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1. Introduction

The idea of modelling the optimization problems in terms of the fixed points of the
multivalued operator drew the mathematicians’ attention to it, determining an intense
research activity, in the last three decades (see J.P.Aubin[1]; J.P.Aubin, A.Cellina [2];
R.A.Becker, H.Bercovici, C.Foiaş [3]; K.C.Border [4]; H.W.Corley [5], [6]; Lj.Gajić
[7]; W.K.Kim [8]; Z.Liang [9]; J.E.Martinez-Legaz [10]; I.A.Rus [11], [12]; E.Tarafdar
[13]; G.X.Z.Yuan, G.Isac, K.K.Tan, J.Yu [14]; J.X.Zhou [15] and others).

The purpose of this paper is to prove some multivalued analysis theorems with
econo-
mical uses. The theorems obtained in the main section generalize some results from
Corley [6]. We also formulate two mathematical models for consumer’s problem,
governed by multivalued operators, offering some existence results of these problems.

2. Preliminaries

Let (X, d) be a metric space. Throughout this paper we use the following notations:

P (X) := {A ⊂ X | A 6= ∅};
Pcl(X) := {A ∈ P (X) | A = Ā};

Pcp(X) := {A ∈ P (X) | A a compact set}.
If A ∈ P (X) and ε > 0, then we denote:

δ(A) := sup{d(a, b) | a, b ∈ A};
Pb(X) := {A ∈ P (X) | δ(A) < +∞};

V (A; ε) := {x ∈ X | d(x, a) < ε, (∀) a ∈ A}.
Definition 2.1. Let T : X ( X be a multivalued operator.
An element x ∈ X is a strict fixed point of T iff T (x) = {x}.
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We denote by (SF )T := {x ∈ X | T (x) = {x}} the strict fixed points set of
T.

Definition 2.2 ([12]). A function ϕ : R+ → R+ is a comparison function if
it satisfies the conditions:

i) ϕ is monoton increasing;

ii)
(

ϕn(t)
)

n∈N
converges to 0, for all t > 0.

Definition 2.3 ([12]). Let T : X → P (X) be a multivalued operator and
x0 ∈ X be an arbitrary point. By definition, a sequence (xn)n∈N is called sequence
of successive approximations of T, starting from x0, if x0 ∈ X and
xn+1 ∈ T (xn), for all n ∈ N.

Definition 2.4. Let (X, d), (Y, d′) be two metric spaces and T : X → P (Y ) be
a multivalued operator. Then, by definition, T is H-upper semicontinuous (briefly,
H-u.s.c.) in x0 ∈ X, iff (∀) ε > 0, (∃) δ > 0 such that (∀)x ∈ B(x0; δ) we have
T (x) ⊂ V (T (x0); ε).

The multivalued operator T is called H-u.s.c. on X, if it is H-u.s.c. in each point
x0 ∈ X.

Definition 2.5. Let Y be a topological vector space. A set C ∈ P (Y ) is called
a cone iff

(∀) (x ∈ C, 0 < λ ∈ R) ⇒ λ · x ∈ C.

Definition 2.6. A cone C ⊂ Y is:
i) a convex cone, if it is a convex set;
ii) a pointed cone, if C ∩ (−C) = {θ};
iii) an acute cone, if C̄ is a pointed cone.
Due to the liniar structure of the space Y, the cone C induces a partial order on

Y, defined by:
x 6C y ⇔ y − x ∈ C, (∀)x, y ∈ Y.

Let A ∈ P (Y ). We denote by Max(A, 6C) the set of the maximal elements
of the ordered set (A, 6C).

Definition 2.7 ([5]). Let Y be a topological vector space, C a cone in Y and
B ∈ P (Y ). B is said to be C-semicompact if every open cover {C(yi − C̄) | yi ∈
B, i ∈ I} of B
has a finite subcover ( where the symbol C(yi − C̄) means the complement of a set
yi − C̄).

If X is a topological vector space, then we denote by PC−scp(X) the space of
all nonempty and C-semicompact subsets of X.

In the sequel is necessary the following known results:
Theorem 2.8. (Corley, 1980). Let Y be a topological vector space and C ⊂ Y

be an acute convex cone. If B ∈ P (Y ) is a C-semicompact set, then Max(B, 6C) 6=
∅.

Theorem 2.9. (Corley, 1986). Let (X, d) be a complete metric space, Y ∈
Pcl(X) and T : Y → Pb(Y ). We suppose that:

i) there exist 0 6 k < 1, y0 ∈ Y and yn+1 ∈ T (yn), (∀)n ∈ N, for which
δ(T (yn+1)) 6 k · δ(T (yn));
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ii) y ∈ T (y), (∀) y ∈ Y .
Then, yn → y∗ ∈ Y as n →∞ and {y∗} = T (y∗).

