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1. Introduction

A lot of papers have been devoted to the investigation of lossless transmis-

sion lines terminated by nonlinear loads (cf. [1], [16], [18], [4], [5], [12], [6], [9],

[7], [3], [19]) and their applications to RF -circuits. It is well known, however,

that in many practical cases (in particular when the frequency increases) the

lossies can not be disregarded (cf. [9], [7]).That is way, here we consider a hy-

perbolic system describing the processes in the transmission lines taking into

account the lossies, that is, R 6= 0 and G 6= 0 (cf. system (1) below). On the

other hand in many devices [14] the V-I characteristics of nonlinear R-loads
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are approximated most often by polynomials. This implies arising of poly-

nomial nonlinearities in the equivalent neutral functional differential equation

(cf. [6]).

The main purpose of the present paper is twofold: to expose known results

in a form (in Section II) for the direct application to analysis and design of

lossy transmission lines and to present some new results for the existence of

periodic regimes of lossy transmission lines without distortion terminated by

nonlinear resistive loads (Section III). Finally in Section IV we show of how

to apply the theorems proved to a concrete example - an important detail

usually missing in the mathematical papers. We would like also to point out

that our fixed point method (cf. [2]) combined with suitable Bielecki metrics

overcomes the difficulties generated by polynomial nonlinearities. Unlike [19]

our periodic solution can be approximated by combination of sin and cos in

an explicit form.

We proceed from the circuit shown on the next figure where E is the source,

R0 and C0 - linear loads, while the nonlinear resistive load has the nonlinear

V-I characteristic of polynomial type.

It is known that a lossy transmission line can be prescribed by the following

hyperbolic system of first order partial differential equations:

C
∂u(x, t)

dt
+

∂i(x, t)

dx
+ Gu(x, t) = 0, L

∂i(x, t)

dt
+

∂u(x, t)

dx
+ Ri(x, t) = 0,

(x, t) ∈ Π :=
{

(x, t) ∈ R
2 : (x, t) ∈ [0, Λ] × [0,∞)

}

(1)

where u(x, t) and i(x, t) are the unknown voltage and current, while L,C, R

and G are prescribed specific parameters of the line and Λ > 0 is its length.
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For the above system (1) can be formulated the following initial-boundary (or

briefly mixed) problem: to find the unknown functions u(x, t) and i(x, t) in Π

such that

u(x, 0) = u0(x), i(x, 0) = i0(x), x ∈ [0, Λ] (2)

E − u(0, t) − R0i(0, t) = 0, t ≥ 0 (3)

C0
du(Λ, t)

dt
= i(Λ, t) − f(u(Λ, t)), t ≥ 0. (4)

where i0(x), u0(x) are prescribed functions-the current and voltage at the ini-

tial instant, and i = f(u) is a prescribed V-I characteristic of the nonlinear

resistive load. For the sake of simplicity we assume that f(u) is a polynomial

of third order but the calculations below show that the method can be applied

to polynomials of an arbitrary order. It is known that the third order polyno-

mials are commonly used for the approximation in the oscillator circuits where

f(.) is a polynomial with partially negative differential resistance (cf. [9], [7],

[14] Gunn-diodes, tunnel diodes and others).In the following we assume that

the following condition is fulfilled R/L = G/C. It is a natural assumption for

TEM way of propagation in the transmission lines (cf. [9], [7], [14]).

2. Reducing the mixed problem for the transmission line system

to an initial value problem for a neutral equation

First we present (1) in matrix form:

A1
∂U

∂t
+ A2

∂U

∂x
+ A3U = 0 (5)

where

A1 =

[

C 0

0 L

]

, A2 =

[

0 1

1 0

]

, A3 =

[

G 0

0 R

]

,

U =

[

u

i

]

,
∂U

∂t
=







∂u

∂t
∂i

∂t






.

Since |A1| 6= 0, then (5) becomes
∂U

∂t
+ A−1

1 A2
∂U

∂x
+ A−1

1 A3U = 0, where

A−1
1 =

[

1/C 0

0 1/L

]

.
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Therefore we obtain

∂U

∂t
+ A

∂U

∂x
+ BU = 0, (6)

where

A =

[

0 1/C

1/L 0

]

, B =

[

G/C 0

0 R/L

]

.

