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1. Introduction

In [2] Bader presented a fixed point index for his decomposable maps and
then deduced a multivalued Leray-Schauder alternative. He then used his
Leray-Schauder alternative to establish existence for some evolution inclusions.
The purpose of this paper is to give a simple proof of Bader’s Leray-Schauder
alternative. Indeed we will present a more general result. The main idea
involved is to work with a larger class of maps (the maps of Park [5] which
are closed under compositions). We remark here that unfortunately no fixed
point index exists for the maps of Park.

For the remainder of this section we present some definitions and some
known facts. Let X and Y be subsets of Hausdorff topological vector spaces
E1 and E2 respectively. We will look at maps F : X → K(Y ); here K(Y )
denotes the family of nonempty compact subsets of Y . We say F : X → K(Y )
is Kakutani if F is upper semicontinuous with convex values.

Suppose X and Y are Hausdorff topological spaces. Given a class X of
maps, X (X, Y ) denotes the set of maps F : X → 2Y (nonempty subsets of
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Y ) belonging to X , and Xc the set of finite compositions of maps in X . A
class U of maps is defined by the following properties:
(i). U contains the class C of single valued continuous functions;
(ii). each F ∈ Uc is upper semicontinuous and compact valued; and
(iii). for any polytope P , F ∈ Uc(P, P ) has a fixed point, where the interme-
diate spaces of composites are suitably chosen for each U .
Definition 1.1. F ∈ Uκ

c (X, Y ) if for any compact subset K of X, there is a
G ∈ Uc(K, Y ) with G(x) ⊆ F (x) for each x ∈ K.

The Kakutani maps are examples of Uκ
c maps (in fact they are examples

of Uc maps). Indeed many other maps in the literature, for example (i). the
acyclic maps, (ii). the O’Neill maps, and (iii). the maps admissible in the
sense of Gorniewicz, are examples of Uκ

c maps.
Let (E, d) be a pseudometric space. For S ⊆ E, let B(S, ε) = {x ∈

E : d(x, S) ≤ ε}, ε > 0, where d(x, S) = infy∈Y d(x, y). The measure of
noncompactness of the set M ⊆ E is defined by α(M) = inf Q(M) where

Q(M) = {ε > 0 : M ⊆ B(A, ε) for some finite subset A of E} .

Let E be a locally convex Hausdorff topological vector space, and let P be
a defining system of seminorms on E. Suppose F : S → 2E ; here S ⊆ E.
The map F is said to be a countably P -concentrative mapping if F (S) is
bounded, and for p ∈ P for each countably bounded subset X of S we
have αp(F (X)) ≤ αp(X), and for p ∈ P for each countably bounded non-p-
precompact subset X of S (i.e. X is not precompact in the pseudonormed
space (E, p)) we have αp(F (X)) < αp(X); here αp( . ) denotes the measure
of noncompactness in the pseudonormed space (E, p).

We now recall the following definition from the literature.
Definition 1.2. A Hausdorff topological space X is said to be angelic if for
every relatively countably compact set C ⊆ X the following hold:
(i). C is relatively compact, and
(ii). for each x ∈ C there exists a sequence {xn}n≥1 ⊆ C such that xn → x.
Remark 1.1. All metrizable locally convex spaces equipped with the weak
topology are angelic (see the Eberlein-Smulian theorem).
Theorem 1.1. Let E be a topological space, Y a Hausdorff locally convex
topological vector space which is angelic when furnished with the weak topology
and let D be a weakly compact subset of Y . If F : D → 2E (here 2E
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denotes the family of nonempty subsets of E) is a weakly-strongly sequentially
upper semicontinuous map (i.e. for any closed set A of E we have that
F−1(A) is weakly sequentially closed) then F : D → 2E is weakly-strongly
upper semicontinuous.
Proof. Let A be a closed subset of E. We first show F−1(A) is weakly
sequentially closed. Let yn ∈ F−1(A) and yn ⇀ y. Then since F is a
weakly-strongly sequentially upper semicontinuous map we have y ∈ F−1(A).
Thus F−1(A) is weakly sequentially closed.

Now since D is weakly compact we have that F−1(A) w is weakly compact.
Let x ∈ F−1(A) w. Now since Y is angelic when furnished with the weak
topology there exists a sequence xn ∈ F−1(A) with xn ⇀ x. Also since
F−1(A) is weakly sequentially closed we have x ∈ F−1(A). Thus F−1(A) w =
F−1(A), so F−1(A) is weakly closed. Thus F : D → 2E is weakly-strongly
upper semicontinuous. �

2. Leray-Schauder Alternative

We begin by presenting a result from [1] and the proof is included since it
is elementary. Let E be a Hausdorff locally convex topological vector space,
C a closed convex subset of E, U ⊆ C convex, U an open subset of E, and
0 ∈ U . Notice intC U = U since U is open in C and as a result ∂U = ∂E U

(here ∂U denotes the boundary of U in C).
We will consider maps F : U → K(C) (here U denotes the closure of U in

C). We will assume the map F satisfies one of the following conditions:
(H1). F is compact;
(H2). if D ⊆ U and D ⊆ co ({0} ∪ F (D)) then D is compact;
or
(H3). F is countably P -concentrative and E is Fréchet (here P is a defining
system of seminorms).

