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Abstract. In this paper the existence of external solutions of a discontinuous functional

integral inclusion is proved under certain monotonicity conditions. As applications, some

existence results for initial and respectively boundary value problems of ordinary differential

inclusions are given. Our results improve the results of Dhage [5] and Dhage and O’Regan

under weaker conditions. [6].
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1. Introduction

The topic of differential and integral inclusions is of much interest in the
subject of set-valued analysis. The existence theorems for the problems in-
volving the inclusions are generally obtained under the assumption that the
set-function in question is either lower or upper semi-continuous on the do-
main of its definition. See Aubin and Cellina [2] and the reference therein.
Therefore another approach of proving the existence theorems for the inclu-
sion problem involving the discontinuous set-functions is interesting and in
Dhage [5] and Dhage and O’Regan [6] some results in this direction have been
proved. In this paper we study the following discontinuous functional integral
inclusion. Let R denote the real line and 2R denote the class of all non-empty
subsets of R. Given a closed and bounded interval J = [0, 1] in R, consider
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the integral inclusion

x(t)− q(t) ∈
∫ σ(t)

0
k(t, s)F (s, x(η(s)))ds (1)

for t ∈ J, where σ, η : J → J, q : J → R, k : J × J → R, and F : J × R → 2R.

The integral inclusion (1) has been studied recently by O’Regan [7] for the
existence result under Carathéodory condition of F. In the present work we
discuss the existence of extremal solutions of the integral inclusion (1) under
certain monotonicity condition of the set-function F. We do not require any
type of continuity condition of F in our discussion. The results of this paper
are the improvement upon the results proved in Dhage [5] and Dhage and
O’Regan [6]. In the following section we prove a lattice fixed point theorem
for the set-maps which we need in the sequel.

2. Fixed Point Theorem for Set-maps

A partially ordered set (L,≤) is called a lattice if for any x, y ∈ L, x ∧ y =
inf{x, y} and x ∨ y = sup{x, y} exist. Let A be any subset of L. By ∨A we
mean an element a∗ ∈ L such that x ∨ a∗ = a∗ for all x ∈ A. Similarly by ∧A
we mean an element a∗ ∈ L such that x ∧ a∗ = a∗ for all x ∈ A. The element
a∗ and a∗ are respectively called the infimum and supremum of A. (L,≤) is
called a complete lattice if every subset of L has a infimum and supremum in
L. A mapping f : L → L is called an isotone increasing if for any x, y ∈ L,

x ≤ y imply fx ≤ fy. A lattice fixed point theorem for isotone mappings is

Theorem 2.1. (Tarski [8]) Let f be a isotone increasing selfmap of a complete
lattice L. Then f has a fixed point and the set of all fixed point is a complete
lattice.

A mapping T : L → 2L is called a multi-valued or set-valued or simply
set-map on L. A point u ∈ L is called a fixed point of T if u ∈ Tu. By F we
denote the set of all fixed point of T , i.e., F = {u ∈ L |u ∈ Tu}.

For any A,B ∈ 2L, we denote (Dhage [5])

A ≤d B iff a ≤ b for all a ∈ A and b ∈ B (2)
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and

A ≤ B iff for every a ∈ A there exists b ∈ B such that a ≤ b

and for every b′ ∈ B there exists an a′ ∈ A such that a′ ≤ b′.
(3)

Remark 2.1. It is clear that (2) ⇒ (3), but the following simple example
shows that the implication (3) ⇒ (2) may not hold.

Example 2.1: Let L = [0, 1] with the usual order relation ≤ in IR. Define
a set-map T : IR → 2IR by Tx = [0, x]. Then for any x1, x2 ∈ L with x1 ≤ x2,

we have Tx1 ≤ Tx2, but Tx1 6≤d Tx2.

Definition 2.1. A set-map T : L→ 2L is called isotone increasing if for any
x, y ∈ L, x ≤ y implies Tx ≤ Ty.

A lattice fixed point theorem for set-maps is

Theorem 2.2. Let (L,≤) be a complete lattice and let T : L → 2L. Suppose
that

(a) T is isotone increasing, and
(b) ∧Tx ∈ Tx and ∨Tx ∈ Tx for each x ∈ L.

Then F is non-empty and has a minimal and a maximal element.