In order to transform the matrix

A = A−1
1 A2 =

[

0 1/C

1/L 0

]

in a diagonal form we have to solve the characteristic equation:
[

−λ 1/C

1/L −λ

]

= 0

whose roots are λ1 = 1/
√

LC, λ2 = −1/
√

LC. For the eigen-vectors we obtain

the following systems:
∣

∣

∣

∣

∣

−(1/
√

LC)ξ1 +(1/L)ξ2 = 0

(1/C)ξ1 −(1/
√

LC)ξ2 = 0
and

∣

∣

∣

∣

∣

(1/
√

LC)ξ1 +(1/L)ξ2 = 0

(1/C)ξ1 +(1/
√

LC)ξ2 = 0

Hence (ξ
(1)
1 , ξ

(1)
2 ) = (

√
C,

√
L), (ξ

(2)
1 , ξ

(2)
2 ) = (−

√
C,

√
L).

Denote by H the matrix formed by eigen-vectors H =

[ √
C

√
L

−
√

C
√

L

]

and

its inverse one H−1 =

[

1/(2
√

C) −1/(2
√

C)

1/(2
√

L) 1/(2
√

L)

]

. If we denote by

Acan =

[

1/
√

LC 0

0 −1/
√

LC

]

,

then it is known that Acan = HAH−1.

Introduce new variables Z = HU , (or U = H−1Z)

Z =

[

V (x, t)

I(x, t)

]

, H =

[ √
C

√
L

−
√

C
√

L

]

, U =

[

u(x, t)

i(x, t)

]

.

Then
∣

∣

∣

∣

∣

V =
√

Cu +
√

Li

I = −
√

Cu +
√

Li
,

∣

∣

∣

∣

∣

u = (1/2
√

C)V − (1/2
√

C)I

i = (1/2
√

L)V + (1/2
√

L)I
(7)
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Replacing U = H−1Z in (6) we obtain

∂(H−1Z)

∂t
+ A

∂(H−1Z)

∂x
+ B(H−1Z) = 0.

Since H−1 is a constant matrix we have:

H−1 ∂Z

∂t
+ (AH−1)

∂Z

∂x
+ (BH−1)Z = 0.

After multiplication from the left by H we obtain

∂Z

∂t
+ H(AH−1)

∂Z

∂x
+ H(BH−1)Z = 0,

i.e.
∂Z

∂t
+ Acan ∂Z

∂x
+ H(BH−1)Z = 0. (8)

But

HBH−1 =

[ √
C

√
L

−
√

C
√

L

] [

G/C 0

0 R/L

] [

1/2
√

C −1/2
√

C

1/2
√

L 1/2
√

L

]

=

=

[

(1/2)(G/C + R/L) (1/2)(−G/C + R/L)

(1/2)(−G/C + R/L) (1/2)(G/C + R/L)

]

.

As we have already mentioned we consider transmission lines without dis-

tortion which means that the following condition is fulfilled R/L = G/C (cf.

[9], [7]). Then HBH−1 can be simplified and (8) has the type:






∂V

∂t
∂I

∂t






+

[

1√
LC

0

0 − 1√
LC

]







∂V

∂x
∂I

∂x






+

[

R
L

0

0 R
L

] [

V

I

]

=

[

0

0

]

(9)

The new initial conditions we obtain from (7) and (2):

V (x, 0) =
√

Cu(x, 0) +
√

Li(x, 0)

=
√

Cu0(x) +
√

Li0(x) ≡ V0(x), x ∈ [0, Λ], (10)

I(x, 0) = −
√

Cu(x, 0) +
√

Li(x, 0) = −
√

Cu0(x) +
√

Li0(x) ≡ I0(x), x ∈ [0, Λ].

Then the new boundary conditions become

E −
(

1

2
√

C
V (0, t) − 1

2
√

C
I(0, t)

)

−R0

(

1

2
√

L
V (0, t) +

1

2
√

L
I(0, t)

)

= 0 (11)
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C0

[

1

2
√

C

dV (Λ, t)

dt
− 1

2
√

C

dI(Λ, t)

dt

]

=
1

2
√

L
V (Λ, t) +

1

2
√

L
I(Λ, t)

−f

(

1

2
√

C
V (Λ, t)− − 1

2
√

C
I(Λ, t)

)

, t ≥ 0.

So we have obtained the mixed problem (9)-(11) equivalent to (1)-(4). One

can simplify (9) by the next substitution:

W (x, t) = e
R
L

tV (x, t), J(x, t) = e
R
L

tI(x, t),

i.e.

