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Abstract. We present an answer to the following problem. Let (X, d) be a metric space
and T1,T> : X — P(X) two multivalued operators. Determine metric conditions on the pair
of multivalued operators T1 and 7%, which imply that for each x € X there exists a sequence
of successive approximations for the pair (71,7%) or for the pair (1T%,7T1), starting from =z,
which converges to a common fixed point or to a common strict fixed point of T} and 7> and
for each € X there exists a sequence of successive approximations of T;, starting from =,
which converges to a fixed point or to a strict fixed point of T3, for each ¢ € {1,2}. We also
prove that the common fixed points set of two multifunctions 71,72 : R — Pep, v (R), which
satisfy a contraction type condition, is a compact and convex set.
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1. INTRODUCTION

Let X be a nonempty set.

We denote by P(X) the set of all nonempty subsets of X, i. e. P(X) :=
{Y|0#Y CX }. Let f: X — X be a singlevalued operator and 11,75 :
X — P(X) two multivalued operators. We denote by F the fixed points set
of f,i. e. Fy:={2€ X | f(z) ==}, by Fr, the fixed points set of 77, i.
e. Fry:={x € X |z eTi(x) }, by (SF)p, the strict fixed points set of T1,
i.e. (SF)p,:=={2¢eX|Ti(z)={z} } and by (CF)7, 1, the common fixed

reX |xeTi(z)NTyx) }.
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points set, i.e. (CF)p, 1, :={
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A sequence (x,)nen is called sequence of successive approximations of Ty if
xo € X and x4 € T1(xy,), for each n € N.

A sequence (xp,)nen is called sequence of successive approzimations for the
pair (Th,Ts) if xg € X, xony1 € Ti(x2,) and 2,42 € To(wony1), for each
n € N.

Let (X, d) be a metric space.

We denote by Py(X) the set of all nonempty and bounded subsets of X, i.
e. P(X):={Y |Y e P(X), Y is a bounded set } and by Py ., (X) the
set of all nonempty, compact and convex subsets of X, i. e. P (X) :=
{Y |Y e P(X), Y is a compact and convex set }.

We also recall the functional D : P(X)x P(X) — Ry, defined by D(A, B) =
inf { d(a,b) |a€ A, b€ B}, for each A, B € P(X), and the generalized func-
tionals § : P(X)x P(X) — RyU{+o0}, defined by (A, B) = sup { d(a,b) | a €
A, be B}, for each A,B € P(X), and H : P(X) x P(X) — Ry U {400},
defined by H(A,B) = max {sup,cs D(a,B), sup,ep D(b,A) }, for each
A, B € P(X).

2. SOME PAIRS OF MULTIVALUED OPERATORS

There are many strict fixed point and common strict fixed point theorems
for multivalued operators which satisfy metric conditions in which functional §
appears (see, for example, Reich [11], Ciri¢ [3], [5], Rus [12], Avram [2], Fisher
[7], Khan-Khan-Kubiaczyk [8], Dien [6], Kubiaczyk [10], Khan-Kubiaczyk [9]).

In this section is studied the following problem.

Problem 2.1. Let (X,d) be a metric space and T1,T» : X — P(X) two
multivalued operators. Determine metric conditions on the pair of multivalued
operators 11 and T, which tmply that for each x € X there exists a sequence of
successive approzimations for the pair (11,1) or for the pair (Tz,TY), starting
from x, which converges to a common fixed point or to a common strict fixed
point of T1 and T and for each x € X there exists a sequence of successive
approzimations of T;, starting from x, which converges to a fixed point or to
a strict fived point of T;, for each i € {1,2}.

For singlevalued operators results of this type are given by Rus [13] and
Dien [6] and for multivalued operators results which answer to Problem 2.1
are presented by Sintamarian [16], [17].
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There is also an interesting result of this kind given by Dien [6], for two
multivalued operators which satisfy a metric condition in which functional §
appears.

The following result gives another answer to Problem 2.1 for two multivalued
operators which satisfy a metric condition in which functional § appears.

