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Abstract. In the present paper we use approximation methods for the study of operator

inclusions of the form a(x) ∈ Φ(x), where a is a closed linear surjective operator from a

Banach space onto another one, and Φ is a multimap being a composition of a multimap

with ”good” values and a continuous singlevalued map. As application we consider the

solvability of an integro-differential system which may be treated as a control object with

an integral feedback.
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Introduction

The topological and geometrical properties of values of multivalued maps

(multimaps) play an important role in the theory of fixed points and in the

study of solvability of operator inclusions (see, e.g. [5], [12], [13]). At the
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present time we may recognize various approaches to these directions: metric

(see, e.g. [18]), homological (see, e.g. [5], [7], [12]) and approximation (see,

e.g. [1] - [7], [11], [12], [13], [15], [17]).

Starting from the research of A.D. Myshkis [17], in a number of works (see,

e.g. [1] - [4], [7], [8], [15] and others) the approximation methods were applied

to various classes of multimaps with nonconvex values.

In the present paper we use the approximation methods for the study of

operator inclusions of the form a(x) ∈ Φ(x), where a is a closed linear surjective

operator from a Banach space onto another one, and Φ is a multimap being a

composition of a multimap with ”good” values and a continuous singlevalued

map. The property of a value to be ”good” means that this set belongs to

some family of subsets described by a suitable collection of axioms. We prove

the existence theorem for such inclusions and present conditions under which

the solutions set is unbounded. It should be mentioned that for convex-valued

multimaps Φ, the inclusions of that form were studied in the paper of the first

author [10].

As application we consider the existence result for an integro-differential

system which may be treated as a control object with an integral feedback.

1. Approximate families of sets and Michael systems

For a metric space Y, we denote by P (Y ) the collection of all nonempty

subsets of Y , by C(Y ) the collection of all nonempty closed subsets of Y , and

by K(Y ) the collection of all nonempty compact subsets of Y . If Y is a subset

of a normed space, by Cv(Y ) we denote the collection of all nonempty closed

convex subsets of Y , and by Kv(Y ) the collection of all nonempty compact

convex subsets of Y .

In this section we will cite some notions and results of the paper [11].

Let (Y, ̺) be a metric space; for any ε > 0, by Uε(B) we will denote the

ε-neighbourhood of a set B ∈ P (Y ).

1.1. Definition. A family A(Y ) ⊂ C(Y ) is said to be approximate if there

exists a map λ : P (Y ) → A(Y ) such that:

(A1) λ(B) = B for each B ∈ A(Y );

(A2) if B, C ∈ P (Y ) and B ⊂ C, then λ(B) ⊂ λ(C);

(A3) for every ε > 0 there exists δ = δ(ε) > 0 such that for each B ∈ P (Y )

the following inclusion holds: λ(Uδ(B)) ⊂ Uε(λ(B)).



ON SOME APPROXIMATION METHODS 247

(A4) for each set B ∈ P (Y ), each point y ∈ λ(B) and every ε > 0, there exist

a compact subset B′ ⊂ B and a point y′ ∈ λ(B′) such that ρ(y, y′) < ε.

Consider some examples of approximate families.

Define the map λ : P (Y ) → C(Y ) by λ(B) = B. It is easy to see that con-

ditions (A1)-(A4) are satisfied and hence the collection C(Y ) is approximate.

For a closed convex subset Y of a normed space, the collection Cv(Y )

is approximate. In fact, the map λ : P (Y ) → Cv(Y ) may be defined as

λ(B) = co(B).

Suppose that Z is a closed convex subset of a Banach space; (Y, ̺) is a

metric space and there exists a homeomorphism g : Z → Y satisfying the

following condition: there exist positive numbers c1 and c2 such that

c1||x − y|| ≤ ̺(g(x), g(y)) ≤ c2||x − y||.

for each x, y ∈ Z. Consider the collection of sets

Ag(Y ) = {g(B) |B ∈ Cv(Z)}.

It is easy to verify that the system Ag(Y ) is approximate.