V (x, t) = e−
R
L

tW (x, t), I(x, t) = e−
R
L

tJ(x, t) (12)

System (9) can be written in the form:

∂V

∂t
+

1√
LC

∂V

∂x
+

R

L
V = 0,

∂I

∂t
− 1√

LC

∂I

∂x
+

R

L
I = 0. (13)

Then substituting V (x, t) and I(x, t) from (12) into (13) we obtain
∣

∣

∣

∣

∂W

∂t
+

1√
LC

∂W

∂x
= 0,

∂J

∂t
− 1√

LC

∂J

∂x
= 0 . (14)

System (14) correspondences to a lossless transmission line and then follow-

ing [9] one can reduce the mixed problem for (14) to an equivalent (cf. [6])

initial value problem for a functional differential equation of neutral type ([15],

[10], [13]) on the right boundary. The neutral equation is a nonlinear one in

view of the nonlinear V −I characteristic of the resistive load. In what follows

we make this reduction.

Indeed, it is known [11] that the solution of (14) is a pair of functions

W (x, t) = ΦW (x − ωt) and J(x, t) = ΦJ(x + ωt) where ΦW and ΦJ are

arbitrary smooth functions while ω = 1/
√

LC is the propagation velocity of

waves. In view of (7) and (12) we obtain

u(x, t) =
e−

R
L

t

2
√

C
[ΦW (x − ωt) − ΦJ(x + ωt)],

i(x, t) =
e−

R
L

t

2
√

L
[ΦW (x − ωt) + ΦJ(x + ωt)]. (15)

Hence

ΦW (x − ωt) = e
R
L

t
(√

Cu(x, t) +
√

Li(x, t)
)

,

ΦJ(x + ωt) = e
R
L

t
(√

Li(x, t) +
√

CU(x, t)
)

. (16)
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For x = Λ we obtain

ΦW (Λ − ωt) = e
R
L

t
[√

Cu(Λ, t) +
√

Li(Λ, t)
]

,

ΦJ(Λ + ωt) = e
R
L

t
(√

Li(Λ, t) +
√

CU(Λ, t)
)

. (17)

Let us put Λ − ωt = −ωt′ =⇒ t = t′ + Λ/ω ≡ t′ + T (T = Λ/ω) and then

substitute t in the first equation of (17) we get

ΦW (−ωt′) = e
R
L

(t′+T )
[√

Cu(Λ, t′ + T ) +
√

Li(Λ, t′ + T )
]

.

Now let us put Λ+ωt = ωt′′ =⇒ t = t′′−Λ/ω ≡ t′′−T (T = Λ/ω) and then

substitute in the second of equation of (17) one can obtain

ΦJ(ωt′′) = e
R
L

(t′′−T )
[√

Li(Λ, t′′ − T ) −
√

Cu(Λ, t′′ − T )
]

.

So we obtain

ΦW (−ωt) = e
R
L

(t+T )
[√

Cu(Λ, t + T ) +
√

Li(Λ, t + T )
]

, (18)

ΦJ(ωt) = e
R
L

(t−T )
[√

Li(Λ, t − T ) −
√

Cu(Λ, t − T )
]

. (19)

From (15) by x = 0 we have

u(0, t) =
e−

R
L

t

2
√

C
[ΦW (−ωt)−ΦJ(ωt)], i(0, t) =

e−
R
L

t

2
√

L
[ΦW (−ωt) + ΦJ(ωt)]. (20)

Substituting ΦW (−ωt) and ΦJ(ωt) from (18) and (19) into (20) we have:

u(0, t) =
1

2
√

C

[

e
RT
L

(√
Cu(Λ, t + T ) +

√
Li(Λ, t + T )

)

−

−e−
RT
L

(√
Li(Λ, t − T ) +

√
Cu(Λ, t − T )

)]

,

i(0, t) =
1

2
√

L

[

e
RT
L

(√
Cu(Λ, t + T ) +

√
Li(Λ, t + T )

)

−

−e−
RT
L

(√
Li(Λ, t − T ) +

√
Cu(Λ, t − T )

)]

.