Theorem 2.1. Let (X,d) be a complete metric space and Th,Ts : X — Py(X)
two multivalued operators for which there exists a € [0,1/2[ such that

0(T1(2), Ta(y)) < a [6(z, Ti(x)) + 0(y, Ta(y))];

for each x,y € X.

Then Fr, = Fp, = (SF)p, = (SF)p, = {z*} and, for each i,j € {1,2},
with © # j, any sequence (Tn)nen of successive approzimations for the pair
(T3, Tj) converges to x* and

1-a a \"
n» * S 71—‘7: )
d(xpn,x") % <1 — a> d(zo, T;(x0))

for every n € N.
Also, for each i € {1,2}, any sequence (ypn)nen of successive approximations
of T; converges to ©* and

1—a a \"
d(ynal' ) =1 _9, <1 — CL> 5(y07TZ(yO))’

for every n € N.

Proof. The fact that 77 and 75 have a unique common fixed point, which is a
strict fixed point both of 77 and of 715, it is a known result. In order to prove
some other parts of the conclusion we shall take again the proof.

Leti,j € {1,2},1 # j. Let zg € X, o1 € Tj(22n—2) and xap, € Tj(z2,-1),
for each n € N*.

We have

6(Ti(x0), Tj(21)) < a [6(xo, Ti(wo)) + 6(x1, Tj(21))] <
< a [0(zo, Ti(x0)) + 6(Ti(x0), Tj(x1))]

and so

d(w1, 2) < 6(Ti(20), Tj(71)) < a/(1 = a) d(wo, Ti(x0))-
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For each n € N* we have
§(Tj(zon—1), Ti(w2n)) < a [6(w2n—1, Tj(@2n-1)) + 6(22n, Ti(22n))] <
< a [§(Ti(z2n—2), Tj(w2n—-1)) + 0(Tj(22n-1), Ti(z2n))]
and from here we get that
d(w2n, Ton+1) < 6(Tj(w2n-1), Ti(z20)) < a/(1 — a) 6(Ti(z2n—2), Tj(T2n—1))-
Also, for each n € N* we have
6(Ti(w2n), Tj(w2n+1)) < a [0(z2n, Ti(22n)) + 6(22n+1, Tj(T2n41))] <
< a [6(Tj(zon-1), Ti(x2n)) + 6(Ti(z2n), Tj(T2041))]
and so
d(@2n+1, Ton+2) < 6(T5(22n), Tj(22n41)) < a/(1 = a) 6(Tj(z2n-1), Ti(22n))-
Now, we are able to write that
d(@n, ny1) < [a/(1 = a)]" 6(zo, Ti(20)),

for each n € N.
Let p € N*. Using the triangle inequality we obtain

A, 2atp) < (1—a)/(1 - 2a)[a/(1 - a)]" §(xo, Ti(x0)),

for each n € N. It follows that (x,)nen is a Cauchy sequence and so a conver-
gent sequence, because (X, d) is a complete metric space. Let x* = limy, o Ty,
Letting p to tend to infinity in the above inequality we get that

d(wn, 2") < (1 —a)/(1 = 2a)[a/(1 = a)]" 6(x0, Ti(x0)),

for every n € N.
We have

6(z", Ti(x")) < d(2”, want2) + 0(2nt2, Ti(z")) <
< d(z*, xont2) + 0(Tj(wan+1), Ti(x™)) <
< d(x", zan12) + a [§(xont1, Tj(an41)) + 0(2, Ti(2"))] <
< d(z”, zont2) +a [6(Ti(z2n), Tj(22n 1)) + (2%, Ti(2"))] <
< d(a*, want2) +a {[a/(1 = a)]*" ™ 8(x0, Ty(wo)) + (2", Ti(x"))},
for all n € N.
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From this we get that

52", T(a™)) < 1/(1 — a) {d(@*, 2ans2) + ala/(1 — a) 2+ 6(x0, Ti(wo))},
for each n € N.

Letting n to tend to infinity it follows that é(z*,T;(z*)) = 0, so T;(z*) =
{a*}. It is easy to verify that (CF)r, 1, = (SF)r, = (SF)p, = {z*}.

