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Abstract. In this paper, we present two semilocal convergence theorems for Newton-like

approximations which improve and extend a fundamental result obtained by Yamamoto [15]

in 1987.

In the first part of this paper, we obtain an improvement of Yamamoto’s result. In fact we

consider the case in which the involved operators satisfy Lipschitz hypotheses and we prove

a convergence result for Newton-like approximations under weaker assumptions.

In the second part of this paper, we extend the previous result to the more general case

studied recently by Argyros in [3] in which the involved operators satisfy generalized Hölder

hypotheses. We conclude with a comparison between our result and the result obtained by

Argyros in [3] and we show that, even if the two theorems are not in general comparable, in

some interesting cases it is more convenient to apply our theorem.
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1. Introduction

Let X and Y be Banach spaces and let f : D ⊂ X → Y be an operator
which is Fréchet differentiable in an open convex set D0 ⊂ D. Many iterative
methods for solving the equation

f(x) = 0 (1)
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can be written in the form

xn+1 = xn −A(xn)−1f(xn), n ≥ 0 (2)

where x0 ∈ D0 of D and A(x) denotes an invertible bounded linear operator
which may be considered as an approximation to f ′(x).
In 1968, Rheinboldt [14] established a convergence theorem for Newton-like
approximations (2) which includes the classical theorem of Kantorovich [10]
for the Newton’s method as a special case (A(x) = f ′(x)).
In the years 1970-71, Dennis [6], [7] generalized Rheinboldt’s result and later
Miel [11], [12] improved their error bounds. Furthemore, in 1984 Moret [13]
gave a sharper error bound than Miel’s, but under a rather strong assumptions
on A(x).
In 1987, Yamamoto established a fundamental convergence theorem for (2)
under Lipschitz conditions on the operators A and f ′ and improved the pre-
vious results of Rheinboldt, Dennis, Miel and Moret.
Later, Newton-like methods have been studied extensively under various hy-
potheses to generate a sequence converging to a solution of (1) (see, for exam-
ple, [5], [4],[1], [2], [3]).
In this paper, we consider Newton-like approximations under Lipschtiz as-
sumptions on the operators A and f ′ and we present an improvement of Ya-
mamoto’s result.
Moreover, we extend the previous result to the case recently studied by Argy-
ros in [3] in which the derivative of the operator satisfies a generalized Hölder
condition. Our theorem and the theorem obtained by Argyros in [3] are not
in general comparable, but we show that in some interesting cases it is more
convenient to apply our theorem.
The demonstrative technique applied in the following results is the same tech-
nique applied in [8], in which we improved a convergence theorem of Newton-
Kantorovich approximations for nonlinear operators with derivative Hölder
continuous.

2. Convergence of the Newton-like approximations under

Yamamoto’s hypotheses

In this section, we consider Newton-like approximations under Lipschitz
hypotheses and we improve a result established by Yamamoto in [15].
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Let X and Y be Banach spaces, B(x0, R) the closed ball in X centered in
x0 with radius R. Let f : B(x0, R) → Y be a nonlinear operator Fréchet
differentiable at interior points of B(x0, R) and let A(x) be an element of
L(X,Y ) for any interior point x of B(x0, R).
In [15] Yamamoto prove the following

Theorem 2.1. Suppose that A(x0) is invertible and that there exist some
nonegative constants K,M,L, l,m with l + m < 1 such that the operators A
and f ′ satisfy the following assumptions

||A(x0)−1(f ′(x)− f ′(y))||L(X,Y ) ≤ K||x− y||, ∀x, y ∈
◦
B (x0, R), (3)

||A(x0)−1(A(x)−A(x0))||L(X,Y ) ≤ L||x− x0||+ l, ∀x ∈
◦
B (x0, R), (4)

||A(x0)−1(f ′(x)−A(x))||L(X,Y ) ≤M ||x− x0||+m, ∀x ∈
◦
B (x0, R) . (5)

If we denote with a := ||A(x0)−1A(x0)|| , and σ := max

{
1, L+M

K

}
, we as-

sume that

σaK ≤ (1− l −m)2

2
.

