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1. Introduction

It is well known that the fixed-point theorems of nonlinear mappings, with
respect to closed convex cones have been studied by several authors [1]-[3],
[5], [8]-[11], [13], [16]. The development of fixed-point theory with respect to
convex cones is justified by many and interesting applications. For example
the fixed-point theorems on cones are used in the study of positive solutions of
nonlinear equations, in the study of periodical solutions of dynamical systems
in the study of complementarity problems and in the study of some problems
considered in economics among others.

We note that in particular the complementarity problems have many appli-
cations in economics, in optimization and in engineering, [4-7].
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The study of fixed-points of nonlinear mappings with respect to convex
cones, was initiated by the Russian mathematical school and in particular by
M. A. Krasnoselskii and his students [11]-[13], [16].

For new applications of fixed-point theorems on cones in domain as the
complementarity theory and the theory dynamical systems it is useful to have
new fixed-point theorems on cones.

In this paper we present a new variant of a classical fixed-point theorem on
a convex cone due to M. A. Krasnoselskii [12].

Our fixed-point theorem is with respect to a convex cone in a Hilbert space,
but we do not suppose that the cone is generating and the complete continuity
of the operator is replaced by the scalar compactness. We do not use the
topological degree. We use the notion of scalar asymptotic derivability and
the notion of variational inequality.

Perhaps, the ideas used in this paper can be used to obtain new fixed-point
theorems on convex cones.

2. Preliminaries

We introduce in this section some notions and we recall some definitions.
Let (H, 〈·〉) be an arbitrary real Hilbert space. We say that a non-empty subset
K of H is a pointed, convex cone if the following conditions are satisfied:
k1) K + K ⊆ K,
k2) λK ⊆ K, for any λ ∈ R+,
k3) K ∩ (−K) = {0}.
In this paper any pointed convex cone will be closed with respect to the

topology defined by the norm of H. We say that K is generating if H = K−K.
By definition the dual cone K∗ of K is: K∗{y ∈ H | 〈x, y〉 ≥ 0 for all x ∈ K}. It
is known that K∗ is a closed convex cone. If K is total in H, i.e., H = K−K,
then K∗ is a pointed cone. The pointed convex cone K defines an ordering
on H by ”x ≤ y” if and only if y − x ∈ K. If K is not pointed this relation
is only a quasi-ordering. Given a non-empty subset D in H and a mapping
h : H → H, the variational inequality problem associated to h and D is:

V IP (h,D) :

{
find x0 ∈ D such that
〈h(x0), x− x0〉 ≥ 0 for all x ∈ D.
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If in the problem V IP (h,D), the set D is a closed convex cone K, we have
the nonlinear complementarity problem defined by h and K, i.e.,

NCP (h,K) :

{
find x0 ∈ K such that
h(x0) ∈ K∗ and 〈x0, h(x0)〉 = 0.

From the complementarity theory we know the following facts [6], [7].
I. The problems V IP (h,D) and NCP (h,K) are equivalent.
II. If h : K → H has the form h(x) = x − f(x), where f : K → K, then f

has a fixed-point in K, if and only if, the problem NCP (h,K) has a solution.
Finally we say that a mapping f : K → H is demi-continuous, if for any

sequence {xn}n∈N ⊂ K, is strongly convergent to an element x∗ ∈ K we have
that {f(xn)}n∈N is weakly convergent to f(x∗). Also, we say that f : K → H

is completely continuous if f is continuous and for any bounded subset B ⊂ K,
we have that f(B) is relatively compact.

3. The main result

Let (H, 〈·, ·〉) be a Hilbert space and K ⊂ H a closed, pointed convex cone.
We suppose that K is generating, i.e., H = K − K. The set of all linear
continuous operators from H into H will be denoted by L(H). The following
notion is due to M. A. Krasnoselskii [12]. We say that a mapping f : K → H

is asymptotically linear along K if there exists T ∈ L(H) such that

lim
‖x‖→∞

x∈K

‖f(x)− T (x)‖
‖x‖

= 0.