In order to prove that Fr, = {z*}, let © € Fr,. Then we have

oz, Ti(x)) < 6(Ti(x), Ti(w)) < 6(Ti(x), Tj(27)) + 6(Tj(2"), Ta(x)) <

< a[0(z, Ti(z))+0(z", Tj(z"))|+a [6(27, Tj(27)) +6(x, Ti(x))] = 2a 6(z, Ti(x)).
From this we get that d(z,T;(x)) =0, so T;(z) = {z}, 1. e. z € (SF)r.

Let yo € X and yp+1 € Ti(yn), for each n € N. We have

6(Ti(yo), Ti(y1)) < 6(Ti(yo), Tj(x7)) + 6(T5(2"), Ti(y1)) <
< a [6(yo, Ti(yo)) + 6 (2™, T (2"))] + a [6(z", T;(2")) + 0(y1, Ti(y1))] =
= a [6(yo, Ti(y0)) + 0(y1, Ti(y1))] < a [6(yo, Ti(yo)) + 0(Ti(yo), Ti(y1))],
which implies
6(Ti(yo), Ti(y1)) < a/(1 —a) 6(yo, Ti(yo))-
Also, for each n € N* we have
§(Ti(yn); Ti(yn+1)) < 0(Tilyn), Tj(x")) + 6(T5(2"), Ti(yn+1)) <
< a [0(yn, Ti(yn)) + 6(z", Tj(2"))] + a [6(2", Tj(z7)) + 6(yn+1, Ti(Yn+1))] =
= a [6(yn, Ti(yn)) + 6(Ynt1, Ti(yYnt1))] <
< a [0(Ti(yn—1), Ti(yn)) + 6(T5(yn), Ti(Yn+1))]
and hence
0(Ti(yn), Ti(yn+1)) < a/(1 — a) 6(Ti(yn—-1), Ti(yn))-
It follows that
0(T5(Yn—1), Ti(yn)) < la/(1 — )" 0(yo, Ti(y0)),
for each n € N* and hence
d(Yn, Yn+1) < [a/(1 —a)]" 6(yo, Ti(yo)),

for each n € N.
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As way stated above, we obtain that

A(Yn, Yntp) < (1 —a)/(1 = 2a)[a/(1 = a)]" (yo, Ti(y0)),

for each n € N and for every p € N*.
From this we get that (yn)nen is a Cauchy sequence and so a convergent
sequence, because (X, d) is a complete metric space. Let y* = limy, o0 Yn-
Letting p to tend to infinity in the above inequality we obtain that

d(yn,y*) < (1= a)/(1 = 2a)[a/(1 = a)]" 6(yo, Ti(yo)),
for each n € N.
We have
6(y* Ti(y™)) < dy", ynt1) +6(Yn+1, Ti(y™)) < d(Y", ynt1) +0(Ti(yn), Ti(y")) <
A", ynt1) + 0(Tiyn), T3 (2")) + 6(T;(2"), Ti(y")) <
<d(y", yn+1)+a [0(yn, Ti(yn))+6(2", T;j(2"))]+a [0(z", Tj (7)) +6(y", Ti(y"))] =
= d(y", Yn+1) + a [6(yn, Ti(yn)) +(y" ( )] <
< d(y*, Yn+1) +a [6(Ti(yn-1), Ti(yn )+5(y Ti(y"))] <
< d(y* yn+1) +a {la/(1 = a)]" 6(yo, Ti(yo)) + 6(y™, Ti(y™))},
for all n € N*.
From this we obtain
S(y*, Ti(y") < 1/(1 = a) {d(y", yn+1) + ala/(1 — a)]" 6(yo, Ti(yo))},
for each n € N*.

Letting n to tend to infinity it follows that d(y*, T;(y*)) = 0, so T;(y*) =
{y*}. It means that y* € (SF)p, = {z*}. &

Corollary 2.1. Let (X, d) be a complete metric space and Ty, Ty : X — Py(X)

two multivalued operators for which there exists a € [0,1/2[ such that

§(Ty(z), Ta(y)) < a [6(z, T1(x)) + 6(y, To(y))];

for each x,y € X.
Then Fr, = Fp, = (SF)p, = (SF)p, = {z*} and

d(zg,z*) < (1 —a)/(1 —2a) min {6(xg, T1 (o)), d(z0, T2(x0))},
for each xg € X.