Set

φ(r) :=
Lr2

2
− (1− l)r + a , φσ(r) :=

σKr2

2
− (1− l −m)r + a ,

the scalar sequence tn defined by recurrence formula

t0 = 0, tn+1 = tn −
φσ(tn)
φ′(tn)

, n ≥ 0

is monotonically converging to the smaller root t∗ of the scalar equation
φσ(t) = 0.
The Newton-like approximations (2) are well defined for all n, belong to
B(x0, t∗) and converge to a solution x∗ of the equation (1) and the follow-
ing error bounds hold

||xn − xn−1|| ≤ tn − tn−1 , ∀n ∈ N , (6)

||xn − x∗|| ≤ t∗ − tn , ∀n ∈ N . (7)
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In our theorem, we replace the parameter σ with a more convenient param-
eter α.
To define the fundamental parameter α, we need to introduce the real func-
tions

φβ(r) :=
βKr2

2
− (1− l −m)r + a (β ≥ 1) ,

h(t) :=
Kt+ 2(M + L)

K(t+ 2)
.

Then the parameter α can be defined in the following way

α := min

{
1 ≤ β ≤ (1− l −m)2

2aK
: sup

0≤t≤tmax

h(t) ≤ β

}
, (8)

with

tmax := max
s∈[r1,rβ ]

−
φβ(s)
s φ′(s)

and

rβ =
(1− l −m)−

√
(1− l −m)2 − 2aβK
βK

is the smaller zero of φβ.
We remark that φβ(r) admits at least a positive zero if and only if

β ≤ (1− l −m)2

2aK
.

We obtain the following improvement of Yamamoto’s result [15]:

Theorem 2.2. Suppose that A(x0) is invertible and that there exist some
nonegative constants K,M,L, l,m with l + m < 1 such that the operators A
and f ′ satisfy the assumptions (3), (4) and (5).
If α is defined by (8), the scalar sequence (rn)n∈N defined by recurrence formula

r0 = 0, rn+1 = rn −
φα(rn)
φ′(rn)

, n ≥ 0

is monotonically converging to rα.
The Newton-like approximations (2) are well defined for all n, belong to
B(x0, rα) and converge to a solution x∗ of the equation (1) and the follow-
ing error bounds hold

||xn − xn−1|| ≤ rn − rn−1 , ∀n ∈ N , (9)

||xn − x∗|| ≤ rα − rn , ∀n ∈ N , (10)
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Proof. We begin to remark that rα satisfies the condition Lrα + l < 1.
In fact, from the inequality

α ≥ h(0) =
M + L

K
>
L

K
(11)

it follows

rα ≤ rmin =
1− l −m

αK
<

1− l

L
where rmin denotes the minimum point of φα.

Since α ≥ 1, the sequence rn is converging increasingly to rα. In fact
φα(r1) > 0 and

aαK

(1− l)(1− l −m)
≤ aαK

(1− l −m)2
< 1

implies

r1 =
a

1− l
<

1− l −m

αK
= rmin

Consequently r0 < r1 ≤ rα.
Suppose now that r1 ≤ r2 ≤ · · · ≤ rn ≤ rα.
Then

rn+1 = rn −
φα(rn)
φ′(rn)

≥ rn

since rn ≤ rα implies −φα(rn)
φ′(rn)

≥ 0.

From (11) it follows

−φ′(rn) = 1− l − Lrn ≥ 1− l −m− Lrn ≥ 1− l −m− αKrn = −φ′α(rn)

and consequently

rn+1 = rn −
φα(rn)
φ′(rn)

≤ rn −
φα(rn)
φ′α(rn)

.

Now we consider the Newton method for the equation ψα(r) = 0 with initial
point rn.

Since rn ≤ rα the first iteration rn −
φα(rn)
φ′α(rn)

is less than or equal to rα as well.

Now we prove (9) for induction on n; we have

||x1 − x0|| ≤ a ≤ a

1− l
= r1 ;

||x2 − x1|| = ||A(x1)−1f(x1)|| ≤ ||A(x1)−1A(x0)|| ||A(x0)−1f(x1)|| .
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From the hypothesis (4), it follows

||A(x0)−1(A(x1)−A(x0))|| ≤ L||x1 − x0||+ l ≤ Lr1 + l ≤ Lrα + l < 1

and from the Banach’s lemma, it follows that A(x1) is an invertible operator
such that

||A(x1)−1A(x0)||L(Y,X) ≤
1

1− (Lr1 + l)
.

