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1. Introduction

The aim of this paper is to present a natural application of the continuation
principle established in [1] involving contractions in Gheorghiu’s sense, with
respect to a family of pseudo-metrics.

The advanced argument in our differential equation makes necessary the
use of two pseudo-metrics in the contraction condition.

In what follows we recall some notions and results from paper [1].
First recall the notion of contraction on a gauge space introduced by

Gheorghiu [5]. Let (X,P) be a gauge space with P = {pα}α∈A. A map
F : D ⊂ X → X is a contraction if there exists a function ϕ : A → A

and a ∈ RA
+, a = {aα}α∈A such that

pα(F (x), F (y)) ≤ aαpϕ(α)(x, y) ∀α ∈ A, x, y ∈ D,

∑∞
n=1aαaϕ(α)aϕ2(α)...aϕn−1(α)pϕn(α)(x, y) < ∞

for every α ∈ A and x, y ∈ D. Here, ϕn is the nth iteration of ϕ.
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We present now a slow extension of some results from paper [1], whose
proofs are similar.

Theorem 1.1. Let X be a set endowed with two separating gauge structures
P = {pα}α∈A and Q = {qβ}β∈B, let D0 and D be two subsets of X with
D0 ⊂ D, and let F : D → X be a map. Assume that F (D0) ⊂ D0 and D is
P-closed. In addition, assume that the following conditions are satisfied:

(i) there is a function ψ : A → B and c ∈ (0,∞)A, c = {cα}α∈A such that

pα(x, y) ≤ cαqψ(α)(x, y) ∀α ∈ A, x, y ∈ X;

(ii) (X,P) is a sequentially complete gauge space;
(iii) if x0 ∈ D, xn = F (xn−1) for n = 1, 2, ..., and P-limn→∞ xn = x for

some x ∈ D, then F (x) = x;
(iv) F is a Q contraction on D0.

Then F has at least one fixed point which can be obtained by successive
approximation starting from any element of D0.

For a map H : D × [0, 1] → X, where D ⊂ X, we will use the following
notations:

Σ = {(x, λ) ∈ D × [0, 1] : H(x, λ) = x},
S = {x ∈ D : H(x, λ) = x for some λ ∈ [0, 1]},
Λ = {λ ∈ [0, 1] : H(x, λ) = x for some x ∈ D}.

(1.1)

Theorem 1.2. Let X be a set endowed with the separating gauge structures
P = {pα}α∈A and Qλ = {qλ

β}β∈B for λ ∈ [0, 1]. Let D ⊂ X be P-sequentially
closed, H : D × [0, 1] → X a map, and assume that the following conditions
are satisfies:

(i) for each λ ∈ [0, 1], there exists a function ϕλ : B → B and aλ ∈ [0, 1)B,
aλ = {aλ

β}β∈B such that

qλ
β(H(x, λ),H(y, λ)) ≤ aλ

βqλ
ϕλ(β)(x, y), (1.2)

∞∑

n=1

aλ
βaλ

ϕλ(β)a
λ
ϕ2

λ(β)...a
λ
ϕn−1

λ (β)
< ∞ (1.3)

for every β ∈ B and x, y ∈ D;
(ii) there exists ρ > 0 such that for each (x, λ) ∈ Σ, there is a β ∈ B with

inf{qλ
β(x, y) : y ∈ X\D} > ρ; (1.4)
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(iii) for each λ ∈ [0, 1], there is a function ψ : A → B and c ∈ (0,∞)A,
c = {cα}α∈A such that

pα(x, y) ≤ cαqλ
ψ(α)(x, y) for all α ∈ A and x, y ∈ X; (1.5)

(iv) (X,P) is a sequentially complete gauge space;
(v) if λ ∈ [0, 1], x0 ∈ D,xn = H(xn−1, λ) for n = 1, 2, ..., and P-

limn→∞ xn = x, then H(x, λ) = x;
(vi) for every ε > 0, there exists δ = δ(ε) > 0 with

qλ
ϕn

λ(β)(x,H(x, λ)) ≤ (1− aλ
ϕn

λ(β))ε

for (x, µ) ∈ Σ, |λ− µ| ≤ δ, all β ∈ B, and n ∈ N.
In addition, assume that H0 := H(., 0) has a fixed point. Then, for each

λ ∈ [0, 1], the map Hλ := H(., λ) has at least a fixed point.

