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1. INTRODUCTION

The aim of this paper is to present a natural application of the continuation
principle established in [1] involving contractions in Gheorghiu’s sense, with
respect to a family of pseudo-metrics.

The advanced argument in our differential equation makes necessary the
use of two pseudo-metrics in the contraction condition.

In what follows we recall some notions and results from paper [1].

First recall the notion of contraction on a gauge space introduced by
Gheorghiu [5]. Let (X,P) be a gauge space with P = {ps}aca. A map
F : D cC X — X is a contraction if there exists a function ¢ : A — A
and a € RY,a = {aq}aca such that

pa(F(LU),F(y)) < aongo(oz)(x7y) Va € A,%y €D,

Zzo:laaacp(a)a@z(a)...aipnq(a)p¢n(a) (aj,y) < o0
for every aw € A and x,y € D. Here, ¢" is the nth iteration of ¢.
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We present now a slow extension of some results from paper [1], whose

proofs are similar.

Theorem 1.1. Let X be a set endowed with two separating gauge structures
P = {pataca and Q = {qs}tpen, let Dy and D be two subsets of X with
Dy C D, and let F : D — X be a map. Assume that F(Dy) C Dy and D is
P-closed. In addition, assume that the following conditions are satisfied:

(i) there is a function v : A — B and ¢ € (0,00)4, ¢ = {ca}aca such that

Pa(z,y) < Cozqw(oz)(x7y) Va e A,x,y € X;

(ii) (X, P) is a sequentially complete gauge space;

(iii) if vo € D, xp, = F(xp—1) for n = 1,2,...; and P-limy,_,oc x,, = x for
some x € D, then F(x) = x;

(iv) F is a Q contraction on Dy.

Then F has at least one fized point which can be obtained by successive

approzimation starting from any element of Dy.

For a map H : D x [0,1] — X, where D C X, we will use the following
notations:
Y={(z,\) € Dx]|0,1] : H(z,\) =z},
S={x€D:H(x,\) =z for some X € [0,1]}, (1.1)
A={\€]0,1]: H(z,\) = x for some x € D}.

Theorem 1.2. Let X be a set endowed with the separating gauge structures
P = {pataca and Q* = {%\}ﬂeB for A € [0,1]. Let D C X be P-sequentially
closed, H : D x [0,1] — X a map, and assume that the following conditions
are satisfies:

(i) for each \ € [0,1], there exists a function oy : B — B and a* € [0,1)7,
a = {ag}geg such that

Qé(H(xv)‘)7H(ya)‘)) < agqu(ﬁg)(%y)a (12)
AA A A
Z_:laﬁa[pk(ﬁ)awiw)...a(p,;_l(ﬁ) < 0 (13)

for every B € B and x,y € D;
(ii) there exists p > 0 such that for each (x,\) € ¥, there is a f € B with

inf{q3(z,y) : y € X\D} > p; (1.4)
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(iii) for each X € [0,1], there is a function ¢ : A — B and ¢ € (0,00)4,
¢ ={cataca such that

Palz,y) < caqi‘)(a) (z,y) forallae A and z,y € X; (1.5)

(i) (X,P) is a sequentially complete gauge space;
(v) if A € [0,1], =y € D,:z:n = H(xzp—1,\) forn = 1,2,..., and P-
limy, o0 Tp, = x, then H(xz,\) =

(vi) for every e > 0, there em’sts ) > 0 with

=0(e
Qo () (0, H (2, 0) < (1= agp))e

for (z,p) €3, [N —pu| <4, all p € B, and n € N.
In addition, assume that Hy := H(.,0) has a fized point. Then, for each
A € [0,1], the map Hy := H(.,\) has at least a fized point.

2. THE MAIN RESULT

We consider the problem Cauchy

"t) = f(t,z(t+1)),t €0
x(0) = 0.
This problem is equivalent to the Volterra integral equation
t
= / f(s,z(s+1))ds, t € ]0,00) (2.7)
0

Theorem 2.1. Let (E,||.||) be a Banach space, and let f : Ry x E — E be a
continuous function. Assume that the following conditions hold:
(a) there exists k € LY(R4, (0,00)) with klpiw, ) <1 such that

(8 2) = [t y)l| < k(@) [l =yl

forallz,y € E, and t € Ry;
(b) for eachn € N\{0} there exists r,, > 0 such that, any continuous solution

:)\</Otf(s,:v(s+1))ds>, LER,

with A € [0, 1], satisfies ||x(t)]| <1y, for any t € [0,n];
(c) there exists a € LY(Ry) si B : Ry — (0,00) nondecreasing such that

1t @) < a(t)B(]|=]])

x of the equation
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forallt € Ry and x € F;
(d) there exists C > 0 such that ﬁl(rkﬂ)
- Lk
Ly = fok k(s)ds.

Then there ezists at least one solution x € C(R4, E) of the integral equation
(2.7).

