19)

and










∃ a continuous function φ : [0,∞) → [0,∞)

such that |y(t)| ≤ φ(t) for t ∈ [0,∞), for any

posible solution y ∈ C([0,∞),RM ) to (2.16).

(2.20)

Let ǫ > 0 be given and let τǫ : RM → [0, 1] be the Urysohn function for
(

B(0, 1) , R
M \B(0, 1 + ǫ)

)

such that

τǫ(x) = 1 if |x| ≤ 1 and τǫ(x) = 0 if |x| ≥ 1 + ǫ.

Let the operator Fǫ be defined by

Fǫ (y)(t) = τǫ

(

y(t)

φ(t) + 1

)

F (y)(t); here y ∈ C([0,∞),RM ).

Consider the operator equation

y(t) = L Fǫ y(t) for t ∈ [0,∞). (2.21)

The next result follows easily from Theorem 2.4 (see [3]).
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Theorem 2.5. Suppose (2.17)-(2.20) hold. Let ǫ > 0 be given and assume

the following conditions are satisfied:
{

|w(t)| ≤ φ(t) for t ∈ [0,∞), for any possible

solution w ∈ C([0,∞),RM ) to (2.21)
(2.22)

and

L Fǫ : C([0,∞),RM ) → C([0,∞),RM ) is continuous and compact. (2.23)

Then the solution set of (2.16) is an Rδ set.

Now its easy to apply Theorem 2.5 to establish results for (2.7) (see the

ideas in [8]).
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