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1. INTRODUCTION

This paper is a survey on our recent results on quasistatic antiplane contact prob-
lems, where general versions of Tresca’s friction law (see [1] for details) are considered.
First, we recall in Section 2 an abstract result on evolution variational inequalities
obtained in [4], then we apply it in Section 3 in the study of an elastic contact problem
with slip dependent friction and provide a result obtained in [3]. Further, in Section
4 we slightly generalize a result obtained in [2] which expresses the convergence of the
viscoelastic solution to the solution of the elastic problem studied in Section 3.

2. AN ABSTRACT EXISTENCE AND UNIQUENESS RESULT IN [4]

In this section we recall an existence and uniqueness result which was established
in [4] in the study of the following evolution problem.

Problem P. Find u:[0,T) — V such that
a(u(t),v —u(t)) + j(u(t),v) — j(u(t),a(t)) > (f(t),v—a(t))v

YveV, ae te(0,T),
u(0) = up.

Here, V' denotes a real Hilbert space and suppose that
(i1) @ : V XV — IR is a bilinear, continuous, symmetric form for which there exists
m > 0 such that a(v,v) > m|v||}, Yo e V.
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(i2) j : V xV — IR is positively homogeneous and subadditive with respect to the
second argument.

(i3) f € WHe(0,T;V), ug € V, alug,v) + j(ug,v) > (f(0),v)y Yo eV.

Consider the properties below.

(j1) For every sequence {u,} C V with |lu,|lv — oo, every sequence {¢,} C [0,1]
and each u € V, one has

n—oo

1
niv

(j2) For every sequence {u,} C V with |ju,|ly — oo, every bounded sequence
{nn} C V and each @ € V one has

. I -
lim inf {m]é(nnaun —Uu; _un)} <m.

n—oo

(j3) For all sequences {u,} C V and {n,} C V such that u,, ~ue€V,n, =neV
weakly in V and for every v € V, the inequality below holds

thllp [](ﬁn,v) _](nn,un)] S j(ﬂ,’U) _](nvu)

n—oo

(ja) There exists ¢g € (0,m) such that
jlu,v —u) —j(v,v —u) < collu—v||} Vu,v e V.

(j5) There exist two functions a; : V — IR and ag : V — IR which map bounded
sets in V' into bounded sets in IR such that a;(0y) < m — ¢o and

i w)| < ar()|ully + az(n) Vn,ue V.
(j¢) For every sequence {n,} C V with n, — n € V weakly in V and every
bounded sequence {u,} C V one has lm [j(9,, un) — j(1, un)] = 0.

(j7) For every s € (0,T] and every functions u,v € W1>°(0,T; V) with u(0) = v(0),
u(s) # v(s), the inequality below holds

/OS[J'(U(t), o(t)) = jul(t), a(t)) + J(v(t), a(t)) = j(u(t), o(t))]dt < % lu(s) = v(s)II5-

(js) There exists a € (0, %) such that for every s € (0,77] and every functions
u,v € WHo(0,T; V) with u(s) # v(s), the inequality below holds
_l’_

s
/0 [i(u(t), 5(8)) = j(u(t), a(t) + j(v(t), a(t) — j(v(t), o(t)ldt < allu(s) — v(s)]7-

In (j1)-(j2), j5 denotes the directional derivative with respect to the second vari-

able, i.e.
1
Ja(nywsv) = lim —1(n,u+ ) - j(n,U)} v, u, v €V,

which exists since j(n,-) : V — IR is a convex functional for all n € V.

In the study of Problem P the following result was obtained.

Theorem 1. (D. Motreanu and M. Sofonea [4]) Assume (i1)-(i3).
(i) If (j1)-(js) hold then there exists at least a solution u € W>°(0,T; V) to Problem



RESULTS ON QUASISTATIC ANTIPLANE CONTACT PROBLEMS 257
P.
(i1) If (j1)-(j7) hold then there exists a unique solution w € W1°°(0,T; V) to Problem
P.