3. Main results

First result of this section is the following topological strict fixed point theorem,
that generalizes Theorem 2, in Corley [6].

Theorem 3.1. Let X be a topological vector space, Y ∈ PC−scp(X), C be a acute
convex cone in X and T : Y → PC−scp(Y ) be a multivalued operator. We suppose
that y ∈ T (y), for each y ∈ Y . Then (SF )T 6= ∅.

Proof. Applying Theorem 2.8, we obtain B := Max(Y, 6C) 6= ∅. Let x ∈ B.
Clearly, x ∈ Y . From Theorem 2.8 it results that F (x) := Max(T (x), 6C) 6= ∅. Let
y ∈ F (x). Hence, y ∈ T (x) ⊂ Y . Because, x, y ∈ Y and x is a maximal element in
Y, it follows that y 6C x.

On the other hand, by the hypothesis iii) we have x ∈ T (x). Since y ∈ T (x) and
y is a maximal element in T (x), we deduce that x 6C y.

As, 6C is an ordered relation on Y, we obtain x = y. Consequently, there exists
y ∈ Y such that T (y) = {y}. So, (SF )T 6= ∅. ¤

We’ll establish now a continuity property for a multivalued operator, from the
optimization theory.

Theorem 3.2. Let X and Y be two normed spaces, C ⊂ Y be an acute convex
cone and T : X → Pb,C−scp(Y ) be a H-u.s.c. multivalued operator.

In these conditions, F (x) := Max(T (x), 6C) is H-u.s.c. multivalued operator.
Proof. From Theorem 2.8, we have F (x) 6= ∅, for each x ∈ X. Let x0 ∈ X, be

an arbitrary point. Because T is H-u.s.c. in x0, we have that for each ε > 0, there
exists ε1 =

ε

2M
> 0, for this ε1 there exists δ > 0 such that for all x ∈ B(x0; δ)

we have T (x) ⊂ V (T (x0); ε1). In fact, we get:

(∃) F (x) = Max(T (x), 6C) ⊂ T (x) ⊂ V (T (x0); ε1) ⊂ V (Max(T (x0)); ε) = V (F (x0); ε).

Indeed, let us denote by: µ := sup{‖u − v‖ | u, v ∈ T (x0)} > 0. Since T has
bounded values, it follows that µ < +∞. Hence, we can take M := µ + 1 > 1. Also,
it is known that:

V (T (x0); ε1) := {y ∈ Y | ‖y − y0‖ <
ε

2M
, (∀) y0 ∈ T (x0)};

V (Max(T (x0)); ε) := {y ∈ Y | ‖y − ym
0 ‖ < ε, (∀) ym

0 ∈ Max(T (x0))}.
In set Max(T (x0)) can be more than one element. Next, we want to prove that

V (T (x0); ε1) ⊂ V (Max(T (x0)); ε).

Let y ∈ V (T (x0); ε1), then:

‖y − ym
0 ‖ 6 ‖y − y0‖+ ‖y0 − ym

0 ‖ <
ε

2M
+

ε

2M
=

ε

M
< ε.

Finally, we obtained that for every ε > 0, there exists δ > 0 such that for all
x ∈ B(x0; δ), we have F (x) ⊂ V (F (x0); ε). ¤
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The following result is a strict fixed point metrical theorem, that generalizes
Theorem 2.9 belonging to H.W.Corley.

Theorem 3.3. Let (X, d) be a complete metric space, Y ∈ Pcl(X) and
T : Y → Pb(Y ). We suppose that:

i) there exist a comparison function ϕ and a sequence (yn)n∈N of succesive ap-
proximations of T, starting from y0 ∈ Y , such that δ(T (yn+1)) 6 ϕ(δ(T (yn))), for
all n ∈ N;

ii) y ∈ T (y), (∀) y ∈ Y .
In these conditions, (SF )T = {y∗}.
Proof. Let y0 ∈ Y and yn+1 ∈ T (yn) , (∀) n ∈ N. From i) we have:

δ(T (yn)) 6 ϕ(δ(T (yn−1))) 6 ... 6 ϕn(δ(T (y0))) → 0, as n →∞.

This implies that δ(T (yn)) → 0, as n →∞.
Since δ(T (yn)) → 0 , it result d(ym, yn) → 0, as m,n → ∞. It follows that

the sequence (yn)n∈N is Cauchy in the complete metric space (X, d). Hence, there
exists y∗ ∈ X such that lim

n→∞
yn = y∗. Moreover, Y being closed we have y∗ ∈ Y .

Because, by the hypothesis ii), y∗ ∈ T (y∗) and on the other side δ(T (y∗)) = 0,
we conclude that {y∗} = T (y∗). ¤

Remark 3.4. If ϕ(t) = k · t, 0 6 k < 1, then from Theorem 3.3 we obtain
Theorem 2.9.