Let X and Y be metric spaces. Let us recall (see, e.g. [5], [6], [13]) that

a multimap F : X → P (Y ) is said to be: upper semicontinuous [lower se-

micontinuous] if F−1
+ (V ) = {x ∈ X : F (x) ⊂ V } [ respectively F−1

− (V ) =

{x ∈ X : F (x) ∩ V 6= ∅} ] is open in X for each open V ⊂ Y. The set

Γ(F ) ⊂ X × Y, Γ(F ) = {(x, y) : y ∈ F (x)} is called the graph of F. A

continuous map f : X → Y is said to be: (i) a continuous selection of a

multimap F : X → P (Y ) provided x ∈ F (x) for each x ∈ X; (ii) a single-

valued ε-approximation of F, ε > 0, if Γ(f) ⊂ Uε(Γ(F )).

1.2. Definition. A lower semicontinuous multimap Fε : X → P (Y ),

ε > 0, is said to be a lower semicontinuous ε-approximation of a multimap

F : X → P (Y ), if:

(i) F (x) ⊂ Fε(x) for each x ∈ X;

(ii) Γ(Fε) ⊂ Uε(Γ(F )).

1.3. Theorem. Let A(Y ) be an approximate family in a metric space Y ,

and F : X → A(Y ) an upper semicontinuous multimap. Then for every ε > 0

there exists a lower semicontinuous ε-approximation Fε : X → A(Y ) such that

Fε(X) ⊂ λ(F (X)).
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1.4. Definition. A family of nonempty subsets M(Y ) of a metric space Y

is said to be the Michael system if the following condition holds true: (M) for

each metric space X, lower semicontinuous multimap F : X → M(Y ), closed

subset A ⊂ X and continuous selection f : A → Y of the restriction F |A, there

exists a continuous selection f̃ : X → Y of a multimap F such that f̃ |A = f .

A Michael system M(Y ) which is also the approximate family will be called

a strong Michael system and it will be denoted by AM(Y ).

From the classical Michael theorem (see [16]) it follows that the collection

of all nonempty convex closed subsets of a Banach space is a strong Michael

system. Other examples of strong Michael systems are presented by the col-

lections Ag(Y ) (see [11]).

The notion of a strong Michael system is closely related to the existence

of single-valued ε-approximations for multimaps. In fact, the next statement

follows from Theorem 1.3.

1.5. Theorem. Let F : X → AM(Y ) be an upper semicontinuous mul-

timap, then for every ε > 0 there exists a single-valued ε-approximation fε of

F such that fε(X) ⊂ λ(F (X)).

1.6. Definition. A strong Michael system AM(Y ) is called regular if for

every compact K ⊂ Y, the set λ(K) ∈ AM(Y ) is also compact.

If Y is a closed convex subset of a normed space, collections Cv(Y ) and

Ag(Y ) may be considered as examples of a strong Michael system.

From Theorem 1.5 we obtain the following statement.

1.7. Corollary. Let the system AM(Y ) be regular and an upper se-

micontinuous multimap F : X → AM(Y ) is compact (i.e. F (X) is rela-

tively compact). Then for every ε > 0 there exists a single-valued compact

ε-approximation fε of F .

A multimap F : X → K(Y ) will be called completely continuous if it is

upper semicontinuous and the set F (Ω) is relatively compact for each bounded

subset Ω ⊂ X.

2. On a fixed point theorem

We need the following statements that may be easily verified. The first one

is the refinement of the theorem on uniform continuity.
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2.1. Lemma. Let (X, ̺X), (Y, ̺Y ) be metric spaces; f : X → Y a contin-

uous map and K ⊂ X a compact set. Then for every ε > 0 there exists δ > 0

such that x′, x′′ ∈ Uδ(K) and ρX(x′, x′′) < δ imply ρY (f(x′), f(x′′)) < ε.

The second one describes the connection between the fixed points of single-

valued approximations and a fixed point of a multimap.

2.2. Lemma. Let M be a closed convex bounded subset of a Banach

space E, F : M → K(E) a completely continuous multimap. If there exists

ε0 > 0 such that each single-valued ε-approximation fε of a multimap F with

0 < ε ≤ ε0 has a fixed point, then F also has a fixed point.

Let X be a metric space, E a Banach space, Φ : X → K(E) an upper

semicontinuous multimap.

2.3. Definition. A multimap Φ is said to be superpositionally approx-

imable (SA-multimap) if there exist a metric space Y , a regular Michael sys-

tem AM(Y ), an upper semicontinuous multimap F : X → AM(Y ), and a

continuous map p : Y → E such that Φ may be presented as the composition

Φ = pF .

We will say that a SA-multimap Φ = pF is normal if the multimap F is

completely continuous.