In this case, because K is generating in H, we have that T is unique. More-
over, if f is completely continuous we have that T is a linear completely
continuous operator and T (K) ⊆ K. If f is asymptotically linear along K, we
denote f ′∞ = T and we say that f ′∞ is the asymptotic derivative of f along the
cone K. For more information about the notion of asymptotic derivative we
recommend [1], [10], [12], [13].

In our main result we will use the notion of scalar asymptotic derivative,
which is related to the notion of scalar derivative due to S. Z. Nemeth [14],
[15]. We note that we introduced the notion of scalar asymptotic derivative
being inspired by the notion of scalar derivative.
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Definition 1. We say that T ∈ L(H) is a scalar asymptotic derivative of
a mapping f : K → H, along the cone K if

lim
‖x‖→∞

x∈K

〈f(x)− T (x), x〉
‖x‖2

= 0.

If an operator T ∈ L(H) satisfies Definition 1 it will be denoted by f ′s(∞)
(i.e., f ′s(∞) := T . We observe that if T ∈ L(H) is an asymptotic derivative of
f along the cone K, then f is also a scalar asymptotic derivative of f . This
fact is a consequence of the following relation:

lim sup
‖x‖→∞

x∈K

〈f(x)− T (x), x〉
‖x‖2

≤ lim
‖x‖→∞

x∈K

‖f(x)− T (x)‖
‖x‖

= 0.

Our main result is related to the following classical result due to M. A.
Krasnoselskii.

Theorem (Krasnoselskii Type Theorem). Let (E, ‖ · ‖) be a Banach
space and K ⊂ E a generating, closed pointed convex cone. Let f : K → K be
an asymptotically linear and completely continuous mapping. If the spectral
radius of the asymptotic derivative f ′s(∞) of f is strictly less that 1, i.e.,
r(f ′∞) < 1, then f has a fixed-point.

Proof. H. Amman [1] gives a proof of this theorem based on the topological
index. �

We note that this Krasnoselskii Type Theorem is essentially Theorem 4.7
[12]. The proof given in [12] is complicated and does not use the topological
degree. In [12] and [2] are given application of this theorem and of variants
of this theorem. Our main result is a variant of this theorem but in Hilbert
spaces and our proof is not based on the topological degree. The proof is based
on some techniques developed in the theory of Variational Inequalities and in
the Complementarity Theory. We will use the following notion.

If h, g : K → H are two mappings, the relation h ≤
(K∗)

g means, g(x)−h(x) ∈

K∗ for all x ∈ K. In this case, in particular we have 〈h(x), x〉 ≤ 〈g(x), x〉 for
all x ∈ K.

Definition 2. We say that a mapping f : K → H is scalarly compact if for
any sequence {xn}n∈N ⊂ K, weakly convergent to an element x∗ ∈ K, there
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exists a subsequence {xnk
}k∈N such that

lim sup
k→∞

〈xnk
− x∗, f(xnk

)〉 ≤ 0.

Examples.
(1) Any completely continuous mapping is scalarly compact.
(2) Given a mapping f : K → H, if there exists a completely continuous

mapping h : K → H such that |〈y, f(x)〉| ≤ 〈y, h(x)〉 or 〈y, f(x)〉 ≤ |〈y, h(x)〉|
for any x, y ∈ K, then f is scalarly compact.

Theorem 1. Let (H, 〈·, ·〉) be a Hilbert space, K ⊂ H a pointed closed
convex cone and f : K → ψK a mapping.

If the following assumptions are satisfied:
(i) f is demicontinuous,
(ii) f is scalarly compact,
(iii) there exists a scalar asymptotically derivable mapping f0 : K → H such

that
f ≤

(K∗)
f0 and ‖f ′0s(∞)‖ < 1,

then f has a fixed-point in K.
Proof. We define h = I − f , where I is the identity mapping. From

