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Abstract. Topological degree will be indicated for monotone-type available multivalued

mappings on open bounded subsets of reflexive separable Banach spaces. This degree is,

in particular, a multivalued generalization of the one for single-valued maps developed in

[Ber86, BM86].
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1. Introduction

Monotone multivalued maps in real Hilbert spaces are known to be single-

valued on a Gδ-set which is dense in the interior of their domains (see e.g.

[Dei92, Proposition 4.23]). This indicates that the notion of monotonicity is

rather restrictive for multivalued maps. On the other hand, some sorts of

monotonicity often allow us to avoid other restrictions like compactness, typ-

ically required in the fixed point theory. The basis of the theory of monotone

operators was mainly developed by F. E. Browder, H. Brezis, T. Kato, J. Leray,
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J.-L. Lions, G. J. Minty, M. I. Vishik, . . . . There exist several monographs

dealing with monotone operators (see e.g. [Bar76, PS78, SM99, Vai73, Zei90]).

The topological degree theory for single-valued maps of monotone-type in

reflexive Banach spaces was developed in the 80’s by F. E. Browder [Bro83a]-

[Bro83d]. His technique was based on the combination of the Galerkin ap-

proximation and the standard Brouwer degree. Using the Leray-Schauder

degree and the Browder-Ton embedding theorem, J. Berkovits [Ber86], jointly

with V. Mustonen [BM86], defined a new degree allowing them to make more

straightforward applications in nonlinear analysis, in particular, for parabolic

problems [BM92].

Although some further definitions of degree for both single-valued as well

as multivalued maps were given (see e.g. [Kra83, KS99, KS05, Skr86, Skr94,

ZC90], from which especially the Skrypnik degree became popular (cf. [KS99,

KS05, Skr86, Skr94]), the degree theory for monotone-type maps is far from

to be built in a satisfactory way.

In our note, we would only like to indicate a possible extension of the

approach in [Ber86, BM86] to multivalued maps. A more systematic and

detailed exposition of our results in this field will be published elsewhere.

2. Some preliminaries

For a given reflexive Banach space E, by E∗, we shall denote its dual space.

In what follows, the symbol 〈 · , · 〉 stands for pairing between E and E∗.

We recall the Browder-Ton Theorem (cf. [BM86, Ber86, BT68]).

Theorem 2.1. For every reflexive separable Banach space E, there exists a

separable Hilbert space F and a linear completely continuous injection h : F →

E such that h(F ) is dense in E.

Assume that h : F → E is the same as in Theorem 2.1. We define h∗ :

E∗ → F by putting:

h∗(f)(v) := f(h(v)), for every f ∈ E∗ and v ∈ F.

We also define a map ĥ : E∗ → F by the formula

ĥ(f) := vf , for every f ∈ E∗,
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where vf is a unique element of F , for which we have

〈v, vf 〉 = h∗(f)(v).

Let us note that the existence of vf follows directly from the well-known

Fréchet-Riesz Theorem.

Corollary 2.2 (cf. [Ber86, BM86]). The map ĥ : E∗ → F is a linear com-

pletely continuous injection.

Let (X, d) be a metric space and q : X → E∗ be a mapping. The mapping

q is called bounded if, for every bounded B ⊂ X, the set q(B) is bounded.

It is called demicontinuous if, for every sequence {xn} ⊂ X, the condition

{xn} → x implies that {q(xn)} ⇀ q(x), i.e. that the sequence {q(xn)} weakly

converges to q(x).

3. Multivalued mappings

In this paper, by homology, we shall understand the Čech homology functor

H with compact carriers and coefficients in the field of rational numbers Q

(for details, see [AG03] or [G06]). A metric space X is called acyclic if

Hn(X) =





Q, for n = 0,

0, for n > 0.

A mapping p : X → Y between two metric spaces is called a Vietoris map if:

(i) p is onto,

(ii) p is proper, i.e,̇ for any compact K ⊂ Y , the set p−1(K) is compact,

(iii) p−1(y) is acyclic, for every y ∈ Y .

The symbol p : X =⇒ Y will be reserved for Vietoris mappings.

Let us recall the following properties of Vietoris mappings:

(i) If X
p

=⇒Y
p1

=⇒Z are two Vietoris mappings, then the composition p1◦p :

X =⇒ Z is a Vietoris map, too.

(ii) If p : X =⇒ Y is a Vietoris map, then the map p̃ : p−1(B) =⇒ B,

p̃(x) = p(x), for every x ∈ p−1(B), is a Vietoris map, for every B ⊂ Y .