2.4. Theorem. Let M be a closed convex bounded subset of a Banach

space E, Φ : M → K(E) is a normal SA-multimap. If Φ(M) ⊂ M , then Φ

has a fixed point.

Proof. Let τ : E → M be a continuous retraction and η an arbitrary

positive number. Since the set M is bounded, there exists a number R > 0

such that Uη(M) ⊂ BR where BR ⊂ E is a closed ball of radius R. Let

Φ = pF be the representation of the SA-multimap Φ. Consider a continuous

map p1 = τp : Y → M .

By virtue of the boundedness of M , the set N = F (M) ⊂ Y is compact,

hence by Lemma 2.1, for every δ ∈ (0, η) there exists ε > 0 such that

ρ(p1(x
′), p1(x

′′)) < δ

whenever ρ(x′, x′′) < ε and x′, x′′ ∈ Uε(N). Without loss of generality we will

assume that ε < δ.

By virtue of Corollary 1.9 the multimap F has a completely continuous

ε-approximation f : M → Y . Let us demonstrate that that the composition

f1 = p1 · f is a completely continuous δ-approximation of the multimap Φ1 =
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p1 ·F . In fact, let x ∈ M be an arbitrary point, then there exist points x′ ∈ M

and y ∈ F (x′) such that ||x−x′|| < ε and ρ(f(x), y) < ε. Hence f(x) ∈ Uε(N).

Then ||p1(f(x)) − p1(y)|| < δ. Since p1(y) ∈ p1(F (x′)) = Φ1(x
′), the map f1

is a continuous δ-approximation. The compactness of a map f1 follows from

the compactness of f .

Let us demonstrate now that f1(BR) ⊂ BR. In fact, for each point x ∈ BR

we have:

f1(x) = τ(p(f(x))) ∈ M ⊂ BR.

So, by Schauder theorem, the map f1 has a fixed point. Applying Lemma

2.2, we conclude that the multimap Φ1 has a fixed point. Let x∗ ∈ Φ1(x∗) =

τ(Φ(x∗)). Since x∗ ∈ M , we obtain that τ(Φ(x∗)) = Φ(x∗). �

3. On a class of operator inclusions

Let E1, E2 be Banach spaces, a : D(a) ⊂ E1 → E2 a closed linear surjective

operator. By a−1 : E2 → Cv(E1) we denote the multivalued linear operator

being the inverse to a (see, e.g. [9]).

Denote L = Ker(a) and E = E1/Ker(a). It is known that the norm in E

can be defined in the following way: if [x] = x + Ker(a) ∈ E, then

||[x]|| = inf
u∈Ker(a)

||x + u||.

Let p : E1 → E be a natural projection. Consider the linear operator

a1 : D(a1) ⊂ E → E2, where D(a1) = p(D(a)) and a1([x]) = a(x). It is easy

to see that a1 is closed surjective operator with the trivial kernel. It means

that the operator a1 has a bounded inverse. Then we have:

||a−1
1 || = sup

y∈E2

||a−1
1 (y)||

||y||
= sup

y∈E2

(
inf{||x|| | x ∈ E1, a(x) = y}

||y||
).

By definition, the value ||a−1
1 || will be called the norm ||a−1|| of the multiop-

erator a−1.

Consider the following example. Let C = C([a, b];Rn) be the space of con-

tinuous functions and D denote the subspace of continuously differentiable

functions. Let us evaluate ||d−1|| for the operator of differentiation d : D ⊂

C → C .

3.1. Proposition. ||d−1|| = b−a
2 .
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Proof. For y ∈ C consider

d−1(y) = {x ∈ C | x(t) = α +

t∫

a

y(s)ds, α ∈ En}.

Then

inf
α∈En

{||x||C | x ∈ d−1(y)} = inf
α∈En

||α +

t∫

a

y(s)ds||C ≤

≤ ||

t∫

a

y(s)ds −

a+b

2∫

a

y(s)ds||C = ||

t∫

a+b

2

y(s)ds||C ≤

≤ max
a≤t≤b

|

t∫

a+b

2

||y(s)||ds| =
b − a

2
||y||C .

Hence

||d−1|| ≤
b − a

2
.

Consider a function y0 ∈ C, y0(t) ≡ (1, 0, ..., 0). We have

d−1(y0) = {x ∈ C | x(t) = (α1 + t − a, α2, ..., αn), αi ∈ R}.