Complementarity Theory we know that f has a fixed-point in K if and only
if the problem NCP (h,K) has a solution. For every m ∈ N we define the
set Km = {x ∈ K | ‖x‖ ≤ m} and we observe that Km is closed, convex,

weakly closed and K =
∞⋃

m=1

Km. Obviously, any set Km is bounded. First, we

show that for every m ∈ N, the problem V IP (I − f,Km) has a solution
y∗m ∈ Km. Indeed, let m ∈ N be arbitrary and denote by Λ the family
of all finite dimensional subspaces of H ordered by inclusion. Consider the
mapping h(x) = x − f(x) for all x ∈ K and define Km(E) = Km ∩ E for
each E ∈ Λ. For each E ∈ Λ we set AE = {y ∈ Km | 〈h(y), x − y ≥ 0
for all x ∈ Km(E)} and we have that AE is non-empty. Indeed, the solution
set of the problem V I(h,Km(E)) is a subset of AE , but the solution set of
V I(h,Km(E)) is non-empty. To see this, we consider the mappings j : E → H

and j∗ : H∗ → E∗, where j is the inclusion and j∗ is the adjoint of j. The
mapping j∗ ◦ h ◦ j : Km(E) → E∗ is continuous and

〈j∗ ◦h◦ j(y), x− y〉 = 〈h(j(y)), j(x− y)〉 = 〈h(y), x− y〉, for all x, y ∈ Km(E).
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Applying the classical Hartman-Stampacchia Theorem to the set Km(E)
and to the mapping j∗ ◦ h ◦ j we obtain that the problem V I(h,Km(E)) has
at least a solution. For every E ⊂ Λ, we denote A

σ
E the weak closure of

AE . We have
⋂

E∈Λ

A
σ
E is non-empty. Indeed, let Aσ

E1
, A

σ
E2
, . . . , A

σ
En

be a finite

subfamily of the family {Aσ
E}E∈Λ. Let M be the finite dimensional subspace

in H generated by E1, E2, . . . , En. Because Ek ⊆ M for all k ∈ {1, 2, . . . , n}
we have that Km(Ek) ⊆ Em(M) for all k ∈ {1, 2, . . . , n}, which implies that⋂
k=1

A
σ
Ek

is non-empty. The weak compactness of Km implies that
⋂

E∈Λ

A
σ
E 6= ∅.

Let y∗m ∈
⋂

E∈Λ

A
σ
E be arbitrary and let x ∈ Km be any element of this set.

There exists some E ∈ Λ such that x, y∗m ∈ E. Since y∗m ∈ A
σ
E there exists a

sequence {yn}n∈N ⊂ AE such that {yn}n∈N is weakly convergent to y∗m. (We
applied Şmulian’s Theorem). We have

〈h(yn), y∗m − yn〉 ≥ 0,

and
〈h(yn), x− yn〉 ≥ 0,

or
〈yn, yn − y∗m〉 ≤ 〈f(yn), yn − y∗m〉, (1)

and
〈yn, x− yn〉 ≥ 〈f(yn), x− yn〉. (2)

From (1) and assumption (ii) we have that {yn} has a subsequence denoted
again by {yn} such that

lim sup
n→∞

〈yn, yn − y∗m〉 ≤ 0, (3)

which implies

0 ≤ lim sup
n→∞

‖yn − y∗m‖2 = lim sup
n→∞

〈yn − y∗m, yn − y∗m〉

≤ lim sup
n→∞

〈yn, yn − y∗m〉+ lim sup
n→∞

[−〈y∗m, yn − y∗m〉] ≤ 0.

We deduce that {yn} is strongly convergent to y∗m. Because f is demicon-
tinuous we have that {f(yn)}n∈N is weakly convergent to f(y∗m).

From inequality (2) we have 〈y∗m − f(y∗m), x − y∗m〉 ≤ 0 for any x ∈ Km,
that is i.e., y∗m is a solution of the problem V I(I − f,Km). (We note that to
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obtain the last inequality we use also the following fact: ”if {un} is weakly
convergent to an element u∗ and {vn} is strongly convergent to an element v∗,
then lim

n→∞
〈un, vn〉 = 〈u∗, v∗〉”.)

