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−x′′(t) = f(t, x(t), x(g(t)), x(h(t))), t ∈ [a, b],

where g([a, b] ∩ (−∞, a) 6= ∅ and h([a, b]) ∩ (b, +∞) 6= ∅.
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1. Introduction

The purpose of this paper is to study the following boundary value problem (see
[1], [3], [5], [7], [10], [12], [19]-[21])

(1.1) −x′′(t) = f(t, x(t), x(g(t)), x(h(t))), t ∈ [a, b];

(1.2)
{

x(t) = ϕ(t), t ∈ [a1, a],
x(t) = ψ(t), t ∈ [b, b1],

where
(H1) a1 ≤ a < b ≤ b1;
(H2) g, h ∈ C([a, b], [a1, b1]);
(H3) f ∈ C([a, b]×R3);
(H4) there exists Lf > 0 such that:

|f(t, u1, u2, u3)− f(t, v1, v2, v3)| ≤ Lf

(
3∑

i=1

|ui − vi|
)

,

for all t ∈ [a, b], ui, vi ∈ R, i = 1, 2, 3;
(H5) ϕ ∈ [a1, a] and ψ ∈ C[b, b1].
Some problems concerning equation (1.1) was study in the following particular

cases (see [4], [14], [2], [5], [6], [17], [24], [25], [26]...)

g(t) = t− h, h(t) = t + h, h > 0,
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and ([16])

g(t) = λt, h(t) =
1
λ

t, 0 < λ < 1.

For other considerations on the functional-differential equations we mention: [1],
[5], [6], [8], [9], [11], [13], [14], [18], [23], [27].

Let G be the Green function of the following problem

−x′′ = χ, x(a) = 0, x(b) = 0.

From the definition of the Green function we have that, the problem

(1.1) + (1.2), x ∈ C[a1, b1] ∩ C2[a, b],

is equivalent with the fixed point equation

(1.3) x(t) =





ϕ(t), t ∈ [a1, a],

w(ϕ,ψ)(t) +
∫ b

a

G(t, s)f(s, x(s), x(g(s)), x(h(s)))ds, t ∈ [a, b],

ψ(t), t ∈ [b, b1],

x ∈ C[a1, b1],
where

w(ϕ, ψ)(t) :=
t− a

b− a
ψ(b) +

b− t

b− a
ϕ(a).

The equation (1.1) is equivalent with
(1.4)

x(t) =





x(t), t ∈ [a1, a],

w(x|[a1,a], x|[b,b1])(t) +
∫ b

a

G(t, s)f(s, x(s), x(g(s)), x(h(s)))ds, t ∈ [a, b]

x(t), t ∈ [b, b1].

Consider the following operators

Bf , Ef : C[a1, b1] → C[a1, b1],

where
Bf (x)(t) := second part of (1.3)

and
Ef (x)(t) := second part of (1.4).

Let X := C[a1, b1] and Xϕ,ψ := {x ∈ X| x|[a1,a] = ϕ, x|[b,b1] = ψ}. Then

X =
⋃

ϕ∈C[a1,a]
ψ∈C[b,b1]

Xϕ,ψ

is a partition of X.
We have
Lemma 1.1. We suppose that the conditions (H1), (H2), (H3) and (H5) are

satisfied. Then
(a) Bf (X) ⊂ Xϕ,ψ; Bf (Xϕ,ψ) ⊂ Xϕ,ψ;
(b) Bf |Xϕ,ψ

= Ef |Xϕ,ψ
.
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In this paper we shall prove that, if Lf is small enough, then the operator Ef is
weakly Picard operator and we study the equation (1.1) in the terms of this operator.

2. Weakly Picard operators

Let (X, d) be a metric space and A : X → X an operator. We shall use the
following notations:

FA := {x ∈ X| A(x) = x} - the fixed point set of A;
I(A) := {Y ⊂ X| A(Y ) ⊂ Y, Y 6= ∅} - the family of the nonempty invariant

subsets of A;
An+1 := A ◦An, A0 = 1X , A1 = A, n ∈ N.

Definition 2.1. ([22], [23]) An operator A is weakly Picard operator (WPO) if
the sequence

(An(x))n∈N

converges, for all x ∈ X, and the limit (which may depend on x) is a fixed point of
A.

Definition 2.2. ([22], [23]) If the operator A is WPO and FA = {x∗}, then by
definition, the operator A is Picard operator (PO).