Therefore

inf
α∈En

||x||C = inf
α∈En

max
a≤t≤b

√√√√(α1 + t − a)2 +
n∑

i=2

α2
i = inf

α1∈R1
max
a≤t≤b

|α1+t−a| =

= inf
α1∈R1

max{|b − a + α1|, |α1|} =
b − a

2
.

From the other side, ||y0||C = 1. So

b − a

2
||y0||C = inf

α∈En
{||x||C | x ∈ d−1(y0)}

and therefore ||d−1|| = b−a
2 . �

The proof of the following statement can be found in [16].

3.2. Lemma For every k, ||a−1|| < k, there exists a continuous map

q : E2 → E1, such that:

1) a(q(y)) = y for each y ∈ E2;

2) ||q(y)|| ≤ k||y||.
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For a multimap F : E1 → P (E2) we will consider the solvability of the

following operator inclusion

a(x) ∈ F (x). (1)

Solutions of inclusion (1) are called coincidence points of the pair (a, F ). The

coincidence points set of the pair (a, F ) will be denoted by Coin(a, F ).

For a map q satisfying conditions of Lemma 3.2 define a multimap

F1 : E2 × Ker(a) → AM(E2), F1(y, u) = F (q(y) + u).

Consider the following inclusion:

y ∈ F1(y, u). (2)

3.3. Lemma There exists a one-to-one correspondence between Coin(a, F )

and the solutions set of inclusion (2).

Proof. In fact, let x0 ∈ Coin(a, F ), i.e. y0 = a(x0) ∈ F (x0). Then

u0 = x0 − q(y0) ∈ Ker(a). Hence y0 ∈ F (x0) = F1(y0, u0), i.e. the couple

(y0, u0) is the solution of inclusion (2).

From the other side, if the pair (y0, u0) is a solution of (2), let us denote

x0 = q(y0) + u0. Then y0 ∈ F (x0), and a(x0) = a(q(y0)) + a(u0) = y0. �

We will need one more auxiliary statement.

Let E be a Banach space, the norm in the Banach space E0 = E × R1 will

be defined in the following way:

||(x, t)|| =
√
||x||2 + t2.

Let S0
r ⊂ E0 be the sphere of the radius r centered at zero; F : S0

r → K(E) a

completely continuous SA-multimap. Consider the inclusion

x ∈ F (x, t). (3)

3.4. Lemma. If

||F (x, t)|| := max
u∈F (x,t)

||u|| ≤ r

for each point (x, t) ∈ S0
r , then inclusion (3) has a solution in S0

r .

Proof. Let B be a closed ball of the radius r in the space E. Consider the

multimap G : B → K(E) defined by

G(x) = F (x,
√

r2 − ||x||2).
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It is clear that G is a completely continuous SA-multimap. Notice also that

G(B) ⊂ B. Hence, by virtue of Theorem 2.4 the multimap G has a fixed

point. It remains to mention that if x0 is a fixed point of G, then for t0 =√
r2 − ||x0||2, we see that (x0, t0) ∈ S0

r is the solution of inclusion (3) �

Let E1, E2 be Banach spaces, a : D(a) ⊂ E1 → E2 a closed surjective linear

operator. Let Y be a metric space and a multimap F : X ⊂ E1 → C(Y ) is

upper semicontinuous.

3.5. Definition. A multimap F is completely continuous modulo a (or

a-completely continuous), if for each bounded sets A ⊂ E2 and B ⊂ X the set

F (B ∩ a−1(A)) is compact in Y .

It is known that that the set D(a) may be regarded as a Banach space E

endowed with the graph norm:

||x||D(a) = ||x||E1
+ ||a(x)||E2

.

It is clear that the inclusion map j : E → E1 is continuous. For X ⊂ D(a)

denote X̃ = j−1(X) and consider the multimap F̃ : X̃ → K(E2), F̃ (x) =

F (j(x)).

We have the following criterion.

3.6. Proposition. The multimap F is a-completely continuous iff the

multimap F̃ is completely continuous.

Proof. (i) Let F be a-completely continuous. If C ⊂ X̃ is a bounded set in

E, then the set B = j(C) is bounded in E1, and the set A = a(j(C)) = a(B)

is bounded in E2. Then the set F̃ (C) = F (j(C)) = F (B∩a−1(A)) is relatively

compact.