Proof. The proof is similar to that in Dhage [5] and Dhage and O’Regan
[6] with appropriate modifications, but for the sake of completeness we give
the details of it. Define two single-valued mappings f, g : L→ L by

f(x) = ∨Tx

and
g(x) = ∧Tx

for x ∈ L. Obviously f and g are well defined and isotone increasing on L. To
see this, let x, y ∈ L be such that x ≤ y. Then by hypotheses (a) and (b),

f(x) = ∨Tx ≤ Ty ≤ ∨Ty = f(y).

Hence an application of Theorem 2.1 yields that f has a minimal fixed point
x∗ and a maximal fixed point x∗. Similarly the map g has a minimal fixed point
y∗ and a maximal fixed point y∗. Thus the set F of all fixed points of T is
non-empty. We shall show that the fixed points y∗ and x∗ are respectively the
minimal and maximal element of F . Let u ∈ L be any fixed point of T. Take
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p = supL, which clearly does exist since L is complete lattice. Now consider
the lattice interval [u, p] which is obviously complete. Notice that the mappings
f is isotone increasing on [u, p]. We only prove that f : [u, p] → [u, p]. To do
this, it is enough to prove that if x ∈ L with u ≤ x, then u ≤ fx. By definition
of f, u ≤ ∨Tu = fu and by isotonicity of f, fu ≤ fx. Hence u ≤ fu ≤ fx. As
a result f defines a mapping f : [u, p] → [u, p]. Now an application of Theorem
2.1 yields that f has a fixed point in [u, p]. But x∗ is the maximal fixed point
of f is L. So we have u ≤ x∗. Similarly it is proved that y∗ ≤ u. Thus for any
fixed point u of T, y∗ ≤ u ≤ x∗. Consequently F has a minimal and a maximal
fixed point. This completes the proof. �

An interesting corollary to Theorem 2.2 in an applicable form is

Corollary 2.1. Let X be a Banach space and let (X,≤) be a complete lattice.
Suppose that T : X → 2X be a set-map such that

(a) T is isotone increasing ,and
(b) Tx is closed for each x ∈ X.

Then F is non-empty and has a minimal and a maximal element.

Proof. Since Tx is a closed subset of the complete lattice X, (Tx,≤) is
complete lattice for each x ∈ L. As a result inf Tx ∈ Tx and supTx ∈ Tx for
each x ∈ X. Now the desired conclusion follows by an application of Theorem
2.2. �

Remark 2.2. We note that Theorem 2.2 is an improvement upon the fixed
point theorems for the set-maps proved either in Dhage [5] and Dhage and
O’Regan [6] in view of Remark 2.1.

3. Existence Results

Let M(J, IR) and B(J, IR) denote respectively the space of all measurable
and bounded real-valued functions on J. We shall obtain the existence of
the extremal solutions of the functional integral inclusion (1) in the space
BM(J, IR) of all bounded and measurable real-valued functions on J. Define
a norm ‖ · ‖BM and an order relation ≤ in BM(J, IR) by

‖x‖BM = max
t∈J

|x(t)|

and x ≤ y iff x(t) ≤ x(t) for all t ∈ J.
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Clearly BM(J, IR) is a Banach space with respect to this maximum norm
which is also again a complete lattice w.r.t. the above order relation ≤ .

See Birkhoff [4]. By L1(J, IR) we denote the space of all Lebesgue integrable
functions on J with the usual norm ‖ · ‖L1 .

We use the following notations in the sequel.
For any A,B ∈ 2BM(J,IR), denote

A±B = {a± b|a ∈ A and b ∈ B}

and

λa = {λa|a ∈ A} for λ ∈ IR.

Again

|A| = {|a||a ∈ A}

and

‖A‖ = sup{|a||a ∈ A}.

Let us denote

SF (x) = {v ∈M(J, IR)|v(t) ∈ F (t, x(t)), a.e. t ∈ J}

and

S1
F (x) = {v ∈ L1(J, IR)|v(t) ∈ F (t, x(t)), a.e. t ∈ J},

where x ∈M(J, IR).

Definition 3.1. The set function F (t, x) is called isotone increasing in x

almost every-where for t ∈ J if for any x, y ∈M(J, IR), x ≤ y implies SF (x) ≤
SF (y).