Then we have

||x2 − x1|| ≤
1

1− (Lr1 + l)
||A(x0)−1(f(x1)− f(x0)−A(x0))(x1 − x0)||

≤ 1
1− (Lr1 + l)

(
||A(x0)−1(f(x1)− f(x0))− f ′(x0))(x1 − x0))||

+||A(x0)−1(f ′(x0)−A(x0))(x1 − x0)||
)

≤ 1
1− (Lr1 + l)

(∫ 1

0

||A(x0)−1(f ′(tx1+(1−t)x0)−f ′(x0))|| dt ||x1−x0||+m||x1−x0||

)

≤ 1
1− (Lr1 + l)

(
K

∫ 1

0
t dt ||x1 − x0||2 +m||x1 − x0||

)

=
1

1− (Lr1 + l)

(
K||x1 − x0||2

2
+m||x1−x0||

)
≤ 1

1− (Lr1 + l)

(
Kr21

2
+mr1

)

≤ 1
1− (Lr1 + l)

(αKr21
2

+mr1

)
= −φα(r1)

φ′(r1)
= r2 − r1 .

We suppose that the xk are well defined and that (9) holds for all k ≤ n. Then
we have

||xn+1 − xn|| ≤ ||A(xn)−1A(x0)|| ||A(x0)−1f(xn)||
As above, from the Banach’s Lemma it follows

||A(xn)−1A(x0)|| ≤
1

1− (Lrn + l)

then we have

||xn+1−xn|| ≤
1

1− (Lrn + l)
||A(x0)−1(f(xn)−f(xn−1)−A(xn−1))(xn−xn−1)||

≤ 1
1− (Lrn + l)

(
||A(x0)−1(f(xn)− f(xn−1)− f ′(xn−1))(xn − xn−1))||

+||A(x0)−1(f ′(xn−1)−A(xn−1))(xn − xn−1))||
)
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≤ 1
1− (Lrn + l)

(∫ 1

0
||A(x0)−1(f ′(txn+(1−t)xn−1)−f ′(xn−1))|| dt ||xn−xn−1||

+||A(x0)−1(f ′(xn−1)−A(xn−1))|| ||xn − xn−1||

)

≤ 1
1− (Lrn + l)

(
K

∫ 1

0
t dt ||xn−xn−1||2 +(M ||xn−1−x0||+m)||xn−xn−1||

)

=
1

1− (Lrn + l)

(
K||xn − xn−1||2

2
+ (M ||xn−1 − x0||+m)||xn − xn−1||

)

≤ 1
1− (Lrn + l)

(
K(rn − rn−1)2

2
+ (Mrn−1 +m)(rn − rn−1)

)

=
1

1− (Lrn + l)

(
K(rn − rn−1)2

2
+ (M + L)rn−1(rn − rn−1)

+(m+ l)(rn − rn−1)− (Lrn−1 + l)(rn − rn−1)

)

=
1

1− (Lrn + l)

[
rn−1(rn − rn−1)

(
K

2

( rn
rn−1

− 1
)

+ (M + L)

)

+(m+ l)(rn − rn−1)− (Lrn−1 + l)(rn − rn−1)

]
By the definition of the parameter α, we have

Kt

2
+M + L ≤ αK

2
(t+ 2) ∀ t ∈ [0, tmax]

and for t := rn
rn−1

− 1, we obtain

||xn+1 − xn|| ≤
1

1− (Lrn + l)

[
αK

2
rn−1(rn − rn−1)

(
rn
rn−1

+ 1

)

+(m+ l)(rn − rn−1)− (Lrn−1 + l)(rn − rn−1)

]

=
1

1− (Lrn + l)

(
αK

2
(r2n−r2n−1)+(m+l)(rn−rn−1)−(Lrn−1+l)(rn−rn−1)

)

= − 1
φ′(rn)

(
φα(rn)−φα(rn−1)−φ′(rn−1)(rn−rn−1)

)
= −φα(rn)

φ′(rn)
= rn+1−rn .
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Consequently the sequence xn is a Cauchy sequence converging to a solution
x∗ of the equation (1). Moreover, x∗ ∈ B(x0, rα) and for n→ +∞ we obtain
the estimate (10).

