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Abstract. Theorems of characterization for uniform exponential stability of linear skew-product
semiflows on locally compact spaces, in terms of Banach function spaces, are given. Some theorems
due to Neerven and Rolewicz are generalized for the case of linear skew-product semiflows.
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1. Introduction

One of the most notable results in the theory of stability of evolution equations
has been proved by Neerven in [12]. It connects the uniform exponential stability
of a C0 - semigroup with the ownership of its orbits to a certain Banach function
space. This theorem can be considered as a reformulation of a well-known stability
theorem due to Datko [6], which says that an evolution operator U = {U(t, s)}t≥s≥0

is uniformly exponentially stable if and only if for every x ∈ X and s ≥ 0 the mapping
t 7→ U(t + s, s)x belongs to Lp(R+, X) and these orbits are uniformly bounded in
Lp(R+, X).

An another important step in the theory of evolution operators has been made by
Rolewicz [14], which expressed the uniform exponential stability as follows:
Theorem 1.1. (Rolewicz) Let ϕ : R∗

+ ×R+ → R be a function with the following
properties:

(i) for every t > 0, s → ϕ(t, s) is a continuous, non-decreasing function with
ϕ(t, 0) = 0 and ϕ(t, s) > 0, for all s > 0;

(ii) for every s ≥ 0, t → ϕ(t, s) is non-decreasing.

Let X be a Banach space and let U = {U(t, s)}t≥s≥0 be an evolution family on X.
If for every x ∈ X, there is α(x) > 0 such that

sup
s

∫ ∞

s

ϕ(α(x), ||U(t, s)x||) dt < ∞

then U is uniformly exponentialy stable.
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It is easy to see that if α is constant, then the property of uniform exponential
stability from above proceed from the fact that all the orbits of the evolution operator
of the type U(·+ s, s)x lie in a certain Orlicz space and they are uniformly bounded.

In this paper we shall extend the ideeas presented above to a more general situation
described by linear skew-product semiflows on locally compact spaces.

The central purpose is to obtain a variant of Rolewicz’s theorem for linear skew-
product semiflows. This is done by employing a Banach function space technique. It
is important to mention that the methods used in the proofs are completely different
from those used by Neerven and Rolewicz.

2. Preliminary results

2.1. Banach function spaces

In this section we recall some facts about Banach function spaces over R+. For
the proofs we refer to [11].

Let (R+,L,m), where L is the σ-algebra of all Lebesgue measurable sets A ⊂ R+

and m the Lebesgue measure. We shall denote by M the linear space of all m-
measurable functions f : R+ → C, identifying functions which are equal a.e.

A Banach function norm is a function N : M → R̄+ = [0,∞] with the following
properties:

n1)N(f) = 0 if and only if f = 0a.e.;

n2) if |f | ≤ |g| a.e. then N(f) ≤ N(g);

n3)N(αf) = |α|N(f), for all scalars α ∈ C and all f with N(f) < ∞;

n4)N(f + g) ≤ N(f) + N(g), for all f, g ∈M.

Let B = BN be the set defined by

B := {f ∈M : |f |B := N(f) < ∞}.
It is easy to see that (B, | · |B) is a normed linear space. If B is complete, then B

is called Banach function space over R+.

Remark 2.1. B is an ideal in M, i.e. if |f | ≤ |g| a.e. with g ∈ B, then also f ∈ B
and |f |B ≤ |g|B .

Remark 2.2. If fn → f in B, then there is a subsequence (fkn) converging to f
pointwise a.e. (see [11]).

For a Banach function space B over R+ we define

FB : R+ → R̄+, FB(t) :=
{ |χ[0,t)|B , if χ[0,t) ∈ B

∞ , if χ[0,t) 6∈ B

where χ[0,t) denotes the characteristic function of the interval [0, t). The function FB

is called the fundamental function of the Banach function space B.
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Remark 2.3. FB is a non-decreasing function.