In what follows, by a multivalued map from X to Y , we shall understand

the diagram

X
p

⇐=Γ
q

−→Y
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in which p is a Vietoris map, q is an arbitrary map and X, Γ, Y are metric

spaces. We shall write, for the sake of simplicity, (p, q) : X → Y (for more

details, see [AG03] or [G06]). A multivalued map (p, q) : X → Y is called

admissible (see again [AG03] or [G06]) if q is continuous and compact, i.e. if

q(Γ) is relatively compact in Y .

Note that the map (p, q) : X → Y induces the set-valued mapping Φ(p, q) =

Φ : X ⊸ Y defined by Φ(x) := q(p−1(x)), for every x ∈ X. Moreover, if (p, q)

is admissible, then Φ is compact and upper semicontinuous.

Now, until the end of this paper, by U , we shall denote an open bounded

subset of a reflexive separable Banach space E and, by U , the closure of U in

E. Moreover, we shall consider a multivalued map

U
p

⇐=Γ
q

−→E∗, ((p, q) : U → E∗).

Definition 3.1. A multivalued map (p, q) : U → E∗ is called monotone (resp.

strongly monotone) if, for every x1, x2 ∈ U and for every y1 ∈ q(p−1(x1)),

y2 ∈ q(p−1(x2)), we have

〈x1 − x2, y1 − y2〉 ≥ 0 (1)

(resp.

〈x1 − x2, y1 − y2〉 ≥ c ‖x1 − x2‖
2 , (2)

where c > 0 is a suitable constant).

For more details concerning monotone-type mappings, see e.g. [Bar76, G06,

PS78, SM99, Vai73, Zei90].

Let us associate with any multivalued map

U
p

⇐=Γ
q

−→E∗,

the following multivalued map

U
p

⇐=Γ
h◦bh◦q
−→ E, (3)

where h and ĥ were defined in Section 2.

Definition 3.2. A multivalued map (p, q) : U → E∗ is called d-admissible if

p is Vietoris and q is demicontinuous and bounded.

As an easy consequence of Theorem 2.1 and Corollary 2.2, we get:
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Proposition 3.3. If (p, q) : U → E∗ is a d-admissible map, then the map

(p, h ◦ ĥ ◦ q) : U → E defined in (3) is admissible.

4. Degree for monotone-type Multivalued maps

We shall introduce the class of multivalued mappings for which we shall be

able to define the topological degree. We shall be particularly interested in

monotone resp. strongly monotone maps satisfying conditions (1) resp. (2).

But since our considerations have also meaning with conditions not neces-

sarily satisfying (1) or (2), we shall rather speak about monotone-type than

monotone maps.

Definition 4.1. A multivalued map (p, q) : U → E∗ is said to be available if

the following conditions are satisfied:

(i) (p, q) is d-admissible,

(ii) for every sequence {xn} ⊂ U such that {xn} ⇀ x if there exists a se-

quence {yn} ⊂ E∗ with yn ∈ q(p−1(xn)) and such that 〈xn, yn〉 ≤ 0,

for every n = 1, 2, . . ., then {xn} → x.

We put:

A(U, E∗) := {(p, q) : U → E∗ | (p, q) is available},

A∂U (U, E∗) := {(p, q) ∈ A(U, E∗) | 0 /∈ q(p−1(∂U))}.

Proposition 4.2. Assume that (p, q) ∈ A(U, E∗). Then:

(i) the map

ϕε : U ⊸ E, ϕε(x) :=

{
x + y

∣∣∣∣ y ∈
1

ε
· h(ĥ(q(p−1(x)))

}

is, for every ε > 0, a compact admissible vector-field of the type

idE −(p̃, q̃), i.e. a compact admissible perturbation of identity, where

h, ĥ are defined in Section 2 and p̃, q̃ are induced by p, q, h, ĥ,

(ii) if for {εn} → 0 there exists xn ∈ U such that 0 ∈ ϕεn
(xn), then there

exists x ∈ U , for which 0 ∈ q(p−1(x)).

Proof. Observe that assertion (i) is a simple consequence of Proposition 3.3

(cf. [AG03, G06]). Therefore, we shall restrict ourselves to prove (ii). Let

us assume, for the sake of simplicity, that εn = 1/n and ϕεn
= ϕ 1

n

. Let

0 ∈ ϕεn
(xn), for every n = 1, 2, . . ., and yn ∈ q(p−1(xn)) be such that 0 =
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xn + nh(ĥ(yn)). Since U is bounded and (p, q) is bounded, we can assume

without any loss of generality that {xn} ⇀ x and {yn} ⇀ y. From

0 = xn + n · (h(ĥ(yn))),

we receive

h(ĥ(yn)) = −
1

n
xn.