Now we substitute the above expressions in the boundary condition E −
u(0, t)−R0i(0, t) = 0 and using the usually accepted denotation for the char-

acteristic impedance Z0 =
√

L/Cwe have:

2E − e
RΛ

Z0

(

1 +
R0

Z0

)

u(Λ, t + T ) − e
RΛ

Z0 (Z0 + R0)i(Λ, t + T )+

+e
−RΛ

Z0 (Z0 − R0)i(Λ, t − T ) + e
−RΛ

Z0

(

R0

Z0
− 1

)

u(Λ, t − T ) = 0.
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Put t′ = t + T . In view of t − T = t′ − 2T (and again replace t′ by t) we

obtain:

2E − e
RΛ

Z0

(

1 +
R0

Z0

)

u(Λ, t) − e
RΛ

Z0 (Z0 + R0)i(Λ, t)+

+e
−RΛ

Z0 (Z0 − R0)i(Λ, t − 2T ) + e
−RΛ

Z0

(

R0

Z0
− 1

)

u(Λ, t − 2T ) = 0. (21)

The second boundary condition is C0
du(Λ, t)

dt
= i(Λ, t) − f(u(Λ, t)) or

i(Λ, t) = C0
du(Λ, t)

dt
+ f(u(Λ, t)) (22)

and

i(Λ, t − 2T ) = C0
du(Λ, t − 2T )

dt
+ f(u(Λ, t − 2T )). (23)

Substituting i(Λ, t) and i(Λ, t− 2T ) from (22) and (23) into (21) we obtain:

2E − e
RΛ

Z0

(

1 +
R0

Z0

)

− e
RΛ

Z0 (Z0 + R0)[C0u̇(Λ, t) + f(u(Λ, t))]+

e
−RΛ

Z0 (Z0 + R0)[C0u̇(Λ, t − 2T ) + f(u(Λ, t − 2T ))]+

+e
−RΛ

Z0

(

R0

Z0
− 1

)

u(Λ, t − 2T ) = 0

(

u̇ ≡ du

dt

)

.

Denote by y(t) = u(Λ, t) and A = e
RΛ

Z0 and solve the above equation with

respect to ẏ(t):

ẏ(t) =
2E

AC0(Z0 + R0)
− 1

Z0C0
y(t)− 1

C0
f(y(t))+

R0 − Z0

A2C0Z0(R0 + Z0)
y(t−2T )+

+
Z0 − R0

A2C0(Z0 + R0)
f(y(t − 2T )) +

Z0 − R0

A2(Z0 + R0)
ẏ(t − 2T ). (24)

This is a nonlinear functional differential equation of neutral type (cf. [15],

[10], [13]) with respect to the unknown function y(t).
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3. An existence of periodic solutions for neutral equations with

polynomial nonlinearities

Our method for solving the periodic boundary value problem for the above

equation is applicable to the general case when V − I characteristic of the

nonlinear resistive load is a polynomial of an arbitrary order, that is, when

f(u) =
n

∑

k=1

aku
k. We however consider the particular case very often encoun-

tered in the applicationsf(u) = a1u + a2u
2 + a3u

3. Then the above equation

becomes

ẏ(t) =
2E

AC0(Z0 + R0)
− 1

Z0C0
y(t) − 1

C0
(a1y(t) + a2y

2(t) + a3y
3(t))

+
R0 − Z0

A2C0Z0(R0 + Z0)
y(t − 2T ) + +

Z0 − R0

A2C0(Z0 + R0)
(a1y(t − 2T ) + a2y

2(t − 2T )

+a3y
3(t − 2T )) +

Z0 − R0

A2(Z0 + R0)
ẏ(t − 2T ).

or

ẏ(t) =
2E

AC0(Z0 + R0)
− 1 + a1Z0

Z0C0
y(t) +

a2

C0
y2(t)

+
a3

C0
y3(t) +

(1 − a1Z0)(R0 − Z0)

A2C0Z0(R0 + Z0)
y(t − 2T ) + +

a2(Z0 − R0)

A2C0(Z0 + R0)
y2(t − 2T )

+
a3(Z0 − R0)

A2C0(Z0 + R0)
y3(t − 2T ) +

Z0 − R0

A2(Z0 + R0)
ẏ(t − 2T ). (25)

Introduce the denotations:

A = e
RΛ

Z0 , A0 =
2E

AC0(Z0 + R0)
, A1 = −1 + a1Z0

Z0C0
, A2 = − a2

C0
,

A3 = − a3

C0
, A4 =

(1 − a1Z0)(R0 − Z0)

A2C0Z0(R0 + Z0)
, A5 =

a2(Z0 − R0)

A2C0(Z0 + R0)
,

A6 =
a3(Z0 − R0)

A2C0(Z0 + R0)
, A7 =

Z0 − R0

A2(Z0 + R0)
.