(#9t) Under the assumptions (j1)-(je) and (js) there exists a unique solution u =
u(f,ug) € WH(0,T;V) to Problem P and the mapping (f,uo) — u is Lipschitz
continuous from W (0,T;V) x V to L>(0,T;V).

The proof of Theorem 1 is based on a time discretization method. We resume
here the main ingredients of the proof: first, Problem P is replaced by a sequence of
quasivariational inequalities which have a unique solution; then, the discrete solution
is interpolated in time and, using compactness and lower semicontinuity arguments,
the existence of a solution to Problem P is derived; the uniqueness of the solution
as well as its Lipschitz continuous dependence with respect to the data is proved by
using Gronwall-type arguments.

3. APPLICATION OF THEOREM 1 TO AN ANTIPLANE PROBLEM

The rest of the paper deals with antiplane contact problems, specifically the contact
between a cylinder and a rigid foundation. The cylinder is supposed to have the
generators sufficiently long, parallel with the x3-axis of a fixed Cartesian coordinate
system Ozizoxs in IR® with a regular, bounded cross-section Q in the x1,zo-plane.
The boundary I' of Q is divided into three disjoint measurable parts I'y,T's, '3 with
IT'1] > 0. The body is fixed on I'y X (—o00,+00). The contact between the cylinder
and the foundation is frictional, bilateral on I's X (—o0, +00).

Assume that in the time interval [0, T] the cylinder is submitted to volume forces
of density f, = (0,0, fo) : @ x (0,T) — IR® and surface tractions of density f, =
(0,0, f2) : Tox(0,T) — IR*. The forces give rise to a deformation of the cylinder whose
displacement u is parallel to the generators, independent on the axial coordinate, i.e.
u = (0,0,u), with u: Q x (0,7') — IR. Denote v the unit normal on I' X (—o0, +00).
We have v = (v, 19,0), with vy, 5 : T' — IR. We use the notation d,u = (Qu/dx1 )1+
(Ou/0x2)va.

Suppose now the cylinder elastic, homogeneous, isotropic, then it follows the law
o = Atr e(u))I + 2pe(u), where e(u) = (¢;5(w)) is the infinitesimal strain tensor,
that is g;;(u) = (1/2)(0u;/0x; + Ou;/0x;), 1,j = 1,2,3, tr e(u) = e;(u), I is the
unit tensor in R®, A > 0 and g > 0 are the Lamé coefficients. The law permits to
determine the stress field & when the displacement w is known and to consider the
following contact problem.
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Problem Py. Find the displacement field u : Q x [0,T] — IR such that
pAu~+ fo=0 on Q x (0,T),
u=0 onTy x(0,7),
wo,u=fo onTsx(0,T),
pyu = g1(|ul)
du<0=< pou>gi(u)=u=0
wo,u = g1(Ju|) =3B >0 a.e. onTs such that pd,u = —pu
pOyu < go(|ul)
Su>0=< pou<g(u)=u=0
uo,u = go(lu|) = 3B > 0 a.e. on Ty such that pd,u = —fu
onT'5 x (0,7T),
u(0) =ug on Q.
Here ug is given and g1, 92 : I's X IR; — IR are assumed to satisfy

g1(z,r) <0, go(x,7) >0 ae xz €Dy, Vre Ry,
gi(+,7) is Lebesgue measurable on I's Vr € IRy, g¢;(-,0) € L?(T'3), (1)
lgi(z,7m1) — gi(x,72)| < Li|r1 — 2| ae. x €T3, Vri,m2 € Ry,

for some positive constants L;, where i = 1, 2.
Consider the Hilbert space

V={veH'(Q)|v=0 on Ty}, (u,v)y = / Vu-Vvdr Yu,veV.
Q
By Sobolev’s trace theorem we find a constant Cy = Co(2,T'1,T'3) > 0 such that

[vllL2(rs) < Collvllv Vo e V.
In view of (1), let the functional j : V x V — IR defined by

J(u,v) = /F lg2(Jul)v™ — g1(jul)vF]da Vu,veV, (2)
where v = max{v,0}, v~ = max{—v,0}. Assume that

fo € W0, T L2(Q),  fo € WH(0,T5 L*(I)), (3)

uo €V, ulug,v)v + jlug,v) > (f(0),v)y YoeV. (4)

By Riesz’s representation theorem, let the function f: [0,7] — V given by
(@0 = [ foltyods+ [ falwde woe V. e (o1
Q s
We are led to the following weak formulation of Problem F.