In what follows we denote by B(R+) the set of all Banach function spaces B with
the property

lim
t→∞

FB(t) = ∞
and with E(R+) the set of all Banach function spaces B ∈ B(R+) with the property
that there exists a strictly increasing sequence (tn)n ⊂ R+ such that

tn →∞, sup
n∈N

(tn+1 − tn) < ∞ and inf
n∈N

|χ[tn,tn+1)|B > 0.

Example 2.1. We consider the Banach function norm N : M→ R̄+ defined by

N(f) =
∞∑

n=1

1
n

∫ n

n−1

|f(s)| ds.

We observe that if B = BN then

FB(n) =
n∑

j=1

1
j
, for all n ∈ N∗,

so B ∈ B(R+), but B 6∈ E(R+).

Example 2.2. For every p ∈ [1,∞) the space Lp(R+,C) with respect to the norm

|f |p :=
(∫ ∞

0

|f(t)|p dt

) 1
p

is a Banach function space. It is easy to see that FLp(t) = t1/p, for all t > 0 and
for tn = n, |χ[n,n+1)|p = 1, for all n ∈ N. So we obtain that Lp(R+,C) belongs to
E(R+).

Example 2.3. (Orlicz spaces) Let ϕ : R+ → R̄+ be a non-decreasing and left-
continuous function which is not identically 0 or ∞ on (0,∞). The Young function
associated to ϕ is given by

Yϕ(t) :=
∫ t

0

ϕ(s) ds.

Let f : R+ → C be a measurable function. We define

Mϕ(f) :=
∫ ∞

0

Yϕ(|f(s)|) ds.

The set Lϕ, of all functions f with the property that there exists a k > 0 such that
Mϕ(kf) < ∞, is easily checked to be a linear space. With respect to the norm

|f |ϕ := inf {k > 0 : Mϕ(
1
k

f) ≤ 1}
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(Lϕ, | · |ϕ) is a Banach function space over R+ called the Orlicz space associated to
ϕ.

Trivial examples of Orlicz spaces are Lp(R+,C), 1 ≤ p ≤ ∞. They are obtained
for

ϕ(t) = ptp−1, for 1 ≤ p < ∞ and ϕ(t) =
{

0 , 0 ≤ t ≤ 1
∞ , t > 1 for p = ∞.

Proposition 2.1. If 0 < ϕ(t) < ∞ for all t > 0 then the Orlicz space Lϕ has the
following properties

i) the Young function Yϕ is bijective;

ii) the fundamental function FLϕ
can be expressed in terms of the Y −1

ϕ by

FLϕ
(t) =

1
Y −1

ϕ (1
t )

, for all t > 0;

iii) lim
t→∞

FLϕ(t) = ∞ and hence Lϕ ∈ B(R+);

iv) Lϕ ∈ E(R+).

Proof. i) It is easy to see that Yϕ is strictly increasing, continuous with Yϕ(0) = 0
and Yϕ(t) ≥ (t− 1)ϕ(1), for all t > 1, so lim

t→∞
Yϕ(t) = ∞. Hence Yϕ is bijective.

ii) Let t > 0. Since

Mϕ(
1
k

χ[0,t)) = tYϕ(
1
k

),

for all k > 0, it follows that Mϕ( 1
kχ[0,t)) ≤ 1 if and only if 1/Y −1

ϕ ( 1
t ) ≤ k. So

FLϕ(t) =
1

Y −1
ϕ ( 1

t )
,

for all t > 0.
iii) Since Y −1

ϕ (0) = 0, using (ii) it follows that lim
t→∞

FLϕ(t) = ∞.

iv) We observe that for every n ∈ N

|χ[n,n+1)|ϕ =
1

Y −1
ϕ (1)

.

2.2. Linear skew-product semiflows

Let X be a fixed Banach space, let (Θ, d) be a locally compact metric space and
let E = X × Θ . We shall denote by B(X) the Banach algebra of all bounded linear
operators from X into itself.