Then for (25) one can formulate the following initial value problem: to find

a solution of (25) on a prescribed interval [T, T0] where on the interval [−T, T ]

the solution equals to a prescribed initial function, that is,y(t) = φ(t). As we

show below φ(t) can be defined by the initial voltage u0(x). Indeed, in view of

the characteristic lines of the hyperbolic system (6)η − ωt = x, η + ωt = x, we
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can translate the initial function from [0, Λ] onto [0, T ] and from [0, Λ] onto

[−T, 0]. So we obtain for the initial function

φ(t) =

{

u0(Λ + ωt), t ∈ [−T, 0]

u0(Λ + −ωt), t ∈ [0, T ]

Therefore we have the following problem for the existence of To-periodic

solution of the neutral equation:

ẏ(t) = A0 + A1y(t) + A2y
2(t) + A4y(t − 2T ) + A5y

2(t − 2T )

+A6y
3(t − 2T ) + A7(̇t − 2T ), for t ∈ [T, T0]

y(t) = φ(t), ẏ(t) = φ̇(t) for t ∈ [−T, T ]. (26)

We have to present (26) in a suitable operator form. Prior to define the suit-

able operator we consider the set CT0
(φ) of all continuous T0-periodic functions

on [T,∞) which coincide with φ(t) on [−T, T ]. If we look for continuously dif-

ferentiable solutions one can assume that the following compatibility condition

is fulfilled:

(CC) φ̇(T ) = A0 + A1φ(T ) + A2φ
2(T ) + A3φ

3(T ) + A4φ(−T )

+A5φ
2(−T ) + A6φ

3(−T ) + A7φ̇(−T ). (27)

The above condition implies an existence of continuous derivative ẏ(t) of

the solution (cf. [15], [10], [13]).

Now introduce the set:

M =
{

f(.) ∈ CT0
(φ) : |f(t)| ≤ Y eµt, t ∈ [−T, T + T0]

}

,

where the positive constants Y , T0 and µ will be chosen below. It is easy

to verify that M turns out into a complete metric space with respect to the

metric ρµ(f, g) = sup
{

e−µt|f(t) − g(t)| : t ∈ [−T, T + T0]
}

< ∞.

Now we are able to formulate the main result:

Theorem 1. Let the following conditions be fulfilled:

1.1) the initial function φ(t) satisfies condition (CC) and φ(−T ) = 0;

1.2) the constants Y, T0, µ are chosen such that µT0 < 2/3 and the following

inequalities are valid

|φ(T )| + 3T0
|A0|eµT

2 − µT0
+ KY ≤ Y
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where A = max {|Ak| : k = 1, 2, ..., 7} and

K = 3T0A

[

2ch(µT )

2 − µT0
+

4ch(2µT )

2 − 2µT0
Y +

6ch(3µT )

2 − 3µT0
Y 2 +

eµ(T0−T )

2

]

< 1

Then there exists a unique T0-periodic solution of the equation (26).

Proof. Denote by F (f(t)) the right-hand side of (26):

F (f(t)) = A0 + A1f(t) + A2f
2(t) + A3f

3(t) + A4f(t − 2T )

+A5f
2(t − 2T ) + A6f

3(t − 2T ) + A7ḟ(t − 2T ).

Define the operator B : M −→ M by the formula (recall that y(T ) = φ(T )):

(Bf)(t) := φ(T ) +

∫ t

T

F (f(s))ds

−
(

t − T

T0
− 1

2

)
∫ T+T0

T

F (f(s))ds for t ∈ [T,∞],

(Bf)(t) := φ(T ) and d(Bf)(t)/dt = φ̇(t) for t ∈ [−T, T ]. (28)

One can show that the existence of a continuous T0-periodic solution of (26)

is equivalent to the existence of a fixed point of the operator B in the set M

(cf. [17]).

First we show that the operator B maps the set M into itself. Indeed the

function Bf)(t) is T0-periodic on [T,∞]:

(Bf)(t + T0) := φ(T ) +

∫ t

T

F (f(s))ds +

∫ t+T0

t

F (f(s))ds

−
(

t − T

T0
− 1

2

)
∫ T+T0

T

F (f(s))ds − T0

T0

∫ T+T0

T

F (f(s))ds

= φ(T ) +

∫ t

T

F (f(s))ds −
(

t − T

T0
− 1

2

)
∫ T+T0

T

F (f(s))ds = (Bf)(t).

In what follows we have to show also that |(Bf)(t)| ≤ Y eµt.