We consider the following set of hypotheses in the sequel.

(H0) The functions σ, η : J → J are continuous.
(H1) The function q : J → IR is bounded and measurable.
(H2) The function k : J × J → IR is continuous and nonnegative and let

c = supt,s∈J k(t, s).
(H3) F (t, x) is closed for each (t, x) ∈ J × IR.

(H4) SF (x) 6= ∅ for each x ∈ BM(J, IR).
(H5) F (t, x) is isotone increasing in x almost everywhere for t ∈ J.
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(H6) There exists a function h ∈ L1(J, IR) such that

|F (t, x)| ≤ h(t), a.e. t ∈ J.

for all x ∈ IR.

Remark 3.1. We note that if (H4) − (H6) hold, then every v ∈ SF (x) is
Lebesgue integrable for each x ∈M(J, IR), i.e.,SF (x) = S1

F (x) ∀ x ∈M(J, IR).

Theorem 3.1. Assume that the hypotheses (H0)–(H6) hold. Then the func-
tional integral inclusion (1) has a minimal and a maximal solution on J.

Proof. Define a subset L of BM(J, IR) by

L = {x ∈ BM(J, IR)|‖x‖BM ≤M∗} (4)

where M∗ = ‖q‖BM +K‖h‖L1 .

Clearly L is a closed and bounded subset of the complete lattice
(BM(J, IR),≤), and so (L,≤) is a complete lattice. See Birkhoff [4].

Define a set-map T on L by

Tx = {u ∈ BM(J, IR)|u(t) = q(t) +
∫ σ(t)

0
k(t, s)v(η(s))ds, v ∈ S1

F (x)(η(.))}

(5)

= (K ◦N)(x)

where the operator N : BM(J, IR) → 2L is defined by

N(x) = {v ∈ L1(J, IR)|v ∈ S1
F (x)(η(.))} (6)

and the operator K : L1(J, IR) → BM(J, IR) is defined by

Ky(t) = q(t) +
∫ σ(t)

0
k(t, s)v(η(s))ds, t ∈ J. (7)

First we show that T maps L into 2L. Let x ∈ L. Then for each u ∈ Tx,

there exists a v ∈ SF (x)(η(.)) with

u(t) = q(t) +
∫ σ(t)

0
k(t, s)v(η(s))ds.
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So we have

|u(t)| ≤ |q(t)|+
∫ σ(t)

0
k(t, s)|v(η(s))|ds

≤ ‖q‖BM + c‖h‖L1

= M∗

for all t ∈ J. As a result T : L→ 2L.
Next we show that Tx is closed subset of L for each x ∈ L. To finish, it is

enough to show that the values of the operator N are closed in L1(J, IR). Let
{ωn} be a sequence in L1(J, IR) such that ωn → ω. Then ωn → ω in measure.
So there exists a subsequence S of the positive integers such that ωn → ω a.e.
n→∞ through S. Since the hypothesis (H3) holds, the values of N are closed
in L1(J, IR). Thus for each x ∈ L, Tx is a non-empty, closed and bounded
subset of L.

Finally we show that T is isotone increasing on L. Let x, y ∈ L be such that
x ≤ y. Let a1 ∈ Tx. Then there exists u1 ∈ SmF (x)(η(.)) such that

a1(t) = q(t) +
∫ σ(t)

0
k(t, s)u1(η(s))ds, t ∈ J.

By hypothesis (H5), there exists a v1 ∈ S1
F (y)(η(.)) such that u1(t) ≤

v1(t),∀t ∈ J. As a result we have

a1(t) = q(t) +
∫ σ(t)

0
k(t, s)u1(η(s))ds

≤ q(t) +
∫ σ(t)

0
k(t, s)v1(η(s))ds

= b1(t)

for all t ∈ J ; here b1 ∈ Ty. Similarly let b2 ∈ Ty. Then there exists a v2 ∈
S1
F (y)(η(.)) such that

b2(t) = q(t) +
∫ σ(t)

0
k(t, s)v2(η(s))ds, t ∈ J.
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Now by (H5), there exists a u2 ∈ SmF (y)(η(.)) such that u2(t) ≤ v2(t) for
t ∈ J. Hence we have

b2(t) = q(t) +
∫ σ(t)

0
k(t, s)v2(η(s))ds

≥ q(t) +
∫ σ(t)

0
k(t, s)u2(η(s))ds

= a2(t)

for all t ∈ J ; here a2 ∈ Tx. Hence Tx ≤ Ty i.e. T is isotone increasing on L.
Thus all the conditions of Corollary 2.1 are satisfied and hence an appli-

cation of it yields that the fixed point set of T is non-empty and that it has
minimal and maximal elements. This further implies that the integral inclu-
sion (1) has a maximal and a minimal solution on J. This completes the proof.
�

We note that the hypothesis (H6) in Theorem 3.1 may be replaced with the
following condition.