�

Remark. In the case
M + L

K
< 1, we obtain an improvement of the Ya-

mamoto’s result.
In fact since α = max

0≤t≤tmax

Kt+ 2(M + L)
K(t+ 2)

< 1 = σ our hypothesis αK ≤

(1− l −m)2

2
is weaker of Yamamoto’s hypothesis K ≤ (1− l −m)2

2
.

3. Convergence of the Newton-like approximations under

generalized Hölder conditions

In this section, we consider the more general case in which the operators
A and f ′ satisfy generalized Hölder assumptions and therefore we extend the
theorem proved in the previous section.
In [3] Argyros consider this case but Yamamoto’s result is not a particular
case of his theorem.
We recall the result proved by Argyros.

Theorem 3.1. [3] Suppose that A(x0) is invertible and that the operators A
and f ′ satisfy the following conditions

||A(x0)−1(f ′(x)− f ′(y))||L(X,Y ) ≤ ωf (||x− y||), ∀x, y ∈
◦
B (x0, R), (12)

||A(x0)−1(A(x)−A(x0))||L(X,Y ) ≤ ωA(||x− x0||), ∀x ∈
◦
B (x0, R), (13)

||A(x0)−1(f ′(x)−A(x))||L(X,Y ) ≤ ω(||x− x0||), ∀x ∈
◦
B (x0, R), (14)

with ωf , ωA, ω : [0,+∞[→ [0,+∞[ increasing functions and ωf (0) = 0.
If, as in Section 2, we denote with a = ||A(x0)−1A((x0)||, we suppose that the
function

ψ(r) :=
∫ r

0

(
sup

0≤s≤t
ωf (s) + ωA(t− s)

)
dt− (1− ω(r))r + a ,

admits a zero r∗ in [0, R] and that ψ(R) ≤ 0.
Set

ϕ(r) :=
∫ r

0
ωA(t)dt− r + a ,
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the scalar sequence (sn) defined by

s0 = 0, sn+1 = sn −
ψ(sn)
ϕ′(sn)

.

is monotonically converging to r∗.
The Newton-like approximations (2) are well defined for all n, belong to
B(x0, r∗) and converge to a solution x∗ of the equation (1) and the follow-
ing error bounds hold for all n ∈ N :

||xn − xn−1|| ≤ sn − sn−1 , (15)

||xn − x∗|| ≤ r∗ − sn , (16)

We remark that the theorem established by Yamamoto in [15] is not a
particular case of the theorem proved by Argyros.
In fact, if

ωf (t) := Kt , ωA(t) := Lt+ l , ω(t) := Mt+m, (17)

set τ := max{K,L}, we have

sup
0≤s≤t

ωf (s) + ωA(t− s) = sup
0≤s≤t

(K − L)s+ Lt+ l = τt+ l

and the function ψ defined by

ψ(r) =
τ + 2M

2
r2 − (1− l −m)r + a

is not in general comparable with the function φσ defined in Section 2.
In our theorem, we define a function ϕα which coincides with φα in the par-
ticular case in which the conditions (17) hold and is more convenient of the
function ψ in some interesting applications.
To define ϕα, we need to introduce the scalar functions ϕβ

ϕβ(r) := β

∫ r

0
ωf (s)ds− (1− ωA(0)− ω(0))r + a , β ≥ 1 .

If we suppose that the function ϕβ admits at least a zero and we denote with
rβ the smaller zero of ϕβ, we define the parameter α

α := min

{
β ≥ 1 : ϕβ(u) ≥ 0; r1 ≤ u ≤ rβ and

sup
{∫ v−u

0 ωf (s)ds+ (ω(u)− ω(0) + ωA(u)− ωA(0))(v − u)∫ v
u ωf (s)ds

≤ β,
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∀ v, u : v − u = −
ϕβ(u)
ϕ′(u)

, r1 ≤ u ≤ rβ

}}
,

and the fundamental function ϕα

ϕα(r) := α

∫ r

0
ωf (s)ds− (1− ωA(0)− ω(0))r + a .