Now, we pass to the second part of the proof. In the first part we proved
that for every m ∈ N, the problem V I(I − f,Km) has a solution ym, i.e.,

〈ym − f(ym), x− ym〉 ≥ 0, for all x ∈ Km. (4)

Taking x = 0 in (4) we obtain

〈ym, ym〉 ≤ 〈f(ym), ym〉. (5)

The sequence {ym}m∈N is bounded.
Indeed, if this is false, we may assume that ‖ym‖ → ∞ as m → ∞, which

implies (using (5) and assumption (iii))

1 =
〈ym, ym〉
‖ym‖2

≤ lim sup
‖ym‖→∞

〈f(ym), ym〉
‖ym‖2

≤ lim sup
‖ym‖→∞

〈f0(ym), ym〉
‖ym‖2

≤ lim sup
‖ym‖→∞

〈f0(ym)− f ′0s(∞)(ym), ym〉
‖ym‖2

+ lim sup
‖ym‖→∞

〈f ′0s(∞)(ym), ym〉
‖ym‖2

≤ lim sup
‖ym‖→∞

‖f ′0s(∞)‖‖ym‖2

‖ym‖2
= ‖f ′0s(∞)‖ < 1.

We have a contradiction and therefore {ym}m∈N is a bounded sequence. By
the reflexivity of H and the weak closedness of K we have that there exists
a subsequence {ymk

}k∈N of the sequence {ym}m∈N, weakly convergent to an
element y0 ∈ K. For all x ∈ K, there exists a natural number m0 (i.e. m0 ∈ N)
such that y0 and x are in Km0 .

Thus, for all m ≥ m0 we have y0, x ∈ Km.
We have

〈ym − f(ym), y0 − ym〉 ≥ 0 (6)

and
〈ym − f(ym), x− ym〉 ≥ 0. (7)

Using inequalities (6) and the scalar compactness of f (i.e.), assumption (ii))
we have that there exists a subsequence {ymk

}k∈N of the sequence {ym}m∈N

such that

lim sup
k→∞

〈ymk
, ymk

− y0〉 ≤ lim sup
k→∞

〈f(ymk
), ymk

− y0〉 ≤ 0,
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which implies that {ymk
}k∈N is strongly convergent to y0, as we can see con-

sidering the following inequalities

0 ≤ lim sup
k→∞

‖ymk
− y0‖2 = lim sup

k→∞
〈ymk

− y0, ymk
− y0〉

≤ lim sup
k→∞

〈ymk
, ymk

− y0〉+ lim sup
k→∞

[−〈y0, ymk
− y0〉] ≤ 0.

Considering (7) for all mk ≥ m0 we have

〈ymk
− f(ymk

), x− ymk
〉 ≥ 0.

Computing the limit in the previous inequality we obtain

〈y0 − f(y0), x− y0〉 ≥ 0 for any x ∈ K.

Therefore f(y0) = y0 and the proof is complete. �

Corollary 1. Let (H, 〈·, ·〉) be a Hilbert space, K ⊂ H a pointed closed
convex cone and f : K → K a mapping. If the following assumptions are
satisfied:

(i) f is demicontinuous,
(ii) f is scalarly compact,
(iii) f has a scalar asymptotically derivative f ′s(∞) and ‖f ′s(∞)‖ < 1,

then f has a fixed-point in K.
Corollary 2. Let (H, 〈·, ·〉) be a Hilbert space and K ⊂ H a generating

closed pointed convex cone. Let f : K → K be a completely continuous map-
ping. If f is asymptotically linear and ‖f ′(∞)‖ < 1, then f has a fixed-point
in K.

Corollary 3. Let (H, 〈·, ·〉) be a Hilbert space and K ⊂ H a generating
closed pointed convex cone. Let f : K → K be a completely continuous map-
ping. If there exists an asymptotically linear mapping f0 : K → K such that
f ≤

(K∗)
f0 and ‖f ′0(∞)‖ < 1 then f has a fixed-point in K.