(H7) There exists a function φ ∈ L1(J, IR) and a continuous nondecreasing
function ψ : [0,∞) → (0,∞) such that

|F (t, x)| ≤ φ(t)ψ(|x|), a.e. t ∈ J

for all x ∈ IR.

Theorem 3.2. Assume that the hypothesis (H0)–(H5) and (H7) hold. Further
if σ(t) ≤ t, η(t) ≤ t,∀t ∈ J and∫ ∞

‖q‖BM

ds

ψ(s)
> c‖φ‖L1 , (8)

then the integral inclusion (1) has a minimal and a maximal solution on J.

Proof. Define a subset L of BM(J, IR) by

L = {x ∈ BM(J, IR)|x(t) ≤ a(t), ∀t ∈ J}

where α(t) = J−1
(
c
∫ t
0 φ(s)ds

)
and J(z) =

∫ z
‖q‖BM

ds
ψ(s) .

Clearly the set L is well defined since α is a real-valued bounded function
on J in view of condition (8). Obviously L is closed and bounded subset of
BM(J, IR) and hence is a complete lattice. Define a set-map T on L by (5).
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We first show that T : L→ 2L. Let x ∈ L. Then for any u ∈ Tx, there exists
a v ∈ S1

F (x)(η(.)) such that

u(t) = q(t) +
∫ σ(t)

0
k(t, s)v(η(s))ds.

Therefore for any t ∈ J,

|u(t)| ≤ |q(t)|+
∫ σ(t)

0
k(t, s)|v(η(s))|ds

≤ |q(t)|+
∫ σ(t)

0
k(t, s)|v(s)|ds

≤ ‖q‖BM + c

∫ t

0
φ(s)ψ(|x(η(s)))ds

= ‖q‖BM + c

∫ t

0
α′(s)ds

= α(t)

since ∫ α(s)

‖q‖BM

du/ψ(u) = c

∫ s

0
φ(τ)dτ.

Hence we have T : L→ 2L. It is further shown as in the proof of Theorem
3.1 that T is isotone increasing on L and Tx is closed for each x ∈ L. Now
the desired conclusion follows by an application of Corollary 2.1. The proof is
complete. �

4. Applications

In this section we obtain the existence theorems for extremal solutions to
initial and boundary value problems of ordinary differential inclusions by the
applications of the main existence result of the previous section.

4.1. Initial Value Problem: Given a closed and bounded interval
J = [0, 1] in IR, consider the initial value problem (in short IVP) of ordi-
nary functional differential inclusion,

x′ ∈ F (t, x(η(t)) a.e. t ∈ J

x(0) = x0 ∈ IR,
(9)

where F : J × IR → 2IR and η : J → J is continuous.
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By the solution of the IVP (9) we mean a function x ∈ AC(J, IR) that
satisfies the relations in (9) on J, that is, there exists a v ∈ L1(J, IR) with
v(t) ∈ F (t, x(η(t)) for all t ∈ J such that x′(t) = v(t) a.e. t ∈ J and x(0) = x0,

where AC(J, IR) is the space of all absolutely continuous real-valued functions
on J.

Clearly AC(J, IR) is a Banach space with respect to the norm ‖ · ‖C given
by ‖x||C = sup{|x(t)| t ∈ J} which is also a complete lattice with respect to
the order relation ≤ defined by x ≤ y if and only if x(t) ≤ y(t) for all t ∈ J.

Theorem 4.1. Assume that hypotheses (H0)–(H6) hold. Then the functional
differential inclusion (9) has a maximal and minimal solution on J.