Definition 2.1. A mapping σ : Θ×R+ → Θ is called a semiflow on Θ, if it has the
following properties:

(i) σ(θ, 0) = θ, for all θ ∈ Θ;
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(ii) σ(θ, s + t) = σ(σ(θ, s), t), for all (θ, s, t) ∈ Θ×R2
+;

(iii) σ is continuous.

Definition 2.2. A pair π = (Φ, σ) is called a linear skew-product semiflow on
E = X × Θ if σ is a semiflow on Θ and Φ : Θ ×R+ → B(X) satisfies the following
conditions:

(i) Φ(θ, 0) = I, the identity operator on X, for all θ ∈ Θ;
(ii) Φ(θ, t + s) = Φ(σ(θ, t), s)Φ(θ, t), for all (θ, t, s) ∈ Θ ×R2

+ (the cocycle iden-
tity);

(iii) (θ, t) 7→ Φ(θ, t)x is continuous, for every x ∈ X;
(iv) there are M ≥ 1 and ω > 0 such that

||Φ(θ, t)|| ≤ Meωt (2.1)

for all (θ, t) ∈ Θ×R+.

The mapping Φ is called the cocycle associated to the linear skew-product semiflow
π = (Φ, σ).

Remark 2.4. If π = (Φ, σ) is a linear skew-product semiflow on E = X × Θ then
for every β ∈ R the pair πβ = (Φβ , σ), where Φβ(θ, t) = e−βt Φ(θ, t) for all (θ, t) ∈
Θ×R+, is also a linear skew-product semiflow on E .

Example 2.4. Let Θ be a locally compact metric space, let σ be a semiflow on Θ
and let T = {T (t)}t≥0 be a C0 - semigroup on X. Then the pair πT = (ΦT , σ), where

ΦT (θ, t) = T (t)

for all (θ, t) ∈ Θ × R+, is a linear skew-product semiflow on E = X × Θ, which is
called the linear skew-product semiflow generated by the C0 - semigroup T and the
semiflow σ.

Example 2.5. Let Θ = R+, σ(θ, t) = θ + t and let U = {U(t, s)}t≥s≥0 be an
evolution family on the Banach space X. We define

Φ(θ, t) = U(t + θ, θ)

for all (θ, t) ∈ R2
+. Then π = (Φ, σ) is a linear skew-product semiflow on E = X ×Θ

called the linear skew-product semiflow generated by the evolution family U and the
semiflow σ.

Example 2.6. Let X be a Banach space, let Θ be a compact metric space and let
σ : Θ ×R+ → Θ be a semiflow on Θ. Let A : Θ → B(X) be a continuous mapping.
If Φ(θ, t) denotes the solution of the linear differential system

u̇(t) = A(σ(θ, t))u(t), t ≥ 0

then the pair π = (Φ, σ) is a linear skew-product semiflow on E = X × Θ. In fact,
these equations arise from the linearization of nonlinear equations (see e.g. [15] and
the references therein).
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Example 2.7. On the Banach space X, we consider the nonautonomous differential
equation

ẋ(t) = a(t) x(t), t ≥ 0

where a : R+ → R+ is an uniformly continuous function such that there exists
α := lim

t→∞
a(t) < ∞.

Let C(R+,R) be the space of all continuous functions f : R+ → R. This space is
metrizable with the metric

d(x, y) =
∞∑

n=1

1
2n

dn(x, y)
1 + dn(x, y)

,

where dn(x, y) = sup
t∈[0,n]

|x(t)− y(t)|.
If we denote by as(t) = a(t + s) and by Θ = closure {as : s ∈ R+} then

σ : Θ×R+ → Θ, σ(θ, t)(s) := θ(t + s)

is a semiflow on Θ,

Φ : Θ×R+ → B(X), Φ(θ, t)x = exp (
∫ t

0

θ(τ) dτ)x

is a cocycle and hence π = (Φ, σ) is a linear skew-product semiflow on E = X ×Θ.
Definition 2.3. A linear skew-product semiflow π = (Φ, σ) on E = X × Θ is called
uniformly exponentially stable if there are N ≥ 1 and ν > 0 such that

||Φ(θ, t)|| ≤ Ne−νt

for all (θ, t) ∈ Θ×R+.