(ii) Let the multimap F̃ is completely continuous. Consider bounded subsets

A ⊂ E2 and B ⊂ X. Let C = j−1(B ∩ a−1(A)) ⊂ E. It is clear that C is a

bounded subset of X̃. Then F (B ∩ a−1(A)) = F̃ (C) is relatively compact. �

Let Φ : E1 → C(E2) be a SA-multimap, i.e. there exist a metric space Y ,

a regular Michael system AM(Y ) in the space Y , an upper semicontinuous

multimap F : X → AM(Y ), and a continuous map p : Y → E such that

Φ = pF .

3.7. Definition. SA-multimap Φ = pF is said to be a-completely contin-

uous if the multimap F is a-completely continuous.

3.8. Theorem. Let Φ : E1 → C(E2) be a SA-multimap satisfying the

following conditions:
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1) Φ is a-completely continuous;

2) there exist nonnegative numbers D1 and D2 such that

||Φ(x)|| = max
y∈Φ(x)

||y|| ≤ D1||x|| + D2

for each x ∈ E1. If

D1 <
1

||a−1||
,

then Coin(a,Φ) 6= ∅.

Proof. If dim(Ker(a)) = 0 then a−1 is a continuous linear operator. Then,

using the conditions of the theorem, we can construct a ball BR ⊂ E2 centered

at the origin such that for each point y ∈ BR we have Φ̂(y) = Φ(a−1(y)) ⊂ BR.

Since the multimap Φ̂ is completely continuous, by Theorem 2.4 it has a fixed

point y∗. It is clear that the point x∗ = a−1(y∗) is the solution of inclusion

(1).

Now consider the case dim(Ker(a)) > 0. Let k be an arbitrary number

satisfying

||a−1|| < k <
1

D1

and q : E2 → E1 a map given by Lemma 3.2.

Let us choose in the subspace Ker(a) a non-zero vector e such that

||e|| <
1 − D1k

D1
.

Consider the space E0 = E2 × R1 with the norm ||(y, t)|| =
√
||y||2 + t2. Let

Φ = p◦F where F : E1 → AM(Y ). Consider the multimap F1 : E0 → AM(Y )

defined as

F1(y, t) = F (q(y) + te).

Let us show that this multimap is completely continuous. Let A ⊂ E0 be an

arbitrary bounded set, then there exists a number R > 0 such that for every

point (y, t) ∈ A we have ||(y, t)|| ≤ R. Let the map q̂ : A → E1 be defined by

the relation q̂(y, t) = q(y) + te. Denote B = q̂(A), then for each point x ∈ B

the following estimate holds

||x|| = ||q(y) + te|| ≤ (k +
1 − D1k

D1
)R,
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i.e. B is also a bounded set. Notice that B ⊂ a−1(A). Then, by virtue of

a-complete continuity of the multimap F , the set F1(A) = F (B ∩ a−1(A)) is

relatively compact. So the multimap F1 is completely continuous.

Denote Φ̂ = p ◦ F1. Let S0
r ⊂ E0 be the sphere of the radius r centered at

the origin. Let us demonstrate that, for r sufficiently large, the estimate

||Φ̂|| = max
u∈Φ̂(y,t)

||u|| ≤ r

holds for each (y, t) ∈ S0
r .

In fact, if u ∈ Φ̂(y, t) then

||u|| ≤ D1||q(y) + te|| + D2 < D1k||y|| + D1|t| ||e|| + D2.

If

r ≥
D2

1 − D1k − D1||e||
,

then

||Φ̂(y, t)|| < D1kr + D1r||e|| + D2 ≤ r.

Now we may apply Lemma 3.3 and conclude that the inclusion y ∈ Φ̂(y, t) has

a solution (y0, t0) ∈ S0
r . Then x0 = q(y0) + t0e ∈ Coin(a,Φ). �

3.9. Theorem. In conditions of Theorem 3.8 let, additionally,

dim(Ker(a)) > 0.

Then the set Coin(a,Φ) is unbounded.