Proof. We take n = 0 in Theorem 2.1. B
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Example 2.1. Let 71 : R — Py(R) defined by
5.8 . i @<,
Tl(x) - {O}a if x=0,
[—g, _%6] y Zf xT > 07

and let Ty : R — Py(R) defined by

8

~5—5] . if <0
Tr(x) = ¢ {0}, if ©=0,
[—1%,—5”—2] , if x>0.

In order to verify that the inequality

>

6(Th(x), Ta(y)) < a [6(x, T1(x)) + 6(y, Ta(y))]
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holds for each x,y € R, with a = % € [0, % [, we consider the following nine

cases:
1°z<0,y<0; 2°z<0,y=0; 3°x<0,y>0;
4°2z=0,y<0; 5°xz=0,y=0; 6°x=0,y>0;
r>0y<0;, 8 x>0,y=0; 9°z>0,y>0.

In case 1° we take the subcases: a) © <y <0 and b) y < x <0.
For the subcase b) we have

6(Ti(x), Ta(y)) < _% 39
1
= = [0(2, T1(2)) + 8(y, Ta(v)]
for each x,y € R, with y < x < 0.

In case 9° we take the subcases: a) 0 <z <y and b) 0 <y < z.
For the subcase a) we have

6(Th(x), Ta(y)) < —

= ¢ [0z, Ta(x)) + 8(y, Ta(y))]
for each x,y € R, with 0 < x < y.

In rest it is not difficult to see that the inequality is satisfied.
It is clear that Fr, = Fr, = (SF)r, = (SF)p, = {0}.
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3. SOME PROPERTIES OF THE COMMON FIXED POINTS SET
OF TWO MULTIFUNCTIONS

In [1] and [15] are studied some properties of the fixed points set of a mul-
tifunction, which are inherited from the values of the multifunction.

Regarding the properties of the common fixed points set of two multifunc-
tions, which are inherited from the values of the multifunctions, we give the

following result.

Theorem 3.1. LetT1,T5 : R — Py, o (R) be two multifunctions. We suppose
that there exists a € [0, 1] such that

H(Ti(z), Ta(y)) < a max { |z —y|, D(x, Ta(z)), D(y, T2(y)),

1/2 [D(z, T2(y)) + D(y, Ty(x))] },
for each x,y € R.
Then FT1 = FT2 S Pcp, CU(R).

Proof. For every x € R we have T1(z),T>(x) € Pep, cv(R). Hence, there
exist my, My, ma, My : R — R so that T1(x) = [my(z), My (z)] and Th(z) =
[ma(z), Ma(z)], for each = € R.

It follows that

H(T1(x), Ta(y)) = max {|m1(z) — ma(y)l, |Mi(z) — Ma(y)| } <
< a max { |z —yl|, D(z,Ti(z)), D(y, T2(y)),1/2 [D(z, To(y)) + D(y, T1(x))] },
for every z,y € R.
So

[ma(2) —ma(y)| < a max { |z —yl, [ —mi(z)], |y — ma(y)],

1/2 [|lz = ma(y)| + [y — ma(2)]] },

and
|M1(x) — Ma(y)| < a max { |z —y|, [z — Mi(z)|, |y — Ma(y)|,

1/2 {|z = Ma(y)| + |y — M (2)]] },
for each z,y € R.
From these, taking into account a result given by Ciri¢ (Theorem 1 in [4],
Theorem 4.5 in [5]), we have that there exists z,, € R such that F,,,, = F},,, =
{zm} and there exists zj; € R such that Fy, = Fa, = {xar}-
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It is not difficult to show that x,, < z,,.

Also, it is easy to verify that if x < x,,, then x ¢ Fr, U Fp, and if x > )y,
then = ¢ F, U Fry,.

In case z, < xp and x € |z, za[, then we have z € |my(x), My(z)[ N
Jima (), Ma ()]

Therefore, we are able to write that Fp, = Fp, = [xy, z)]. B
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