Example 2.8. Consider the linear skew-product semiflow πβ = (Φβ , σ), where

Φβ(θ, t) = e−βt Φ(θ, t), β ∈ R+

and π = (Φ, σ) is the linear skew-product semiflow given in Example 2.7. It is easy
to see that πβ is uniformly exponentially stable if and only if β > α.

A sufficient condition for uniform exponential stability of linear skew-product semi-
flows is given by:

Proposition 2.2. Let π = (Φ, σ) be a linear skew-product semiflow on E = X × Θ.
If there are t0 > 0 and c ∈ (0, 1) such that

||Φ(θ, t0)|| ≤ c,

for all θ ∈ Θ, then π = (Φ, σ) is uniformly exponentially stable.

Proof. Let M ≥ 1 and ω > 0 given by (2.1) and let ν > 0 such that c = e−νt0 .
Let θ ∈ Θ. For all t ∈ R+ there are n ∈ N and r ∈ [0, t0) such that t = nt0 + r.

Then we obtain:

||Φ(θ, t)|| ≤ ||Φ(σ(θ, nt0), r)|| ||Φ(θ, nt0)|| ≤ Meωt0 e−nνt0 ≤ Ne−νt,

where N = Me(ω+ν)t0 . So π is uniformly exponentially stable.
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3. The main results

In this section we shall give necessary and sufficient conditions for uniform expo-
nential stability of linear skew-product semiflows in terms of Banach function spaces.

Theorem 3.1. Let π = (Φ, σ) be a linear skew-product semiflow on E = X × Θ.
Then π is uniformly exponentially stable if and only if there exists a Banach function
space B ∈ E(R+) such that:

(i) for every x ∈ X and θ ∈ Θ the function

fθ,x : R+ → R+, fθ,x(t) = ||Φ(θ, t)x||
belongs to B;

(ii) there exists a function K : X → (0,∞) such that

|fθ,x|B ≤ K(x),
for all (x, θ) ∈ E .

Proof. Necessity. Let N, ν > 0 such that

||Φ(θ, t)|| ≤ N e−νt,

for all (θ, t) ∈ Θ × R+ and B = Lp(R+,C), where p ∈ [1,∞). Then for every
(x, θ) ∈ E we have that

|fθ,x|p ≤ N

(ν p)1/p
||x||.

Sufficiency. Since B ∈ E(R+) there exists a strictly increasing sequence (tn) ⊂
(0,∞) with tn →∞ and

δ = sup
n

(tn+1 − tn) < ∞ and c = inf
n
|χ[tn,tn+1)|B > 0. (3.1)

Let n ∈ N and θ ∈ Θ. For every t ∈ [tn, tn+1) we have that:

||Φ(θ, tn+1)x|| ≤ M eω δ ||Φ(θ, t)x||
where M and ω are given by the relation (2.1). It follows that:

χ[tn,tn+1)(t) ||Φ(θ, tn+1)x|| ≤ M eω δ ||Φ(θ, t)x||
for all t ≥ 0. Using the relation (3.1) and the hypothesis we obtain that:

c ||Φ(θ, tn+1)x|| ≤ M eω δ K(x)

for every (x, θ, n) ∈ E×N. By the uniform boundedness principle it results that there
exists L1 > 0 such that

||Φ(θ, tn+1)|| ≤ L1

for all (θ, n) ∈ Θ×N.
Let θ ∈ Θ and t ≥ t1. Then there exists an unique n ∈ N∗ such that tn ≤ t < tn+1.

