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1. Introduction

At the very beginning of 20-th century conventional physics was completely unable
to account for the observed existence of stable atoms whose electrons remain at great
distance from their respective nuclei (cf. for instance [1]). N. Bohr (1918) in his atom
model postulated discrete stationary states even though this violates the classical
electrodynamics. Irrespective of the development of quantum mechanics J. L. Synge
[2] (cf. also [3]) formulated two-body problem of classical electrodynamics using
Lienard-Wiechert retarded potentials (cf. [4]). So, for the first time, he took into
account the finite velocity of propagation of interaction in the equations of motion -
the basic assumption of Einstein special relativity theory. Synge’s result was based on
previous ones due to W. Pauli [5], who succeeded to express the Lorentz pondermotive
force in a relativistic form. Not until 1963 Driver [6] recognized the one-dimensional
case of the two-body problem as a system of functional differential equations with
delays depending on the unknown trajectories. It turned out that from the point
of view of modern theory of functional differential equations (cf. [7], [8]) Synge’s
equations (3-dimensional case) form a nonlinear system of neutral type with respect
to unknown velocities. By fixed point approach sufficient conditions for the existence
and uniqueness of escape trajectories have been formulated (cf. [9],[10]).

The paper consists of six sections. Section 2 is devoted to the equations of motion
namely the Synge’s equations. They are 8 in number while the unknown trajectories
are 6 in number. First it is shown that 2 of equations are implied by the rest ones.
So we have to consider a system of 6 equations for 6 unknown functions. In section 3
equations of motion for two-dimensional case in polar coordinates are given. Section
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4 treats one-dimensional case. The result obtained confirms those of R.D.Driver [6].
Section 5 is devoted to two-dimensional case. The system of equations of motion
is presented as a second order one. It is easy to check it has circle orbits, that is,
ρ = const with constant angular velocity ϕ̇ = const. This system is presented in
equivalent form as a first order one.

2. J.L. Synge’s equations of motion

As in [9] we denote by x(p) = (x(p)
1 (t), x(p)

2 (t), x(p)
3 (t), x(p)

4 (t) = ict)(p = 1, 2)(i2 =
−1) the space-time coordinates of the moving particles, by mp - their proper masses,
by ep - their charges, c - the speed of light. The coordinates of the velocity vectors are
u(p) = (u(p)

1 (t), u(p)
2 (t), u(p)

3 (t))(p = 1, 2). The coordinates of the unit tangent vectors
to the world-lines are (cf. [2], [3]):

λ(p)
α =

γpu
(p)
α (t)
c

=
u

(p)
α (t)
∆p

(α = 1, 2, 3), λ(p)
4 = iγp =

ic

∆p
(1)

where γp = (1− 1
c2

3∑
α=1

[u(p)
α (t)]2)−

1
2 ,∆p = (c2−

3∑
α=1

[u(p)
α (t)]2)

1
2 . It follows γp = c/∆p.

By < ., . >4 we denote the scalar product in the Minkowski space, while by < ., . >
- the scalar product in 3-dimensional Euclidean subspace. The equations of motion
modelling the interaction of two moving charged particles are the following (cf. [2],
[3]):

mp
dλ

(p)
r

dsp
=

ep

c2
F (p)

rn λ(p)
n (r = 1, 2, 3, 4)(2)

where the elements of proper time are dsp =
c

γp
dt = ∆pdt(p = 1, 2). Recall

that in (2) there is a summation in n(n = 1, 2, 3). The elements F
(p)
rn of the

electromagnetic tensors are derived by the retarded Lienard-Wiechert potentials

A(p)
r = − epλ

(p)
r

〈λ(p), ξ(pq)〉4
(r = 1, 2, 3, 4), that is, F (p)

rn =
∂A

(p)
n

∂x
(p)
r

− ∂A
(p)
r

∂x
(p)
n

. By ξ(pq) we

denote the isotropic vectors (cf. [9], [10])

ξ(pq) =(x(p)
1 (t)−x

(q)
1 (t−τpq(t)), x

(p)
2 (t)−x

(q)
2 (t−τpq(t)), x

(p)
3 (t)−x

(q)
3 (t−τpq(t)), icτpq(t))

where 〈ξ(p,q), ξ(p,q)〉4 = 0 or

τpq(t) =
1
c




3∑

β=1

[x(p)
β (t)− x

(q)
β (t− τpq(t))]2




1
2

, ((pq) = (12), (21)). (3pq)