Indeed, in view of the inequalities
∣

∣

∣

∣

t − T

T0
− 1

2

∣

∣

∣

∣

≤ 1

2

and
eh − 1

h
≤ h(1 + h/2 + (h/2)2 + ...)

h
≤ 1

1 − (h/2)
=

2

2 − h



212 V. G. ANGELOV

we obtain:

(Bf)(t) ≤ |φ(T )| +
∫ t

T

|F (f(s))|ds +
1

2

∫ T+T0

T

|F (f(s))|ds ≤ |φ(T )|

+
3

2

∫ T+T0

T

|F (f(s))|ds ≤ 3

2

∫ T+T0

T

[

|A0|eµs + |A1||f(s)|eµse−µs

+|A2||f(s)|2e2µse−2µs + |A3|e3µse−3µs

+|A4||f(s − 2T )|e−µ(s−2T )eµ(s−2T ) + |A5||f(s − 2T )|2e−2µ(s−2T )e2µ(s−2T )

+|A6||f(s − 2T )|3e−3µ(s−2T )e3µ(s−2T )
]

ds

+
3

2

[

|A7||f(T0 − T )|e−µ(T0−T )eµ(T0−T )
]

≤ |φ(T )|eµt +
3

2

[

|A0|
eµ(T+T0 − eµT

µ
+ |A1|Y

eµ(T+T0 − eµT

µ

+|A2|Y 2 e2µ(T+T0 − e2µT

2µ
+ |A3|Y 3 e3µ(T+T0 − e3µT

3µ

+|A4|Y e−2µT eµ(T+T0 − eµT

µ
+ +|A5|Y 2e−4µT e2µ(T+T0 − e2µT

2µ

+|A6|Y 3e−6µT e3µ(T+T0 − e3µT

3µ
+ |A7|Y eµ(T0−T )

]

≤ |φ(T )|eµt +
3

2

[

|A0|
eµT T0(e

µT0 − 1)

µT0
+ |A1|Y

eµT T0(e
µT0 − 1)

µT0

+|A2|Y 2 e2µT T0(e
2µT0 − 1)

2µT0
+ |A3|Y 3 e3µT T0(e

3µT0 − 1)

3µT0

+|A4|Y e−µT T0(e
µT0 − 1)

µT0
+ |A5|Y 2e−2µT T0(e

2µT0 − 1)

2µT0

+|A6|Y 3e−3µT T0(e
3µT0 − 1)

3µT0

]

+
3

2
|A7|Y eµ(T0−T )

≤ eµt|φ(T )| + eµt 3T0

2

[

2(|A0| + |A1|Y )eµT

2 − µT0
+

2|A2|Y 2e2µT

2 − 2µT0
+

2|A3|Y 3e3µT

2 − 3µT0

+
2|A4|Y e−µT

2 − µT0
+

2|A5|Y 2e−2µT

2 − 2µT0
+

2|A6|Y 3e−3µT

2 − 3µT0

]

+ eµt 3

2
|A7|Y eµ(T0−T )

≤ eµt|φ(T )| + eµt3T0

[ |A0|eµT

2 − µT0
+

|A1|eµT + |A4|e−µT

2 − µT0
Y

+
|A2|e2µT + |A5|e−2µT

2 − 2µT0
Y 2
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+
|A3|e3µT + |A6|e−3µT

2 − 3µT0
Y 3

]

+ eµt 3

2
|A7|Y eµ(T0−T ) ≤ eµtY.

The last inequality is satisfied in view of condition 1.2) of Theorem 1.

Consequently the operator B maps M into itself.

It remains to show that B is a contractive operator. Indeed for every two

functions f(.) and g(.) from M we have:

|(Bf)(t) − (Bg)(t)| ≤
∫ t

T

[

|A1||f(s) − g(s)|e−µseµs + |A2||f2(s) − g2(s)|

+|A3||f3(s) − g3(s)| + |A4||f(s − 2T ) − g(s − 2T )|e−µ(s−2T )eµ(s−2T )

+ |A5||f2(s − 2T ) − g2(s − 2T )| + |A6||f3(s − 2T ) − g3(s − 2T )|
]

ds

+|A7||f(t − 2T ) − g(t − 2T )|e−µ(t−2T )eµ(t−2T )

+

∫ T+T0

T

[

|A1||f(s) − g(s)|e−µseµs

+|A2||f2(s) − g2(s)| + |A3||f3(s) − g3(s)|
+|A4||f(s − 2T ) − g(s − 2T )|e−µ(s−2T )eµ(s−2T )

+|A5||f2(s − 2T ) − g2(s − 2T )| + |A6||f3(s − 2T ) − g3(s − 2T )|
]

ds

+|A7||f(T0 − T ) − g(T0 − T )|e−µ(T0−T )eµ(T0−T )