2. The main result

We consider the problem Cauchy
{

x′(t) = f(t, x(t + 1)), t ∈ [0,∞)
x(0) = 0.

(2.6)

This problem is equivalent to the Volterra integral equation

x(t) =
∫ t

0
f(s, x(s + 1))ds, t ∈ [0,∞) (2.7)

Theorem 2.1. Let (E, ‖.‖) be a Banach space, and let f : R+ × E → E be a
continuous function. Assume that the following conditions hold:

(a) there exists k ∈ L1(R+, (0,∞)) with |k|L1(R+) < 1 such that

‖f(t, x)− f(t, y)‖ ≤ k(t) ‖x− y‖
for all x, y ∈ E, and t ∈ R+;

(b) for each n ∈ N\{0} there exists rn > 0 such that, any continuous solution
x of the equation

x(t) = λ

(∫ t

0
f(s, x(s + 1))ds

)
, t ∈ R+

with λ ∈ [0, 1], satisfies ‖x(t)‖ ≤ rn for any t ∈ [0, n];
(c) there exists α ∈ L1(R+) şi β : R+ → (0,∞) nondecreasing such that

‖f(t, x)‖ ≤ α(t)β(‖x‖)
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for all t ∈ R+ and x ∈ E;

(d) there exists C > 0 such that
β(rk+1)
1− Lk

≤ C for any k ∈ N\{0}, where

Lk =
∫ k
0 k(s)ds.

Then there exists at least one solution x ∈ C(R+, E) of the integral equation
(2.7).

Proof. For the proof we use Theorem 1.2.
Let X = {x ∈ C(R+, E) : x(0) = 0}. For each n ∈ N\{0} we define the map

|.|n : X → R+, by |x|n = max
t∈[0,n]

‖x(t)‖. This map is a semi-norm on X, and let

dn : X ×X → R+ be given by

dn(x, y) = |x− y|n = max
t∈[0,n]

‖x(t)− y(t)‖ .

It is easy to show that dn is a pseudo-metric on X and the family {dn}n∈N\{0}
defines on X a gauge structure, separated and complete by sequences.

Here P = Qλ = {dn}n∈N\{0} for each λ ∈ [0, 1]. Let D be the closure in X

of the set

{x ∈ X : there exists n ∈ N\{0} such that dn(x, 0) ≤ rn + δ }

where δ > 0 is a fixed number. We define H : D × [0, 1] → X, by H(x, λ) =
λA(x) , where

A(x)(t) =
∫ t

0
f(s, x(s + 1))ds.

First we verify condition (i) from Theorem 1.2.
Let t ∈ [0, n]. We estimate

‖H(x, λ)(t)−H(y, λ)(t)‖ ≤ λ

∫ t

0
‖f(s, x(s + 1))− f(s, y(s + 1))‖ ds

≤
∫ t

0
k(s) ‖x(s + 1)− y(s + 1)‖ ds

≤ max
s∈[0,n]

‖x(s + 1)− y(s + 1)‖
∫ t

0
k(s)ds

≤ max
τ∈[0,n+1]

‖x(τ)− y(τ)‖
∫ n

0
k(s)ds

= Lndn+1(x, y).
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If we take the maximum with respect to t, we obtain

dn(H(x, λ),H(y, λ)) ≤ Lndn+1(x, y)

for all x, y ∈ D and all n ∈ N\{0}. Hence, condition (i) in Theorem 1.2 holds
with ϕλ = ϕ where ϕ : N\{0}→ N\{0} is defined by ϕ(n) = n+1. In addition
the series

∑∞
n=1 LnLn+1...L2n is finite since from assumption (a) we know that

|k|L1(R+) < 1 and so Ln ≤ |k|L1(R+) < 1.