Proof. Supposing the contrary, we will have a number α > 0, such that

||x|| ≤ α for each point x ∈ Coin(a,Φ). Then the set Φ(Coin(a,Φ)) is also

bounded, i.e. there exists such number β > 0, that ||y|| ≤ β for each point

y ∈ Φ(Coin(a,Φ)). Consider a sequence of numbers rn → ∞ such that

rn >
D2

1 − D1k − D1||e||
,

where the number k and the vector e are defined in the course of the proof

of Theorem 3.8. Then there exists a sequence of points (yn, tn) ∈ S0
rn

⊂ E0

such that the points xn = q(yn) + tne belong to the set Coin(a,Φ). Then

||xn|| ≤ α for each n. From the other side, since a(xn) = yn ∈ Φ(xn), we have

yn ∈ Φ(Coin(a,Φ)). Hence ||yn|| ≤ β for each n. Then

|tn| ≤
||xn|| + ||q(yn)||

||e||
≤

α + kβ

||e||
.
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So, the sequence {tn} is also bounded. Then a point (yn, tn) does not belong

to the sphere S0
rn

for a sufficiently large n, giving the contradiction. �

4. On a class of integro-differential inclusions

4.1. Multioperator of superposition and integral multioperator. We

shall start with some preliminary remarks (details can be found, e.g. in

[6],[13]).

Let I ⊂ R be a compact interval endowed with Lebesgue measure; E a

separable Banach space.

4.1. Definition. A multifunction F : I → K(E) is said to be measurable

if for each open set V ⊂ E the set F−1
+ (V ) is measurable.

It is known that every measurable multifunction F : I → K(E) has a

measurable selection ϕ : I → E, ϕ(t) ∈ F (t) for a.e. t ∈ I.

Let E, E0 be separable Banach spaces.

4.2. Proposition. Suppose that a multimap F : I × E0 → K(E) satisfies

conditions:

F1) the multifunction F (·, x) : I → K(E) has a measurable selection for each

x ∈ E0;

F2) the multimap F (t, ·) : E0 → K(E) is upper semicontinuous for a.e. t ∈ I.

Then the multimap F is superpositionally selectable, i.e. for each measur-

able function q : I → E0, the multifunction Φ : I → K(E),

Φ(t) = F (t, q(t))

has a measurable selection.

Let a multimap F : I ×E0 → K(E) additionally to (F1) and (F2) satisfies

also the following condition:

F3) there exists a measurable function α : I → R1 such that

||F (t, x)|| = max
y∈F (t,x)

||y|| ≤ α(t)(1 + ||x||)

for all x ∈ E0 and a.e. t ∈ I.

Then the multimap

PF : C(I; E0) → P (L1(I; E)),
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assigning to every continuous function q ∈ C(I; E0) the set of all summable

selections of the multifunction Φ : I → K(E),

Φ(t) = F (t, q(t))

is said to be a superposition multioperator generated by F.

Let us mention the following property of the superposition multioperator.

4.3. Proposition. Let a multimap F : I ×E0 → Kv(E) satisfy conditions

(F1) - (F3) and a : L1(I; E) → E1 a continuous linear operator to a normed

space E1. Then the composition a ◦ PF : C(I; E0) → Cv(E1) is a closed

multimap.

Now let [a, b] ⊂ R
1, L(Rn, Rn) be the space of continuous linear operators

in R
n and k : [a, b] × [a, b] → L(Rn, Rn) a continuous map. Then the linear

integral operator jk : L1([a, b]; Rn) → C([a, b]; Rn) defined as

jk(ϕ)(t) =

b∫

a

k(t, s)ϕ(s) ds

is completely continuous (see, e.g. [19]). It is also known (see, e.g. [14]) that

||jk|| = max
a≤t,s≤b

||k(t, s)||.

Suppose that a multimap F : [a, b]×R
n → Kv(Rn) satisfies conditions (F1)

- (F3).

4.4. Definition. The composition

jk ◦ PF : C([a, b]; Rn) → Cv(C([a, b]; Rn))

is said to be the Hammerstein integral multioperator, generated by F. It will

be denoted by
b∫
a

(k ◦ PF ).

Proposition 4.3 yields the following statement.

4.5. Theorem. Let a multimap

F : [a, b] × R
n → Kv(Rn)

satisfy conditions (F1) - (F3). Then the Hammerstein integral multioperator

b∫

a

(k ◦ PF ) : C([a, b]; Rn) → Cv(C([a, b]; Rn))
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is completely continuous.