≤ ρµ(f, g)
3

2

[

|A1|
eµ(T+T0) − eµT

µ
+ 2|A2|Y

∫ T+T0

T

e2µsds

+3|A3|Y 2

∫ T+T0

T

e3µsds+ + [|A4|e−2µT eµ(T+T0) − eµT

µ

+2|A5|Y
∫ T+T0

T

e2µ(s−2T )ds + 3|A6|Y 2

∫ T+T0

T

e3µ(s−2T )ds

+|A7|eµ(T0−T )
]

≤ ρµ(f, g)
3

2

[

|A1|
eµT (eµT0 − 1)

µ
+ 2|A2|Y

e2µ(T+T0) − e2µT

2µ

+3|A3|Y 2 e3µ(T+T0) − e2µT

3µ
+ |A4|e−2µT eµ(T+T0) − eµT

µ

+2|A5|Y e−4µT e2µ(T+T0) − e2µT

2µ

+3|A6|Y 2e−6µT e3µ(T+T0) − e3µT

3µ
+ |A7|eµ(T0−T )

]

≤ ρµ(f, g)
3

2

[

|A1|eµT T0
eµT0 − 1

µT0
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+2|A2|Y T0e
2µT e2µT0 − 1

2µT0
+ 3|A3|Y 2T0e

3µT e3µT0 − 1

3µT0
+ |A4|e−µT T0

eµT0 − 1

µ

+2|A5|Y e−2µT T0
e2µT0 − 1

2µT0
+ 3|A6|Y 2e−3µT T0

e3µT0 − 1

3µT0
+ |A7|eµ(T0−T )

]

≤ eµtρµ(f, g)
3T0

2

[

(

|A1|eµT + |A4|e−µT
) 2

2 − µT0

+2
(

|A2|e2µT + |A5|e−2µT
) 2

2 − 2µT0
Y

+3
(

|A3|e3µT + |A6|e−3µT
) 2

2 − 3µT0
Y 2 + |A7|eµ(T0−T )

]

≤ eµtρµ(f, g)3T0

[

|A1|eµT + |A4|e−µT

2 − µT0
+

2
(

|A2|e2µT + |A5|e−2µT
)

2 − 2µT0
Y

+
3

(

|A3|e3µT + |A6|e−3µT
)

2 − 3µT0
Y 2 +

|A7|
2

eµ(T0−T )

]

≤ eµtKρµ(f, g).

Now we multiply the both sides of the above inequality by e−µt and taking

the supremum we obtain ρµ(Bf, Bg) ≤ Kρµ(f, g) .Consequently the operator

B is contractive one in view of condition 1.3) because K < 1. The contraction

mapping principle implies an existence of unique T0-periodic solution of (26).

Theorem 1 is thus proved.

The approximated solution we obtain in the concrete example below.

Very often compatibility condition (CC) is restrictive. We can omit it by

considering a different function space. Indeed, we can look for a solution in the

space in T0-periodic absolutely continuous functions with derivatives belong-

ing to the space L∞[−T,∞) -measurable functions with essentially bounded

derivatives (cf. [8]). Then the set M can be defined as follows:

M =
{

f(.) ∈ CT0
(φ) : |f(t)| ≤ Y eµt for almost all t ∈ [−T, T + T0]} .

The metric could be defined as follows:

ρµ(f, g) = ess sup
{

e−µt|f(t) − g(t)| : t ∈ [−T, T + T0]
}

< ∞

Then the following theorem is valid:

Theorem 2. Let the conditions 1.2) and 1.3) be fulfilled. Then there exists

a unique absolutely continuous T0-periodic solution of the equation (26) whose

derivative belongs to L∞[−T,∞).

The proof is analogous to the one of the previous theorem.
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The next theorem treats the particular case when µ = 0. Then M =

{f(.) ∈ CT0
(φ) : |f(t)| ≤ Y for almost all t ∈ [−T, T + T0]}. The metric could

be defined as follows:

ρµ(f, g) = ess sup {|f(t) − g(t)| : t ∈ [−T, T + T0]} < ∞.

Theorem 3. Let the following conditions be fulfilled:

3.1 φ(T ) = φ(−T ) = 0; 3.2 2T0|A0| + Y K ≤ Y ; 3.3 K = 2T0A(4 + 3Y +

6Y 2) < 1

for suitably chosen T0, Y .

Then there exists a unique absolutely continuous T0-periodic solution of the

equation (26) whose derivative belongs to L∞[−T,∞).

The proof is analogous to the one of the previous theorems.