Condition (ii) in our case becomes: there exists ρ > 0 such that for any
solution (x, λ) ∈ D × [0, 1], to x = H(x, λ), there exists n ∈ N\{0} with

inf{dn(x, y) : y ∈ X\D} > ρ. (2.8)

If y ∈ X\D, we have that dn(y, 0) > rn + δ for each n ∈ N\{0}. So there
exists at least one t ∈ [0, n] with

‖x(t)− y(t)‖ ≥ ‖y(t)‖ − ‖x(t)‖ > rn + δ − rn = δ.

Hence dn(x, y) > δ and (2.8) holds for any ρ ∈ (0, δ).
Condition (iii) in Theorem 1.2 is trivial since P = Qλ.
Condition (iv) in Theorem 1.2 becomes: (X, {dn}n∈N\{0}) is a gauge space

sequentially complete since E is a Banach space.
Condition (v): Let λ ∈ [0, 1], x0 ∈ D, xn = H(xn−1, λ) for n = 1, 2, ... and

assume P- lim
n→∞xn = x. We shall prove that H(x, λ) = x.

For m ∈ N\{0} and t ∈ [0,m] we have

‖H(x, λ)(t)− x(t)‖ = ‖H(x, λ)(t)− xn(t) + xn(t)− x(t)‖
≤ ‖H(x, λ)(t)− xn(t)‖+ ‖xn(t)− x(t)‖
= ‖H(x, λ)(t)−H(xn−1, λ)(t)‖+ ‖xn(t)− x(t)‖

≤
∫ t

0
k(s) ‖x(s+1)− xn−1(s+1)‖ ds+ max

t∈[0,m]
‖xn(t)−x(t)‖

≤ Lm max
s∈[0,m]

‖x(s + 1)− xn−1(s + 1)‖+ dm(xn, x)

= Lm max
τ∈[0,m+1]

‖x(τ)− xn−1(τ)‖+ dm(xn, x)

= Lmdm+1(x, xn−1) + dm(xn, x).

Consequently

dm(H(x, λ), x) ≤ Lmdm+1(x, xn−1) + dm(xn, x)
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for all m ∈ N\{0}. Letting n → ∞, we deduce that dm(H(x, λ), x) = 0
for each m ∈ N\{0} and since the family {dm}m∈N\{0} is separated we have
H(x, λ) = x.

Condition (vi) becomes: for each ε > 0, there exists δ = δ(ε) > 0 such that

dϕn(m)(x,H(x, λ)) ≤ (1− Lϕn(m))ε

for each (x, µ) ∈ D × [0, 1], H(x, µ) = x, |λ− µ| ≤ δ, and n,m ∈ N\{0}.
We have fn(m) = n + m. Let t ∈ [0, n + m] and use conditions (c) and (d)

to obtain

‖x(t)−H(x, λ)(t)‖ = ‖H(x, µ)(t)−H(x, λ)(t)‖

= |µ− λ|
∥∥∥∥
∫ t

0
f(s, x(s + 1))ds

∥∥∥∥

≤ |µ− λ|
∫ t

0
α(s)β(‖x(s + 1)‖)ds

≤ |µ− λ|β(rm+n+1)
∫ ∞

0
α(s)ds

≤ |µ− λ| |α|L1(R+) C(1− Lm+n).

So condition (vi) is true with δ(ε) =
ε

C |α|L1(R+)

.

In addition H(., 0) = 0. So H(., 0) has a fixed point.
Therefore, all the assumptions of Theorem 1.2 are satisfied. Now the con-

clusion follows from Theorem 1.2 ¤
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[1] A. Chiş, R. Precup, Continuation theory for general contractions in gauge spaces, Fixed

Point Theory and Applications 3(2004), 173-185.
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