< C for any k € N\{0}, where

Proof. For the proof we use Theorem 1.2.
Let X = {z € C(R4+, E) : (0) = 0}. For each n € N\{0} we define the map
l.l, : X = Ry, by |z|, = max] |z(t)||. This map is a semi-norm on X, and let
s

dn : X x X — Ry be given by

do(ay) = |~ 3], = maxe l(t) ~ (o).

It is easy to show that dy, is a pseudo-metric on X and the family {d, },em fo0)
defines on X a gauge structure, separated and complete by sequences.

Here P = Q) = {dn}nen\qoy for each A € [0,1]. Let D be the closure in X
of the set

{z € X : there exists n € N\{0} such that d,(z,0) <7, +7 }

where § > 0 is a fixed number. We define H : D x [0,1] — X, by H(x,\) =
AA(x), where

Az)(t) = /0 F(s,(s + 1))ds.

First we verify condition (i) from Theorem 1.2.
Let ¢ € [0,n]. We estimate

| H (2, \)(t) — H(y, \) ()| < A/O I f(s,2(s 4+ 1)) = f(s,y(s +1))|lds
g/o k(s) [|2(s + 1) — y(s + 1) ds

t
< max |yx(s+1)_y(s+1)|y/ k(s)ds
s€[0,n] 0

< max z(r) - y(r)] /0 " k(s)ds

T€[0,n+1]

= Lpdpt1(z,y).
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If we take the maximum with respect to ¢, we obtain
dn(H(x7 )\)7 H(ya )‘)) < LndnJrl(xa y)

for all z,y € D and all n € N\{0}. Hence, condition (i) in Theorem 1.2 holds
with ¢y = ¢ where ¢ : N\{0}— N\{0} is defined by ¢(n) = n+ 1. In addition
the series > > | Ly Lyy1... Loy is finite since from assumption (a) we know that
|k|L1(R+) < 1 and SO Ln S ‘k|L1(R+) < 1.

Condition (ii) in our case becomes: there exists p > 0 such that for any
solution (x,\) € D x [0,1], to x = H(z, A), there exists n € N\{0} with

inf{dy,(z,y) : y € X\D} > p. (2.8)

If y € X\D, we have that d,(y,0) > r, + J for each n € N\{0}. So there
exists at least one ¢ € [0, n] with

() =yl = ly@OI = [l@)] > rn +6 = rn = 6.

Hence d,,(z,y) > ¢ and (2.8) holds for any p € (0, 9).

Condition (iii) in Theorem 1.2 is trivial since P = Q.

Condition (iv) in Theorem 1.2 becomes: (X, {dn}nen\ j0}) 18 a gauge space
sequentially complete since F is a Banach space.

Condition (v): Let A € [0,1], o € D, xy, = H(xp_1,A) for n =1,2,... and
assume P- lim xz, = x. We shall prove that H(z,\) = x.

n—oo

For m € N\{0} and ¢ € [0,m] we have
1H (2, \)(t) = z(0)]] = [|H (2, \)(£) = 2n(t) + 2a(t) — 2(1)]]
< [H (2, A) () = zn (8] + [[2n(t) — z(D)]
= [[H (2, \)(t) = H(zn—1, V()| + [[zn(t) — 2@
S/o E(s) |lx(s+1) — xp_1(s+1)| ds+ tIEI[l()aX ||z (t) —z(t)]|

)

< L,, max ||ar(s—|—1)—:z:n 1(s + )| + dm(zp, x)

s€[0,m]

=Ly, max ||z(7) — 2p_1(7)|| + dm(zp, )
T€[0,m~+1]

= Liypydmi1 (2, 2p—1) + dp (20, ).
Consequently
dm(H(.%', )‘)7 J)) < Lmdm+1(1‘, xn—l) + dm(l‘n, .%')
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for all m € N\{0}. Letting n — oo, we deduce that dp,(H(z,\),z) = 0
for each m € N\{0} and since the family {d;,}nem o} is separated we have
H(z,\) =z
Condition (vi) becomes: for each € > 0, there exists § = §(g) > 0 such that
dgo”(m) (.%', H(:r, )\)) S (1 — Lgo"(m))g

for each (x,pn) € D x [0,1], H(x,p) = x, |A — p| < 6, and n, m € N\{0}.
We have f"(m) =n+m. Let t € [0,n + m] and use conditions (c) and (d)
to obtain

() = H(z, (O] = [|H (z, p)(t) — H(z, A) ()]

= =1 [ st s

< - /O o(5) (| (s + 1) )ds

< i N Brmins) /0 a(s)ds

< 1= A lal gy €L = Linta).

So condition (vi) is true with d(g) ¢

- Clalpig,y
In addition H(.,0) = 0. So H(.,0) has a fixed point.

Therefore, all the assumptions of Theorem 1.2 are satisfied. Now the con-
clusion follows from Theorem 1.2 O
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