4. Conclusion-an example

Finally we show of how to apply the above Theorem 3 to the analysis and

design of a lossy transmission line. We consider the above problem, when

the nonlinear resistive load has a third order polynomial V − I characteristic.

Namely, the mixed problem corresponding to Fig.1 is:

C
∂u(x, t)

∂t
+

∂i(x, t)

∂x
+ Gu(x, t) = 0, L

∂i(x, t)

∂t
+

∂u(x, t)

∂x
+ Ri(x, t) = 0,

(x, t) ∈ Π =
{

(x, t) ∈ Π2 : (x, t) ∈ [0, Λ] × [0,∞)
}

,

u(x, 0) = u0(x), i(x, 0) = i0(x), x ∈ [0, Λ],

E − u(0, t) − R0i(0, t) = 0, t ≥ 0,

C0
du(Λ, t)

dt
= i(Λ, t) − a1u(Λ, t) − a2u(Λ, t) − a3u

3(Λ, t), t ≥ 0

can be reduced to the periodic problem for the following neutral functional

differential equation with unknown function y(t) = u(Λ, t):

ẏ(t) =
2E

AC0(Z0 + R0)
− 1 + a1Z0

Z0C0
y(t) − a2

C0

a3

C0
y3(t)

+
(1 − a1Z0)(R0 − Z0)

A2C0Z0(R0 + Z0)
y(t − 2T ) +

a2(Z0 − R0)

A2C0(Z0 + R0)
y2(t − 2T )

+
a3(Z0 − R0)

A2C0(Z0 + R0)
y3(t − 2T ) +

Z0 − R0

A2(Z0 + R0)
ẏ(t − 2T ), t ∈ [T, T + T0], (29)

y(t) = φ(t), t ∈ [−T, T ], ẏ(t) = φ̇(t), t ∈ [−T, T ],
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where the initial function is

φ(t) =

{

u0(Λ + ωt), t ∈ [−T, 0]

u0(Λ + −ωt), t ∈ [0, T ]

Let us consider a transmission line with length Λ = 9cm, cross-section

area S = 0, 10cm2, specific resistance for the cuprum is ρc = 0, 0175,

characteristic impedance is Z0 =
√

L/C = 75Ω,R0 = 70Ω,C0 = 10−11F ,

E = 0, 5V . The propagation velocity for the air is c = 3.108cm/sec. This

means ω = 1/
√

L/C = 3.1010. Then T = Λ/ω =
9

3.1010
= 3.10−10. We

use the following V − I characteristic i = 0, 028u − 0, 125u2 + 0, 14u3,i.e.

a1 = 0, 028, a2 = −0, 125, a3 = 0, 14. Then the values of the constants are

A = e
RA
Z0 = e

ρ Λ
2

SZ0 = e
1,75.10−2 9

2

0,1.75 = e0,189 ≈ 1, 224;

A2 = 1, 5;

A0 =
1

1, 224.10−11.145
≈ 5, 6.108;

A1 = −1 + 0, 028.75

75.10−11
≈ −4, 1.109;

A2 = −−0, 125

10−11
≈ 1, 25.1010;

A3 =
0, 14

10−11
≈ 1, 4.1010;

A4 =
(1 − 0, 028.75)(−5)

1, 5.10−11.75.145
≈ 3, 3.107

A5 =
−0, 01.5

1, 5.10−11.75.145
≈ −3.105;

A6 =
0, 14.5

1, 5.10−11.145
≈ 3, 2.108;

A7 =
5

1, 5.145
≈ 0, 023.

One can choose T0 = 10−12. The conditions of Theorem 3 become:

A = 1, 4.1010, K = 2, 8.10−2(4 + 3Y + 6Y 2) < 1, 1, 12.10−3 + Y K ≤ Y .

Consequently Y can be defined from the last inequalities.

In what follows we show of how to obtain several successive approximations

of the solution. We proceed from (27)-(28). Let us choose

y0(t) =

{

sin
(

2π
T

)

t, t ∈ [−T, T ]

0, t ∈ [T, T + T0]
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Then substituting in the right hand-side of (29) we obtain:

y1(t) = A7sin
2πt

T
+

(

t − T

T0
− 1

2

)

A7

2
sin

2πT0

T
.

Since t ∈ [T, T + T0] then

|y1(t) − y0(t)| ≤
5

4
|A7| ≤ 1, 25.0, 023 = 0, 02875.

It is known that if y∗(t) is the solution then

|yn(t) − y∗(t)| ≤ Kn

1 − K
0, 03.
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