4. Application to Complementarity Theory

Let (H, 〈·, ·〉) be a Hilbert space, K ⊂ H a closed pointed convex cone and
f : K → K a mapping. We consider the general nonlinear complementarity
problem

NCP (f,K) :

{
find x0 ∈ K such that
f(x0) ∈ K∗ and 〈x0, f(x0)〉 = 0.
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We say that f is a completely continuous field if f has a representation of
the form f(x) = x − T (x), for any x ∈ H, where T : H → H is a completely
continuous mapping. Also, we say that f is an asymptotically derivable field
with respect to K, if f has a representation of the form f(x) = x− T (x), for
any x ∈ H, where T : H → H has an asymptotic derivative T ′∞ along K. We
have the following result related to the problem NCP (f,K).

Theorem 4. Let (H, 〈·, ·〉) be a Hilbert space and K ⊂ H a generating,
pointed, closed convex cone. Let f : H → H a mapping. The mapping f is
supposed to be a completely continuous and asymptotically derivable field of
the form f(x) = x − T (x) for any x ∈ H. If ‖T ′∞(∞)‖ < 1 and T ′∞(K) ⊆ K,
then the problem NCP (f,K) has a solution.

Proof. From the Complementarity Theory it is known that the problem
NCP (f,K) has a solution, if and only if the mapping Φ(x) = PK[x− f(x)] =
PK[T (x)] has a fixed-point. Obviously, Φ(K) ⊆ K and Φ is a completely
continuous mapping. Therefore, Φ is demicontinuous and scalarly compact.
Because T ′∞(K) ⊆ K, we have that for any x ∈ K, T ′∞(x) = PK[T ′∞(x)], and
consequently,

lim
‖x‖→∞

x∈K

‖PK[T (x)]− T ′∞(x)‖
‖x‖

≤ lim
‖x‖→∞

x∈K

‖PK[T (x)]− PK[T ′∞(x)]‖
‖x‖

≤ lim
‖x‖→∞

x∈K

‖T (x)− T ′∞(x)‖
‖x‖

= 0.

We have that T ′∞ is also the asymptotic derivative of the mapping Φ, which
implies that Φ′

s(∞) = T ′∞. Because the assumptions of Theorem 1 are satisfied,
our theorem is proved. �

Remarks.
(1) The assumption T ′∞(K) ⊆ K is satisfied if T (K) ⊆ K. (See [1], [12])
(2) Theorem 4 is applicable to complementarity problems defined by com-

pletely continuous fields of the form f(x) = x − T (x), where T is an integral
operator. It is known that many nonlinear integral operators (as for exam-
ple, Hammerstein operators or Urysohn operators) are under some conditions
asymptotically derivable [11], [12] and [13].

(3) Theorem 4 is also applicable to complementarity problems NCP (f,K),
where f has a representation of the form f(x) = αx − T (x), where α is
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a a positive real number and T : H → H is a completely continuous and
asymptotically derivable operator. In this case, in the proof of Theorem 4 we
consider the mapping

Ψ(x) = PK

[
x− 1

α
f(x)

]
= PK

[
1
α
T (x)

]
,

and we must suppose that ‖T ′∞‖ < α.
Another interesting application of Theorem 1 to complementarity problems

is when the cone K is an isotone projection cone (see [7] and [4]) and K is
self-adjoint, i.e., K = K∗. In this case if f(x) = x − T (x) and there exists a
mapping T0 such that T0 : H → H and T (x) ≤

(K)
T0(x) for any x ∈ H, we

have that PK[T (x)] ≤ PK[T0(x)]. If T0 has an asymptotic derivative (T0)′∞
such that (T0)′∞(K) ⊆ K, and the mapping f is a completely continuous field,
then by Theorem 1 we have that the problem NCP (f,K) has a solution if in
addition ‖(T0)′∞‖ < 1.

Comments. We presented in this paper a fixed-point theorem which is
a variant of a classical fixed-point theorem on convex cones, due to M. A.
Krasnoselskii. We note two aspects related to our theorem.

First, the proof is not based on the topological degree but on some tech-
niques developed in complementarity theory.

Second, because the comparison between f and f0, assumption (iii), en-
larges the applicability of Krasnoselskii type fixed-point theorems on cones.
In this sense, the applicability of this theorem to the study of complementar-
ity problems defined by asymptotically derivable fields opens a new research
direction in Complementarity Theory.
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