Problem F}. Find a displacement field v : [0,T] — V such that

plu(t),v —at))v + j(u(t), v) = j(u(t), a(t)) = (f(t), v —u(t))v
Vo eV, ae. t€(0,T),
u(0) = up.
We have the following result.

Theorem 2. [3] Suppose that conditions (3) and (4) hold.



RESULTS ON QUASISTATIC ANTIPLANE CONTACT PROBLEMS 259

(i)' Under the assumption (1), if in addition L1 + Ly < u/Cg, then there exists at
least a solution u for Problem P}, which satisfies u € W1°°(0,T; V).

(ii) If gy : T3 — IR_ and g2 : s — IRy, g1,90 € L*('3), there ewists a unique
solution uw € W1°°(0,T; V) for Problem Pj. Moreover, the mapping (f,uo) — u is
Lipschitzian from W (0,T;V) x V to L>=(0,T; V).

Proof. (Sketch) Note that conditions (i1)-(i3) are satisfied for the data entering
Problem P (see (3) and (4)). The hypotheses imposed on functions g1, g2 in part (i)’
of Theorem 2 imply that conditions (j1)-(js) are verified for the functional j in (2)
and allow the application of Theorem 1, (¢). The particular assumption in part (iz)’
shows directly that (j1)-(js) are satisfied, so parts (i7) and (4i4) in Theorem 1 can be
applied. O

4. A CONVERGENCE RESULT

In this section we see that in a particular situation for g1, go the solution of Problem
Py (that is the weak solution of the elastic Problem Pp) can be obtained as a limit
of weak solutions of viscoelastic problems. For each # > 0 consider the following
problem.

Problem Py. Find a displacement field ug : [0,T] — V such that

9(@0(??) v —tg(t))v + p(ug(t), v — g (t))v + j(fi |te(s)|ds, v)
—J( {0 lig(s)|ds,ig(t)) > (f(t),v —1(t))y Yo €V, ae te(0,T),
ug(0) = ug.

Problem Py arises as the variational formulation of a mechanical problem which is
analogous to Problem P, with two differences: the law is viscoelastic, that is o =
20e(w) + A(tr e(uw))I 4+ 2pe(u), and in the boundary condition on I's x (0,7") one
sets g := go = —¢g1 and |u] is replaced by fo |i(s)|ds. The existence and uniqueness
of the solution ug € W*°(0,T;V) to Problem Py is provided in [2] and hold under
the following hypotheses: assumption (1) becomes a corresponding condition for g,
(3) is replaced by fo € L>=(0,T;L*(Q)), fo € L>(0,T; L*(T2)) and in place of (4)
we take ug € V. The argument relies on Banach’s fixed point theorem in the space
L>(0,T;V).

Our convergence result is now stated. If g € L>°(T'3) one obtains the corresponding
result in [2].

Theorem 3. Assumeg:T3 — IR, , g € L?>(T3), (3) and (4) verified. Then ug — u in
Cc([0,T;V) as 0 — O+, where ug, u are the solutions to Problems Py, P}, respectively,
forj:V — IR, j(v) = [, glv|da, Vo€ V.

Proof. (Sketch) Using the fact that ug,u € W1°(0,T; V) are the unique solutions
to Problems Py, Pj, respectively, implies

M% |w(t) — ua(t)||3 < 20(ia(t),u(t) —ug(t))vy ae. t € (0,T).
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By integration we are led to

T
plluo(s) =@l < § [ liopa v 0.7,

which yields the result.
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