Thus, we infer that {h(ĥ(yn))} → 0 = h(ĥ(y)), and since h ◦ ĥ is a linear

injection, we obtain y = 0.

According to the definition of ĥ, we arrive at

〈yn, xn〉 = −n〈yk, h(ĥ(yk))〉 = −n‖ĥ(yn)‖2
F ≤ 0.

By means of condition (ii), we get that {xn} → x and, from demicontinuity

of (p, q), we have 0 ∈ q(p−1(x)). �

Now, we are ready to define the topological degree for mappings in the class

A∂U (U, E∗).

Lemma 4.3. Assume that (p, q) ∈ A∂U (U, E∗). Then there exists ε∗ > 0

such that, for every 0 < ε < ε∗, we have 0 /∈ ϕε(∂U), where ϕε is defined in

Proposition 4.2(i).

Proof. If not, we get a contradiction with condition (ii) in Proposition 4.2. �

We put still:

Ã∂U (U, E) := {ϕ : U ⊸ E | ϕ is a compact admissible vector-field,

and 0 /∈ ϕ(∂U)}.

In view of Lemma 4.3 and Proposition 4.2, we can state:

Proposition 4.4. Assume (p, q) ∈ A∂U (U, E∗), and let ε∗ be chosen according

to Lemma 4.3. Then ϕε ∈ Ã∂U (U, E), for every 0 < ε < ε∗. Moreover, for

every 0 < ε0, ε1 < ε∗, we have:

deg(ϕε0
) = deg(ϕε1

),

where deg denotes the topological degree for Ã∂U (U, E) (defined as in [AG03,

G06]).
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Proof. From Lemma 4.3, it follows that ϕε ∈ Ã∂U (U, E), for every 0<ε<ε∗.

Observe that if 0 < ε0, ε1 < ε∗, then the formula

t · ϕε1
+ (1 − t)ϕε0

= id +

(
t

ε1

+
1 − t

ε0

)
hĥqp−1 = ϕεt

,

where
1

εt
= t ·

1

ε1

+ (1 − t)
1

ε0

,

gives us the homotopy linking ϕε0
with ϕε1

, and the conclusion follows from

the homotopy property of the given topological degree. �

We define the function

Deg: A∂U (U, E∗) → Z, (4)

where Z denotes the set of integers, by putting

Deg ((p, q)) := deg(ϕε),

where 0 < ε < ε∗ and ε∗ is chosen for (p, q), according to Lemma 4.3.

It follows from Proposition 4.4 that

Theorem 4.5. The degree in (4) is correctly defined and satisfies the standard

existence, additivity and homotopy properties.

5. Concluding remarks

Some concluding remarks are in order.

• Since in finite dimensional Banach spaces E = E∗, the weak and strong

convergences coincide, demicontinuous means continuous, and relative com-

pactness reduces to boundedness, condition (ii) in Definition 4.1 becomes

superfluous for the definition of the topological degree, as defined e.g. in

[AG03, G06].

• If (p, q) = (id |U , q), where q : U → E∗ is a single-valued map, then

condition (ii) in Definition 4.1 can be, without any loss of generality, replaced

by the hypothesis:

if lim sup 〈xn − x, q(xn)〉 ≤ 0, for each {xn} ⇀ x, then {xn} → x, charac-

terizing so the (S+)-class of functions.

• As pointed out in [Ber86, Zei90], the following implications take place for

the properties of demicontinuous maps q : U → E∗:
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strong monotonicity =⇒ (S+)-property =⇒ lim inf 〈xn − x, q(xn)〉 ≥ 0, for

each {xn} ⊂ U with xn ⇀ x.

The authors of [Ber86, BM86] studied also the classes of pseudomonotone

and quasimonotone demicontinuous maps. The latter can be characterized by

the last implied inequality, while pseudomonotone maps contain the (S+)-class

and are contained in the class of quasimonotone maps.
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[SM99] S. Sburlan and G. Moroşanu, Monotonicity Methods for Partial Differential Equa-

tions, P.A.M.M. Centre, Budapest, 1999.

[Vai73] M. M. Vainberg, Variational Method and Method of Monotone Operators in the

Theory of Nonlinear Equations, John Wiley & Sons, London, 1973.

[ZC90] S. Zhang and Y. Chen, Degree theory for multivalued (S) type mappings and fixed

point theorems, Appl. Math. Mech., Engl. Ed. 11 (1990), no. 5, 441-454.

[Zei90] E. Zeidler, Nonlinear Functional Analysis and Its Applications. II/B: Nonlinear

Monotone Operators, Springer, Berlin, 1990.

Received: October 26, 2006; Accepted: November 12, 2006.