Hence we deduce that:

||Φ(θ, t)|| ≤ ||Φ(σ(θ, tn), t− tn)|| ||Φ(θ, tn)|| ≤ M eω δ L1.
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Denoting by L = max {M eω δ L1,M eω t1} we obtain that

||Φ(θ, t)|| ≤ L,

for all t ≥ 0 and θ ∈ Θ
Let x ∈ X and n ∈ N∗. For t ∈ [0, n] we have:

||Φ(θ, n)x|| ≤ L ||Φ(θ, t)x||
so

χ[0,n](t) ||Φ(θ, n)x|| ≤ L ||Φ(θ, t)x||
for all t ≥ 0. It follows that

FB(n) ||Φ(θ, n)x|| ≤ L |fθ,x|B ≤ LK(x).

By the uniform boundedness principle we obtain that there exists K > 0 such that

FB(n) ||Φ(θ, n)|| ≤ K,

for all θ ∈ Θ and n ∈ N∗.
Since B ∈ E(R+) there exists n0 ∈ N with FB(n0) > 2K. Then we deduce that

||Φ(θ, n0)|| ≤ 1
2
,

for all θ ∈ Θ.
Using Proposition 2.2. it follows that π is uniformly exponentially stable.

Remark 3.1. It is easy too see that in the particular case when the linear skew-
product semiflow is given by Example 2.4., the theorem from above generalizes the
theorem of Neerven [12], because the condition (ii) becomes trivial.

A theorem of Rolewicz’s type, for linear skew-product semiflows is given by

Theorem 3.2. Let π = (Φ, σ) be a linear skew-product semiflow on E = X × Θ.
Then π is uniformly exponentially stable if and only if there exist a non-decreasing
function ϕ : R+ → R+ and K > 0 such that:

(i) ϕ(0) = 0 and ϕ(t) > 0, for all t > 0;

(ii) for every (x, θ) ∈ E with ||x|| ≤ 1∫ ∞

0

ϕ(||Φ(θ, t)x||) dt ≤ K.

Proof. Necessity. Let ϕ(t) = t, for all t ≥ 0. Let N, ν ∈ (0,∞) such that

||Φ(θ, t)|| ≤ N e−νt,

for all t ≥ 0 and θ ∈ Θ. Then for every (x, θ) ∈ E with ||x|| ≤ 1 we have that∫ ∞

0

||Φ(θ, t)x|| dt ≤ N

ν
.

Sufficiency. Let M, ω given by relation (2.1), t0 > 0 such that K < t0 ϕ(1) and
δ = 1/M eω t0 .
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Let (x, θ) ∈ E with ||x|| ≤ 1 and t ≥ t0. We have that:

||Φ(θ, t)δ x|| ≤ ||Φ(θ, u)x||,
for all u ∈ [t− t0, t].

Since ϕ is non-decreasing using the relation from above it follows that

t0 ϕ(||Φ(θ, t)δ x||) ≤
∫ t

t−t0

ϕ(||Φ(θ, u)x||) du ≤ K.

Taking in account the way that t0 was chosen, from the last inequality we obtain

||Φ(θ, t)δ x|| ≤ 1,

for all t ≥ t0 and θ ∈ Θ, so

||Φ(θ, t)|| ≤ 1
δ
, (3.2)

for all t ≥ t0 and θ ∈ Θ. Denoting by L = 1
δ + Meωt0 and using the relation (3.2) it

follows that:
||Φ(θ, t)|| ≤ L,

for all t ≥ 0 and θ ∈ Θ.
Without lost of generality we can suppose that ϕ is left-continuous (if not we

consider the function ϕ̃(t) = lim
s↗t

ϕ(s), for t > 0 and the proof is the same).