4. Applications to consumer’s problem

In the equilibrium-point theory for abstract economies, appear the preference op-
erators. In our context, preference or indifference will be taken as primary notions,
meaning that, if x and x′ are two variants of commodity consumption, then a con-
sumer may express a preference for one of them or he may say they are equivalent
(indifferent) to him to choose one or the other.

Let an economy, there are n commodities and m consumers. Considering that the
commodity space is Rn, then for the consumption vectors x, x′ ∈ Rn, we will define
the preference-indifference relation (the weak preference relation) º on
Rn, as a logical combination, in this way:
x º x′ ⇔ x is rather prefered to x′ or the consumption vectors x and

x′ are indifferent to me.
We assume that the consumption set of the consumer i, i ∈ {1, ..., m}, is given

by a subset Yi ⊂ Rn. The preference relation of consumer i is a binary relation ºi

defined on Yi. For x ∈ Yi define the upper contour set Ui(x) := {x′ ∈ Yi | x′ ºi

x}. We’ll omit the index i, when the meaning is clear.
The preference relation º being given, the preference multivalued operator

will be defined as follows: U : Y ( Y, U(x) := {y ∈ Y | y º x}.
By definition, a consumption vector x∗ ∈ Y is a optimal preference for U,

if U(x∗) = {x∗}. It this way, the consumer’s problem can be modelled in terms of
strict fixed points of a multivalued operator. For example, we will prove the following
result.
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Theorem 4.1. Consider Y ∈ P (Rn) , C ⊂ Rn be an acute convex cone and
U : Y → P (Y ) be the preference operator. We suppose that:

i) Y is a C-semicompact set;
ii) For all x ∈ Y , the upper contour set U(x) is a C-semicompact set.
Then, the consumer’s problem has at least one solution.
Proof. Because all vectors of consumer admit the relation x º x, we have

x ∈ U(x), (∀)x ∈ Y . Thus, the conclusion follows immediately by virtue of theorem
3.1. ¤

Remark 4.2. It is not necessary for the validity of our result to assume that the
relation º is either complete or transitive.

In the economic models, there is also the possibility for another more subtle ap-
proach to the fundamental concepts from the consumer’s theory, using the numeric
reprezentation of consumer’s preferences by an utility operator.

In order to create a proper background for an optimization model, the following
sets are necessary, being requested by the economic use.

The consumption set will be K ⊂ Rn. It is a closed convex cone in Rn.
The price space is defined by Y = {p ∈ Rn | p · x > 0, x ∈ K}. Y is a closed

convex cone. It is well known that K = {x ∈ Rn | p · x > 0 for all p ∈ Y }.
Note that, without loss of generality, spendable income is normalized to unity. We

may define the budget set, B(p) := {x ∈ K | p · x 6 1}.
Let º be a preference ordering on K. Assume that º can be reprezented by a

utility function u : K → R , i.e. a real valued function such that for all vectors
x, x′ in K, x º x′ if only if u(x) > u(x′).

The consumer’s problem supposes the solving of the following optimization prob-
lem: sup

x∈B(p)

u(x). The solution of the consumer’s problem, regarded as a price func-

tion, leads to a new operator v : Y → R, v(p) := sup{u(x) | p · x 6 1}, whom we’ll
call the indirect utility function associated with u.

Theorem 4.3. Let K, Y ∈ P (Rn) and let T : K → Pcp(Y ) be continuous.
Consider an utility function u : K → R such that v : Y → R is the indirect utility

function of u. Define F : K ( Y, F (x) := {p ∈ T (x) | v(p) = sup
x′∈B(p)

u(x′)}.
In these conditions, we have:
a) If v is continuous, then F is closed and u.s.c.;
b) If u is continuous, then F (x) ∈ Pcp(Y ).
Proof. a) Let xn → x0, pn ∈ F (xn), pn → p0. We will prove that p0 ∈ F (x0).

Since T is u.s.c. and compact-valued it follows that T is closed, so p0 ∈ T (x0).
Suppose p0 6∈ F (x0). Then there is q0 ∈ T (x0) with v(q0) > v(p0). Because T
is l.s.c. at x, there is a sequence qn → q0, qn ∈ T (xn). Since qn → q0, pn → p0

and v(q0) > v(p0), the continuity of v implies that eventually v(qn) > v(pn),
contradicting pn ∈ F (xn).

Now, F = T ∩ F implies that F is u.s.c. at x.
b) Because the sets B(p) = {x ∈ K | p ·x 6 1} are compact and u is continuous

on B(p), u takes its maximum value at some x̄ ∈ B(p), i.e. sup
x′∈B(p)

u(x′) = u(x̄) =
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v(p). So, F (x) 6= ∅. Now, from the assumption T (x) ∈ Pcp(Y ) we have that F
is compact-valued. ¤
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