4.2. Existence theorem for a class of integro-differential inclusions.

For T > 0, let f : [0, T ] × R
n × R

m → R
n be a continuous map satisfying the

following condition:

(f) there exist positive numbers C1, C2 and C3 such that

||f(t, u, v) ≤ C1||u|| + C2||v|| + C3

for all (t, u, v) ∈ [0, T ] × R
n × R

m.

Let k : [0, T ] × [0, T ] → L(Rm, Rm) be a continuous map. Denote

K0 = max
s,t∈[0,T ]

|k(t, s)|.

Let a multimap F : [0, T ] × R
n → Kv(Rm) satisfy conditions (F1) - (F3).

We will consider the following problem:

x′(t) = f(t, x(t), y(t)) (4)

y ∈

h∫

0

(k ◦ PF )(x), (5)

where h ∈ (0, T ].

4.6. Definition. A pair of of functions x ∈ C([0, h], Rn), y ∈ C([0, h], Rm)

satisfying relations (4) and (5) for all t ∈ [0, h] is said to be a solution of

problem (4), (5).

Notice that (4), (5) may be interpreted as the control problem where x

is the trajectory of the system, and y is the control satisfying the feedback

condition (5).

Let us give the operator treatment of problem (4), (5). Consider the super-

position operator

f̂ : C([0, h], Rn) × C([0, h], Rm) → C([0, h], Rn),

generated by f and the multimap

F̂ : C([0, h], Rn) → Cv(C([0, h], Rn) × C([0, h], Rm)),

given by

F̂ (x) = (x,

h∫

0

(k ◦ PF )(x)).



ON SOME APPROXIMATION METHODS 259

Let d : D(d) ⊂ C([0, h], Rn) → C([0, h], Rn) be the differentiation operator

whose domain D(d) is the subspace of continuously differentiable functions on

[0, h].

It is easy to verify the following statement.

4.7. Lemma. Problem (4), (5) is equivalent to the following operator

inclusion:

d(x) ∈ f̂(F̂ (x)), (6)

i.e. if a pair (x, y) is the solution of problem (4), (5), then x is the solution

of inclusion (6) and, conversely, if x is the solution of (6), then there exists

y ∈

h∫

0

(k ◦ PF )(x)

such that the pair (x, y) is the solution of problem (4), (5).

Consider the multimap Φ : C([0, h], Rn) → C(C([0, h], Rn)) defined as

Φ(x) = f̂(F̂ (x)).

4.8. Lemma. Φ is a d-completely continuous SA-multimap.

Proof. Since f̂ is continuous and F̂ has closed convex values, Φ is a SA-

multimap.

Now notice that the graph norm for the differentiation operator d coincides

with the norm of the space C1([0, h], Rn), and the embedding of this space into

the space C([0, h], Rn) is completely continuous. Applying Theorem 4.5 and

Proposition 3.6 we conclude that the multimap F̂ is d-completely continuous.

�

4.9. Theorem. If

h(C1 + C2K0

h∫

0

α(s)ds) < 2, (7)

then:

(a) the set of solutions {x, y} of problem (4),(5) defined on the interval [0, h]

is nonempty;

(b) the set of trajectories {x} is unbounded in the space C([0, h], Rn).
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Proof. For an arbitrary x ∈ C1([0, h], Rn), let us estimate ||y|| for y ∈ Φ(x).

We have

y(t) = f(t, x(t),

h∫

0

k(t, s)z(s) ds),

where z(s) ∈ F (s, x(s)) for a.e. s ∈ [0, h]. Then

||y(t)|| ≤ C1||x(t)|| + C2 ||

h∫

0

k(t, s)z(s) ds|| + C3

≤ C1||x|| + C2K0

h∫

0

(α(s)(||x(s)|| + 1) ds + C3

≤ (C1 + C2K0

h∫

0

α(s) ds)||x|| + C4

where C4 = C2K0

h∫
0

α(s) ds + C3.

Hence

max
y∈Φ(x)

||y|| ≤ (C1 + C2K0

h∫

0

α(s) ds)||x|| + C4.

From Proposition 3.1 we know that ||d−1|| = h
2 , and therefore, from condition

(7) we have

C1 + C2K0

h∫

0

α(s) ds <
1

||d−1||
.

Applying Theorem 3.8 we obtain the nonemptyness of the solutions set for

inclusion (6) and from Lemma 4.7 we deduce conclusion (a).

Since dimKer(d) = n > 0 we may apply Theorem 3.9 and obtain conclusion

(b). �
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