Let Lϕ be the Orlicz space associated to ϕ. For every (x, θ) ∈ E let

fθ,x : R+ → R+, fθ,x(t) = ||Φ(θ, t)x||.
If x ∈ X \ {0} and x̃ = x

(K+1) L ||x|| we have:

Yϕ(fθ,x̃(t)) = Yϕ(||Φ(θ, t)x̃||) ≤ ||Φ(θ, t)x̃||ϕ(||Φ(θ, t)x̃||) ≤

≤ 1
K + 1

ϕ(||Φ(θ, t)x̃||).
It follows that

Mϕ(fθ,x̃) < 1

so fθ,x̃ ∈ Lϕ and |fθ,x̃|ϕ ≤ 1. Because Lϕ is a linear space and fθ,x̃ = 1
(K+1) L ||x|| fθ,x,

it results that fθ,x ∈ Lϕ and

|fθ,x|ϕ ≤ (K + 1) L ||x||.
By applying Proposition 2.2. and Theorem 3.1. we conclude that π is uniformly

exponentially stable.

Remark 3.2. If in Theorem 3.2. ϕ(t) = t2 and π is given by Example 2.5.,then we
obtain the theorem of Datko ([6]).

Remark 3.3. Another proofs for the theorems from this section are presented in [10],
where the results are obtained for discrete-time cases and the techniques involved are
based on Banach sequence spaces.



72 M. MEGAN, A. L. SASU, B. SASU

References

[1] S.-N. Chow, H. Leiva, Dynamical spectrum for time-dependent linear systems in Banach spaces,
Japan J. Indust. Appl. Math., 11, (1994) 379-415

[2] S.-N. Chow, H. Leiva, Existence and roughness of the exponential dichotomy for linear skew-
product semiflows in Banach space, J. of Diff. Eqs., 120, (1995) 429-477

[3] S.-N. Chow, H. Leiva, Two definitions of exponential dichotomy for skew-product semiflow in
Banach spaces, Proc. of the Amer. Math. Soc., 124, (1996) 1071-1081

[4] S.-N. Chow, H. Leiva, Dynamical spectrum for skew-product flow in Banach spaces, Boundary
Problems for Functional Differential Equations, World Sci. Publ., Singapore, (1995) 85-105

[5] S.-N. Chow, H. Leiva, Unbounded Perturbation of the Exponential Dichotomy for Evolution
Equations, J. of Diff. Eqs., 129, (1996) 509-531

[6] R. Datko, Uniform asymptotic stability of evolutionary processes in Banach spaces, SIAM J.
Math. Analysis, 3, (1973) 428-445

[7] Y. Latushkin, S. Montgomery-Smith, T. Randolph, Evolutionary semigroups and dichotomy of
linear skew-product flows on locally compact spaces with Banach fibers, J. of Diff. Eqs., 125,
(1996) 73-116

[8] Y. Latushkin, R. Schnaubelt, Evolution semigroups, translation algebras and exponential di-
chotomy of cocycles, J. of Diff. Eqs., 159, (1999) 321-369

[9] M. Megan, A. L. Sasu, B. Sasu, Perron conditions and uniform exponential stability of linear
skew-product semiflows on locally compact spaces, accepted for publication in Acta Math. Univ.
Comenianae

[10] M. Megan, A. L. Sasu, B. Sasu, On uniform exponential stability of linear skew-product semi-
flows in Banach spaces, accepted for publication in Bull. of the Belgian Math. Soc. Simon
Stevin

[11] P. Meyer-Nieberg, Banach Lattices, Springer Verlag, Berlin, Heidelberg, New York, 1991.
[12] J. M. A. M. van Neerven, Exponential Stability of Operators and Operator Semigroups, J. Func.

Anal., 130 (1995), 293-309.
[13] J. M. A. M. van Neerven, The Asymptotic Behaviour of Semigroups of Linear Operators, Op-

erator Theory Adv. Appl. 88, Birkhäuser, Bassel, 1996.
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