We obtain the following

Theorem 3.2. Suppose that A(x0) is invertible and that the operators A and
f ′ satisfy the conditions (12), (13) and (14).
Suppose that the function ϕα admits a zero rα in [0, R] such that ϕα(R) ≤ 0
and ωA(rα) < 1.
Then the scalar sequence (rn) defined by

r0 = 0, rn+1 = rn −
ϕα(rn)
ϕ′(rn)

, n ≥ 0 ,

is monotonically converging to rα.
The Newton-like approximations (2) are well defined for all n, belong to
B(x0, rα) and converge to a solution x∗ of the equation (1) and the follow-
ing error bounds hold

||xn − xn−1|| ≤ rn − rn−1 , ∀n ∈ N , (18)

||xn − x∗|| ≤ rα − rn , ∀n ∈ N , (19)

Proof. The monotone convergence of the sequence rn follows as in Section
2.
From the Banach’s lemma, it follows that A(x) is an invertible operator for
all point x ∈ B(x0, R) such that ωA(||x− x0||) < 1 and that

||A(x)−1A(x0)||L(Y,X) ≤
1

1− ωA(||x− x0||)
.

We prove (18) for induction on n; we have

||x1 − x0|| ≤ a ≤ a

1− ωA(0)
= r1 ;

||x2 − x1|| = ||A(x1)−1f(x1)|| ≤ ||A(x1)−1A(x0)|| ||A(x0)−1 f(x1)||

≤ 1
1− ωA(||x1 − x0||)

||A(x0)−1 (f(x1)− f(x0)−A(x0))(x1 − x0)||

≤ 1
1− ωA(||x1 − x0||)

(
||A(x0)−1 (f(x1)− f(x0)− f ′(x0))(x1 − x0)||
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+||A(x0)−1 (f ′(x0)−A(x0))(x1 − x0)||
)

≤ 1
1− ωA(||x1 − x0||)

(∫ 1

0
||A(x0)−1 (f ′(tx1+(1−t)x0)−f ′(x0))|| dt ||x1−x0||

+||A(x0)−1 (f ′(x0)−A(x0))|| ||x1 − x0||

)

≤ 1
1− ωA(||x1 − x0||)

(∫ 1

0
ωf (t||x1 − x0||) dt ||x1 − x0||+ ω(0)||x1 − x0||

)

=
1

1− ωA(||x1 − x0||)

(∫ ||x1−x0||

0
ωf (t) dt + ω(0)||x1 − x0||

)

≤ 1
1− ωA(r1)

(∫ r1

0
ωf (t) dt + ω(0)r1

)

≤ 1
1− ωA(r1)

(
α

∫ r1

0
ωf (t) dt + ω(0)r1

)
= −ϕα(r1)

ϕ′(r1)
= r2 − r1 .

We suppose that the xk are well defined and that (18) holds for all k ≤ n.
Then we have

||xn+1 − xn|| = ||A(xn)−1f(xn)||

≤ ||A(xn)−1A(x0)|| ||A(x0)−1 (f(xn)− f(xn−1)−A(xn−1))(xn − xn−1)||

≤ 1
1− ωA(||xn − x0||)

(∫ 1

0

||A(x0)−1 (f ′(txn+(1−t)xn−1)−f ′(xn−1))t|| dt ||xn−xn−1)||

+||A(x0)−1 (f ′(xn−1)−A(xn−1))|| ||xn − xn−1||

)

≤ 1
1−ωA(||xn − x0||)

(∫ 1

0

ωf (t||xn−xn−1||) dt ||xn−xn−1||+ω(||xn−1−x0||)||xn−xn−1||

)

=
1

1− ωA(||xn − x0||)

(∫ ||xn−xn−1||

0
ωf (t) dt + ω(||xn−1 − x0||)||xn − xn−1||

)

≤ 1
1− ωA(rn)