Definition 2.3. ([22], [23]) If A is WPO, then we consider the operator A∞

defined by
A∞ : X → X, A∞(x) := lim

n→∞
An(x).

It is clear that
A∞(X) = FA and ωA(x) = {A∞(x)},

where ωA(x) is the ω-limit point set of A.
For some examples of WPOs see [22] and [23].

3. Boundary value problem

Consider the problem (1.1)+(1.2). We have
Theorem 3.1. ([7], [19]) We suppose that
(a) the conditions (H1)− (H5) are satisfied,

(b)
3
8
Lf (b− a)2 < 1.

Then the problem (1.1)+(1.2) has a unique solution which is the uniform limit of
the successive approximations.

Proof. Consider the Banach space C[a1, b1] with Chebyshev norm. The problem
(1.1)+(1.2) is equivalent with the fixed point equation

Bf (x) = x, x ∈ C[a1, b1].

From the condition (H4), the operator Bf is an α-contraction, with

α =
3
8
Lf (b− a)2.

The proof follows from the contraction principle.
Remark 3.1. From the Theorem 3.1 we have the operator Bf is PO. But

Bf |Xϕ,ψ
= Ef |Xϕ,ψ

,
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and
X := C[a1, b1] =

⋃

ϕ,ψ

Xϕ,ψ, Xϕ,ψ ∈ I(Ef ).

So, the operator Ef is WPO and

FEf
∩Xϕ,ψ = {x∗ϕ,ψ}, ∀ ϕ ∈ C[a1, a], ψ ∈ C[b, b1],

where x∗ϕ,ψ is the unique solution of the problem (1.1)+(1.2).

4. Inequalities of Čaplygin type

We have
Theorem 4.1. We suppose that
(a) the conditions (H1)− (H5) are satisfied;

(b)
3
8
Lf (b− a)2 < 1;

(c) ui, vi ∈ R, ui ≤ vi, i = 1, 2, 3, imply that

f(t, u1, u2, u3) ≤ f(t, v1, v2, v3),

for all t ∈ [a, b].
Let x be a solution of the equation (1.1) and y a solution of the inequality

−y′′(t) ≤ f(t, y(t), y(g(t)), y(h(t))), t ∈ [a, b].

Then
y(t) ≤ x(t), ∀ t ∈ [a1, a] ∪ [b, b1] ⇒ y ≤ x.

Proof. In the terms of the operator Ef , we have

x = Ef (x) and y ≤ Ef (y)

and
w(y|[a1,a], y|[b,b1]) ≤ w(x|[a,a1], x|[b,b1]).

On the other hand, from the condition (c), we have that the operator E∞
f is

monotone increasing, and we have (see [22])

y ≤ E∞
f (y) = E∞

f (w̃(y)) ≤ E∞
f (w̃(x)) = x,

where, for z ∈ X,

w̃(z)(t) :=





z(t), t ∈ [a1, a]
w(z|[a1,a], z|[b,b1])(t), t ∈ [a, b],
z(t), t ∈ [b, b1].

So, y ≤ x.
Remark 4.1. Let Y be an ordered Banach space. We consider the problem

(1.1)+(1.2), where
(H ′

1) a1 ≤ a < b ≤ b1;
(H ′

2) g, h ∈ C([a, b], [a1, b1]);
(H ′

3) f ∈ C([a, b]× Y × Y × Y, Y );
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(H ′
4) there exists Lf > 0, such that

f‖(t, u1, u2, u3)− f(t, v1, v2, v3)‖ ≤ Lf

3∑

i=1

‖ui − vi‖,

for all t ∈ [a, b], ui, vi ∈ Y, i = 1, 2, 3;
(H ′

5) ϕ ∈ C([a1, a], Y ), ψ ∈ C([b, b1], Y ).
As in the case Y = R, we consider the operators

Bf , Ef : C([a1, b1], Y ) → C([a1, b1], Y ).

By a similar way we have
Theorem 4.2. We suppose that
(a) the condition (H ′

1)− (H ′
5) are satisfied;

(b)
3
8
Lf (b− a)2 < 1.