Fix i ∈ {1, 2, 3}.
Definition 2.1. We say F ∈ LSi(U,C) if F ∈ Uκ

c (U,C) satisfies (Hi).
Theorem 2.1. Fix i ∈ {1, 2, 3} and let E be a Hausdorff locally convex
topological vector space, C a closed convex subset of E, U ⊆ C convex, U

an open subset of E and 0 ∈ U . Suppose F ∈ LSi(U,C) and assume the
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following condition hold:

(2.1) x /∈ λ F x for every x ∈ ∂U and λ ∈ (0, 1).

Then F has a fixed point in U .
Proof. Let µ be the Minkowski functional on U and let r : E → U be given
by

r(x) =
x

max{1, µ(x)}
for x ∈ E.

Let G = r F . Now G ∈ Uκ
c (U,U) since Uκ

c is closed under compositions. We
claim

(2.2) G ∈ LSi(U,U).

If i = 1 then (2.2) is immediate. Next suppose i = 2, and let D ⊆ U with
D ⊆ co ({0}∪G(D)). Now since r(B) ⊆ co ({0}∪B) for any subset B of E,
we have

D ⊆ co ({0} ∪ co ({0} ∪ F (D)) ) = co ({0} ∪ F (D) ).

Thus D is compact since F ∈ LSi(U,C), and so (2.2) is true if i = 2. A
similar argument establishes (2.2) if i = 3.

If i = 1 (respectively i = 2, respectively i = 3) then we know from [5]
(respectively [3], respectively [4]) that there exists x ∈ U with x ∈ G(x) =
r F (x) Thus x = r(y) for some y ∈ F (x) with x ∈ U = U ∪ ∂U (note
intC U = U since U is also open in C). Now either y ∈ U or y /∈ U . If
y ∈ U then r(y) = y so x = y ∈ F (x), and we are finished. If y /∈ U

then r(y) = y
µ(y) with µ(y) > 1. Then x = λ y (i.e. x ∈ λ F (x)) with

0 < λ = 1
µ(y) < 1; note x ∈ ∂U since µ(x) = µ(λ y) = 1 (note ∂U = ∂EU

since intC U = U). This of course contradicts (2.1). �

Let Y be a Hausdorff locally convex topological vector space. We let Yw

be the space Y furnished with the weak topology and we let CK(Y ) denote
the family of nonempty, convex, weakly compact subsets of Y . Let X be a
subset of a Hausdorff locally convex topological vector space. Suppose the map
A : X → CK(Y ) is upper semicontinuous from X into Yw. Then for Section 1
we know that A ∈ Uc(X, Yw). Suppose the map B : Y → X is weakly-strongly
continuous (i.e. continuous from Yw into X). Then B ∈ Uc(Yw, X). Similarly
if the map C : Y → CC(X) (here CC(X) denotes the family of nonempty,
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convex, compact subsets of X) is weakly-strongly upper semicontinuous then
C ∈ Uc(Yw, X).

Suppose in addition Y is angelic when furnished with the weak topology.
Assume the map D : Y → X is weakly-strongly sequentially continuous map
(i.e. D : Y → X is completely continuous i.e. if xn, x ∈ Y with xn ⇀ x

then D xn → D x). Then Theorem 1.1 guarantees that D ∈ Uκ
c (Yw, X) since

if Ω is a weakly compact subset of Y then D : Ω → X is weakly-strongly
continuous. Similarly if H : Y → CC(X) is a weakly-strongly sequentially
upper semicontinuous map (i.e. for any closed set A of X we have that
F−1(A) is weakly sequentially closed) then H ∈ Uκ

c (Yw, X)
Theorem 2.2. Let E be a Hausdorff locally convex topological vector space,
Y a Hausdorff locally convex topological vector space which is angelic when
furnished with the weak topology, C a closed convex subset of E, U ⊆ C

convex, U an open subset of E and 0 ∈ U . Suppose G : U → CK(Y ) is
upper semicontinuous from U into Yw and T : Y → C a weakly-strongly
sequentially continuous map. Also assume F = T G satisfies (H1), (H2) or
(H3) and suppose (2.1) holds. Then F has a fixed point in U .
PROOF: Note G ∈ Uκ

c (U, Yw) and T ∈ Uκ
c (Yw, C). As a result F ∈ Uκ

c (U,C)
since Uκ

c is closed under compositions. The result now follows from Theorem
2.1. �

Remark 2.1. In Theorem 2.2 we could remove the assumption that Y is
angelic when furnished with the weak topology if T : Y → C weakly-strongly
sequentially continuous is replaced by T : Y → C weakly-strongly continuous.

Of course we could consider a multivalued T in Theorem 2.2 also.
Theorem 2.3. Let E be a Hausdorff locally convex topological vector space,
Y a Hausdorff locally convex topological vector space which is angelic when
furnished with the weak topology, C a closed convex subset of E, U ⊆ C

convex, U an open subset of E and 0 ∈ U . Suppose G : U → CK(Y ) is
upper semicontinuous from U into Yw and T : Y → CC(C) a weakly-strongly
sequentially upper semicontinuous map. Also assume F = T G satisfies (H1),
(H2) or (H3) and suppose (2.1) holds. Then F has a fixed point in U .
Remark 2.2. In Theorem 2.3 we could remove the assumption that Y is
angelic when furnished with the weak topology if T : Y → CC(C) weakly-
strongly sequentially upper semicontinuous is replaced by T : Y → CC(C)
weakly-strongly upper semicontinuous.
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