(∫ rn−rn−1

0
ωf (t) dt + ω(rn−1)(rn − rn−1)

)

≤ 1
1− ωA(rn)

(∫ rn−rn−1

0
ωf (t) dt + (ω(rn−1)− ω(0) + ωA(rn−1)
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−ωA(0))(rn − rn−1) + (ω(0) + ωA(0))(rn − rn−1)− ωA(rn−1)(rn − rn−1)

)
By the definition of the parameter α, we have∫ v−u

0
ωf (s)ds+ (ω(u)− ω(0) + ωA(u)− ωA(0))(v − u) ≤ α

∫ v

u
ωf (s)ds

for all r1 ≤ u ≤ v ≤ rα, v − u = −ϕα(u)
ϕ′(u)

.

Then for u = rn−1, v = rn, we obtain

||xn+1 − xn|| ≤
1

1− ωA(rn)

(
α

∫ rn

0
ωf (t) dt − α

∫ rn−1

0
ωf (t) dt

+(ω(0) + ωA(0))(rn − rn−1)− ωA(rn−1)(rn − rn−1)

)

=
1

1− ωA(rn)
(
ϕα(rn)− ϕα(rn−1) + (1− ωA(rn−1))(rn − rn−1)

)
= − 1

φ′(rn)
(
ϕα(rn)− ϕα(rn−1)− ϕ′(rn−1)(rn − rn−1)

)
= −ϕα(rn)

ϕ′(rn)
= rn+1 − rn .

Consequently the sequence xn is a Cauchy sequence converging to a solution
x∗ of the equation (1). Moreover, x∗ ∈ B(x0, rα) and the estimate (19) holds.

�

Remark
As we shown above, the functions ψ and φσ are not comparable. In the
particular case in which the conditions (17) hold, the function ϕα coincides
with the function φα which is less or equal to the function φσ.
In general also the functions ψ and ϕα are not comparable except for the some
particular cases.
A very interesting case is the one in which A(x) = f ′(x) with f ′ Hölder
continuous.
We have ωf (t) = Ktθ , (0 < θ ≤ 1),

sup
0≤s≤t

sθ + (t− s)θ = 21−θ tθ,

ψ(r) = 21−θ r
1+θ

1 + θ
− r + a
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and

ϕα(r) = α(θ)
r1+θ

1 + θ
− r + a

where the parameter α(θ) introduced in [8] is defined by

α(θ) := min{β ≥ 1 : max
0≤ t≤ t(β)

g(t) ≤ β} , (20)

where

t(β) :=
β θθ

(1 + θ)(β(1 + θ)θ − θθ)
, g(t) :=

t1+θ + (1 + θ)t
(1 + t)1+θ − 1

.

In fact

α(θ) = min

{
β ≥ 1 : sup

{(v − u)1+θ + (1 + θ)(v − u)
v1+θ − u1+θ

≤ β

∀ v, u : v − u = −
φβ(u)
φ′(u)

r1 ≤ u ≤ rβ

}}

= min

{
β ≥ 1 : sup

{( v
u − 1

)1+θ
+ (1 + θ)

(
v
u − 1

)
(

v
u

)1+θ
− 1

≤ β

∀ v, u : v − u = −
φβ(u)
φ′(u)

r1 ≤ u ≤ rβ

}}
.

Set
t :=

v − u

u
,

we proved in [8] that
0 ≤ t ≤ t(β)

from which we obtain (20).
Finally, from the inequality

α(θ) < 21−θ for all 0 < θ < 1

(see [8] and [9] for the proof), it follows that ϕα < ψ.

We conclude with an example of a particular case in which we can apply
Theorem 3.2 while Theorem 3.1 is not applicable.
Set ωf (t) := ωA(t) := ω(t) := Kt, we have

ψ(r) =
3
2
Kr2 − r + a ,
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α ≤ max
r1≤u≤v≤rα

v + 3u
v + u

= 2

and consequently we obtain

ϕα(r) ≤ Kr2 − r + a < ψ(r) .

Then, if
1
6
< aK ≤ 1

4
, the function ϕα admits at least a positive zero while

ψ(r) > 0 for all r > 0.
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