Then the corresponding problem, (1.1)+(1.2), has in C([a1, b1], Y ) ∩ C2([a, b], Y )
a unique solution x∗f , and FBf

= {x∗f}.
Theorem 4.3. We suppose that
(i) f, g and h are as in the Theorem 4.2,
(ii) the operator f(t, ·, ·, ·) : Y 3 → Y 3 is monotone increasing.
Let x be a solution of the corresponding equation (1.1) and y a solution of the

inequality
−y′′ ≤ f(t, y(t), y(g(t)), y(h(t))), t ∈ [a, b].

Then
y(t) ≤ x(t), ∀ t ∈ [a1, a] ∪ [b, b1] ⇒ y ≤ x.

Remark 4.2. In the case Y = Rn, the corresponding equation, (1.3), is the follow-
ing system of functional-integral equations (f = (f1, . . . , fn), ϕ = (ϕ1, . . . , ϕn), ψ =
(ψ1, . . . , ψn), x = (x1, . . . , xn))

xi(t) =





ϕi(t), t ∈ [a1, a],

w(ϕi, ψi)(t) +
∫ b

a

G(t, s)fi(s, x(s), x(g(s)), x(h(s)))ds, t ∈ [a, b], i = 1, n

ψi(t), t ∈ [b, b1].

Remark 4.3. In the problem (1.1)+(1.3), instead of, −x′′, we can put

−(p(t)x′)′ + q(t)x

if p > 0 and q ≥ 0.
In this case, instead of the condition

3
8
Lf (b− a)2 < 1,

we must put

3Lf

∫ b

a

G(t, s)ds ≤ α < 1
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where G is the Green function of the problem

−(p(t), x′)′ + q(t)x = χ, x(a) = 0, x(b) = 0.

5. Data dependence: monotony

Now we shall study the monotony of the solution of the problem (1.1)+(1.2), with
respect to ϕ,ψ and f . For this study we need the following abstract result ([22]).

Abstract comparison lemma. Let (X, d,≤) be an ordered metric space and
A,B,C : X → X be such that:

(i) A ≤ B ≤ C;
(ii) the operators A,B,C are WPOs;
(iii) the operator B is monotone increasing.
Then

x ≤ y ≤ z ⇒ A∞(x) ≤ B∞(y) ≤ C∞(z).

We have
Theorem 5.1. Let fi ∈ C([a, b] × R3), i = 1, 2, 3, g and h be as in the Theorem

3.1. We suppose that
(a) f2(t, ·, ·, ·) : R3 → R3 is monotone increasing;
(b) f1 ≤ f2 ≤ f3.
Let xi be a solution of the equation

−x′′ = fi(t, x(t), x(g(t)), x(h(t))), t ∈ [a, b].

If
x1(t) ≤ x2(t) ≤ x3(t), ∀ t ∈ [a1, a] ∪ [b, b1],

then
x1 ≤ x2 ≤ x3.

Proof. The operators Efi , i = 1, 2, 3, are WPOs. From the condition (a) the
operator Ef2 is monotone increasing. From (b) it follows that

Ef1 ≤ Ef2 ≤ Ef3 .

We remark that
xi = E∞

fi
(w̃(xi)), i = 1, 2, 3.

Now the proof follows from the Abstract comparison lemma.

6. Data dependence: continuity

Consider the boundary value problem (1.1)+(1.2) in the conditions of the Theorem
3.1. Denote by

x(·;ϕ, ψ, f)
the solution of this problem. We have

Theorem 6.1. Let ϕi, ψi, fi, i = 1, 2, be as in the Theorem 3.1. We suppose that
(i) there exists η1 > 0, such that

|ϕ1(t)− ϕ2(t)| ≤ η1, ∀ t ∈ [a1, a],
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and
‖ψ1(t)− ϕ2(t) ≤ η2, ∀ t ∈ [b, b1];

(ii) there exists η2 > 0 such that

|f1(t, u1, u2, u3)− f2(t, u1, u2, u3)| ≤ η2, ∀ t ∈ [a, b], ∀ ui ∈ R.

Then

|x(t; ϕ1, ψ1, f1)− x(t; ϕ2, ψ2, f2)| ≤ 8η1 + η2(b− a)2

8− 3Lf (b− a)2

where Lf = max(Lf1 , Lf2).
Proof. Consider the operators Bϕi,ψi

, fi, i = 1, 2. These operators are contrac-
tions. Moreover

‖Bϕ1,ψ1,f1(x)−Bϕ2,ψ2,f2(x)‖C ≤ η1 + η2
(b− a)2

ϕ
, ∀ x ∈ C[a1, b1].