Proof. A function x : J → IR is a solution of the IVP (9) if and only if it
is a solution of the integral inclusion

x(t)− x0 ∈
∫ t

0
F (s, x(η(s)))ds, t ∈ J. (10)

Now the desired conclusion follows by an application of Theorem 3.1 with
q(t) = x0, σ(t) = t for all t ∈ J and k(t, s) = 1 ∀ t, s ∈ J, since AC(J,R) ⊂
BM(J,R). �

Theorem 4.2. Assume that hypotheses (H3)–(H5) and (H7) hold. Further if
η(t) ≤ t ∀ t ∈ J and if condition (8) holds, then IVP (9) has a maximal and
a minimal solution on J.

Proof. The proof is similar to Theorem 4.1 and now the conclusion follows
by an application of Theorem 3.2. �

4.2. Boundary Value Problems: Given a closed and bounded interval
J = [0, 1] in IR, consider the first and second boundary value problems (in
short BVPs) of ordinary functional differential inclusion

x′′(t) ∈ F (t, x(η(t)), a.e.t ∈ J

x(0) = 0 = x(1)
(11)

and
x′′(t) ∈ F (t, x(η(t)), a.e.t ∈ J

x(0) = 0 = x′(1)
(12)



A FUNCTIONAL INTEGRAL INCLUSION INVOLVING DISCONTINUITIES 63

where F : J × IR → 2IR and η : J → J is continuous. By the solution of
the BVP (11) or (12) we mean a function x ∈ AC1(J, IR) that satisfies the
relations in (11) or (12), where AC1(J, IR) is the space of all continuous real-
valued functions whose first derivative exists and is absolutely continuous on
J. A solution xM of BVP (11) or (12) is called maximal if for any solution x

of such BVP, x(t) ≤ xM (t) for all t ∈ J. Similarly a minimal solution of BVP
(11) or (12) is defined.

Theorem 4.3. Assume that hypotheses (H3)–(H6) hold. Then BVP (11) has
a minimal and a maximal solution on J.

Proof. A function x : J → R is a solution of BVP (11) if and only if it is
a solution of the integral inclusion

x(t) ∈
∫ t

0
G(t, s)F (s, x(η(s)))ds, t ∈ J (13)

where G(t, s) is a Green’s function associated with the homogeneous linear
BVP

x′′(t) ∈ F (t, x(η(t)), a. e. t ∈ J
x(0) = 0 = x′(1).

It is known that G(t, s) is a continuous and nonnegative real-valued function
on J × J. Now an application of Theorem 3.1 with q(t) = 0, s(t) = 1 for all
t ∈ J and k(t, s) = G(t, s),∀ t, s ∈ J yields that BVP (11) has a minimal and
a maximal solution on J, AC1(J, IR) ⊂ BM(J, IR). �

Theorem 4.4. Assume that hypotheses (H3)–(H5) and (H7) hold. Further if
η(t) ≤ t, ∀ t ∈ J and if the condition (8) holds, then BVP (11) has a minimal
and a maximal solution on J.

Proof. The proof is similar to Theorem 4.3 and now the conclusion follows
by an application of Theorem 3.2. �

Theorem 4.5. Assume that hypotheses (H3)–(H6) hold. Then BVP (12) has
a minimal and a maximal solution on J.

Proof. A function x : J → IR is a solution of BVP (12) if and only if it is
a solution of the integral inclusion

x(t) ∈
∫ 1

0
H(t, s)F (s, x(η(s)))ds, t ∈ J
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where H(t, s) is a Green’s function for the BVP

x′′(t) ∈ F (t, x(η(t)), a. e. t ∈ J,

x(0) = 0 = x′(1).

It is known that H(t, s) is a continuous and nonnegative real-valued function
on J × J. Now an application of Theorem 3.1 with q(t) = 0, σ(t) = 1 for all
t ∈ J and k(t, s) = H(t, s),∀ t, s ∈ J yields that BVP (12) has a minimal and
a maximal solution on J, AC1(J, IR) ⊂ BM(J, IR). �

Theorem 4.6. Assume that hypotheses (H3)–(H5) and (H7) hold. Further if
η(t) ∈ J and if the condition (8) holds, then BVP (12) has a minimal and a
maximal solution on J.

Proof. The proof is similar to Theorem 4.5 and now the conclusion follows
by an application of Theorem 3.2. �
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