Now, the proof follows from the following well known result (see [23]).
Theorem 6.2. Let (X, d) be a complete metric space and A,B : X → X two

operators. We suppose that
(i) the operator A is an a-contraction;
(ii) FB 6= ∅;
(iii) there exists η > 0 such that

d(A(x), B(x)) ≤ η, ∀ x ∈ X.

Then if FA = {x∗A} and x∗B ∈ FB, we have

d(x∗A, x∗B) ≤ η

1− a
.

From the Theorem 6.1 we have
Theorem 6.3. Let ϕi, ψi, fi, i ∈ N and ϕ,ψ, f be as in the Theorem 3.1. We

suppose that
ϕi

unif.−→ ϕ as i →∞,

ψi
unif.−→ ψ as i →∞,

fi
unif.−→ f as i →∞.

Then
x(·, ϕi, ψi, fi)

unif.−→ x(·, ϕ, ψ, f), as i →∞.

In what follow we shall use the c-WPOs technique to give some data dependence
results.

Definition 6.1. Let A be an WPO and c > 0. The operator A is c-WPO if

d(x,A∞(x)) ≤ cd(x,A(x)), ∀ x ∈ X.

Example 6.1. Let (X, d) be a complete metric space and A : X → X an operator.
We suppose that there exists a ∈ [0, 1[ such that

d(A2(x), A(x)) ≤ ad(x,A(x)), ∀ x ∈ X.

Then A is c-WPO with c = (1− a)−1.
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We have (see [22])
Theorem 6.4. Let (X, d) be a metric space and Ai : X → X, i = 1, 2. We suppose

that
(i) the operator Ai is ci −WPO, i = 1, 2;
(ii) there exists η > 0 such that

d(A1(x), A2(x)) ≤ η, ∀ x ∈ X.

Then
H(FA1 , FA2) ≤ η max(c1, c2).

Here H stands for Pompeiu-Hausdorff functional.
From the Remark 3.1 and the Theorem 6.4, we have
Theorem 6.5. Let f1 and f2 be as in the Theorem 3.1. Let Si be the solution set

of equation (1.1) corresponding to fi, i = 1, 2. If η > 0 is such that

|f1(t, u1, u2, u3)− f(t, u1, u2, u3)| ≤ η,

for all t ∈ [a, b], ui ∈ R, i = 1, 2, then

H(S1, S2) ≤ η(b− a)2

8− 3L(b− a)2

where L := max(Lf1 , Lf2).
Proof. In the condition of the Theorem 3.1 the operators Efi , i = 1, 2, are

ci −WPOs with
ci = (1− αi)−1

where αi =
3
8
Lfi(b− a)2.

Now, we are in the conditions of the Theorem 6.4.

7. Smooth dependence on parameters

Consider the following boundary value problem with parameter

(7.1) −x′′(t) = f(t, x(t), x(g(t)), x(h(t))); λ), t ∈ [a, b],

(7.2)
{

x(t) = ϕ(t), t ∈ [a1, a],
x(t) = ψ(t), t ∈ [b, b1].

We suppose that
(C1) a1 ≤ a < b ≤ b1; J ⊂ R, a compact interval;
(C2) g, h ∈ C([a, b], [a1, b1]);
(C3) f ∈ C1([a, b]×R3 × J);
(C4) there exists Lf > 0, such that

∣∣∣∣
∂f(t, u1, u2, u3;λ)

∂ui

∣∣∣∣ ≤ Lf ,

for all t ∈ [a, b], ui ∈ R, i = 1, 2, 3, λ ∈ J ;
(C5) ϕ ∈ C[a1, a], ψ ∈ C[b, b1];

(C6)
3
8
Lf (b− a)2 < 1.
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In the above conditions, from the Theorem 3.1, we have that the problem
(7.1)+(7.2) has a unique solution, x∗(·;λ).

Now we prove that

x∗(t; ·) ∈ C1(J), for all t ∈ [a1, b1].

For this, we consider the equation

(7.3) −x′′(t; λ) = f(t, x(t; λ), x(g(t); λ), x(h(t); λ); λ), t ∈ [a, b], λ ∈ J,

x ∈ C([a1, b1]× J).
The problem, (7.3)+(7.2) is equivalent with the following functional-integral equa-

tion

(7.4) x(t;λ) =





ϕ(t), t ∈ [a1, a], λ ∈ J,

w(ϕ,ψ)(t) +
∫ b

a

G(t, s)f(s, x(s; λ), x(g(s); λ), x(h(s); λ); λ)ds,

t ∈ [a, b], λ ∈ J
ψ(t), t ∈ [b, b1], λ ∈ J.

We consider the operator

B : C([a1, b1]× J) → C([a1, b1]× J),

where B(x)(t;λ) := second part of (7.4).
Let X := C([a1, b1] × J) and let, ‖ · ‖, be the Chebyshev norm on X. It is clear

that, in the conditions (C1)− (C6), the operator B is Picard operator. Let x∗ be the
unique fixed point of B.

We suppose that there exists
∂x∗

∂λ
. Then from (7.4) we have that

∂x∗(t; λ)
∂λ

=
∫ b

a

G(t, s)
∂f(s, x∗(s; λ), x∗(g(s); λ), x∗(h(s); λ); λ)

∂u1
· ∂x∗(s;λ)

∂λ
ds+

+
∫ b

a

G(t, s)
∂f(s, x∗(s;λ), x∗(g(s); λ), x∗(h(s); λ); λ)

∂u2
· ∂x∗(g(s); λ)

∂λ
ds+

+
∫ b

a

G(t, s)
∂f(s, x∗(s; λ), x∗(g(s); λ), x∗(h(s); λ); λ)

∂u3
· ∂x∗(h(s); λ)

∂λ
ds+

+
∫ b

a

G(t, s)
∂f(s, x∗(s;λ), x∗(g(s); λ), x∗(h(s); λ); λ)

∂λ
ds, t ∈ [a, b], ∈ J.

This relation suggest us to consider the following operator

C : X ×X → X

(x, y) 7→ C(x, y)
where

C(x, y)(t;λ) :=
∫ b

a

G(t, s)
∂f(s, x(s; λ), x(g(s); λ), x(h(s); λ); λ)

∂u1
y(s;λ)ds+

+
∫ b

a

G(t, s)
∂f(s, x(s; λ), x(g(s); λ), x(h(s); λ); λ)

∂u2
y(g(s); λ)ds+
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+
∫ b

a

G(t, s)
∂f(s, x(s; λ), x(g(s); λ), x(h(s); λ); λ)

∂u3
y(h(s); λ)ds+

+
∫ b

a

G(t, s)
∂f(s, x(s;λ), x(g(s); λ), x(h(s); λ); λ)

∂λ
ds,

for t ∈ [a, b], λ ∈ J and

C(x, y)(t, λ) := 0, for t ∈ [a1, a] ∪ [b, b1], λ ∈ J.

In this way we have the triangular operator

A : X ×X → X ×X

(x, y) 7→ (B(x), C(x, y)),

where B is a Picard operator and C(x, ·) : X → X is an α-contraction, with α =
3
8
Lf (b− a)2.

From the theorem of fibre contraction (see [22], [23]) we have that the operator A
is Picard operator. So, the sequences

xn+1 := B(xn),
yn+1 := C(xn, yn), n ∈ N

converges uniformly (with respect to t ∈ [a1, b1], λ ∈ J) to (x∗, y∗) ∈ FA, for all
x0, y0 ∈ C([a1, b1]× J).

If we take, x0 = 0, y0 =
∂x0

∂λ
= 0, then

y1 =
∂x1

∂λ
.

By induction we prove that

yn =
∂xn

∂λ
, ∀ n ∈ N.

Thus

xn
unif.−→ x∗ as n →∞,

∂xn

∂λ
→ y∗ as n →∞.

These imply that there exists
∂x∗

∂λ
and

∂x∗

∂λ
= y∗.

From the above considerations, we have that
Theorem 7.1. Consider the problem (7.3)+(7.2), in the conditions (C1) − (C6).

Then
(i) The problem, (7.3)+(7.2), has in C([a1, b1]× J) a unique solution, x∗.
(ii) x∗(t, ·) ∈ C1(J), ∀ t ∈ [a1, b1].
Remark 7.1. By the same arguments we have that, if f(t, ·, ·, ·) ∈ Ck, then

x∗(t, ·) ∈ Ck(J), ∀ t ∈ [a1, b1].
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