Calculating F
(p)
rn as in [9], we write equations from (2) in the form:

dλ
(p)
α

dsp
=

Qp

c2

{
ξ
(pq)
α 〈λ(p), λ(q)〉4 − λ

(q)
α 〈λ(p), ξ(pq)〉4

〈λ(q), ξ(pq)〉34

[
1 +

〈
ξ(pq),

dλ(q)

dsq

〉

4

]
+
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+
1

〈λ(q), ξ(pq)〉24

[
〈λ(p), ξ(pq)〉4 dλ

(q)
α

dsq
−

〈
ξ(pq),

dλ(q)

dsq

〉

4

ξ(pq)
α

]}
(α = 1, 2, 3) (4.α)

dλ
(p)
4

dsp
=

Qp

c2

{
ξ
(pq)
4 〈λ(p), λ(q)〉4 − λ

(q)
4 〈λ(p), ξ(pq)〉4

〈λ(q), ξ(pq)〉34

[
1 +

〈
ξ(pq),

dλ(q)

dsq

〉

4

]
+

+
1

〈λ(q), ξ(pq)〉24

[
〈λ(p), ξ(pq)〉4 dλ

(q)
4

dsq
−

〈
ξ(pq),

dλ(q)

dsq

〉

4

ξ
(pq)
4

]}
(4.4)

where Qp = e1e2/mp(p = 1, 2). Further on we denote u(q) ≡ u(q)(t− τpq),

λ(q) = (γpqu
(q)
1 /c, γpqu

(q)
2 /c, γpqu

(q)
3 /c, iγpq) = (u(q)

1 /∆pq, u
(q)
2 /∆pq, u

(q)
3 /∆pq, ic/∆pq)

where γpq =

(
1− 1

c2

3∑
α=1

[u(q)
α (t− τpq(t)]2

)− 1
2

, ∆pq =

(
c2 −

3∑
α=1

[u(q)
α (t− τpq(t))]2

) 1
2

and
dλ

(p)
α

dsp
=

d(γp

c u
(p)
α )

c
γp

dt
=

d(u(p)
α

∆p
)

∆pdt
=

1
∆2

p

u̇(p)
α +

u
(p)
α

∆4
p

〈u(p), u̇(p)〉(α = 1, 2, 3)

dλ
(p)
4

dsp
=

d(iγp)
c

γp
dt

=
icd( 1

∆p
)

∆pdt
=

ic

∆4
p

〈u(p), u̇(p)〉, where the dot means a differentiation in

t.
In order to calculate

dλα

dsq
we need the derivative

dt

dtpq
≡ Dpq which should be

calculated from the relation

t− tpq =
1
c

(
3∑

α=1

[x(p)
α (t)− x(q)

α (tpq)]2
) 1

2

(tpq < t; t− τpq(t) = tpq by assumption).

So we have
dt

dtpq
− 1 =

3∑
α=1

[x(p)
α (t)− x(q)

α (tpq)][u(p)
α (t)

dt

dtpq
− u(q)

α (tpq)]

c

(
3∑

α=1

[x(p)
α (t)− x(q)

α (tpq)]2
) 1

2
.

Since (3pq) has a unique solution (cf. [9], [10]) we can solve the above equation
with respect to Dpq:

Dpq =
c2τpq − 〈ξpq, u(q)〉4
c2τpq − 〈ξpq, u(p)〉4

. We have also
d

dsp
=

d

∆pdt
.

Then
d

dsq
=

1
∆pq

d

dtpq
=

1
∆pq

d

dtpq

d

dt
=

Dpq

∆pq

d

dt
;

dλ
(p)
α

dsq
=

d(γpq

c u
(q)
α )

c
γpq

dtpq
=

d
(

u(q)
α

∆pq

)

∆pqdtpq
= Dpq

d
(

u(q)
α

∆pq

)

∆pqdtpq
=

= Dpq

[
u̇(q)

α

1
∆2

pq

+
u

(q)
α

∆4
pq

〈u(q), u̇(q)〉
]

(α = 1, 2, 3);
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dλ
(q)
4

dsq
=

icDpq

∆4
pq

〈u(q), u̇(q)〉; 〈λ(p)λ(q)〉4 =
〈u(p), u(q)〉 − c2

∆p∆pq
;

〈λ(p), ξ(pq)〉4 =
〈u(p), ξ(pq)〉 − c2τpq

∆p
; 〈λ(q), ξ(pq)〉4 =

〈u(q), ξ(pq)〉 − c2τpq

∆pq
;

〈ξ(pq),
dλq

dsq
〉4 = Dpq

[
1

∆2
pq

〈ξ(pq), u̇(q)〉+
〈ξ(pq), uq〉 − c2τpq

∆4
pq

〈u(q), u̇(q)〉
]

;

〈λ(p),
dλq

dsq
〉4 =

Dpq

∆p∆2
pq

[
〈u(p), u̇(q)〉+

〈u(p), uq〉 − c2

∆2
pq

〈u(q), u̇(q)〉
]

.

We note that in the above expressions ξ(pq) is 4-dimensional vector in the left-
hand sides, while in the right-hand sides ξ(pq) is 3-dimensional part of the first three
coordinates.

Replacing the above expressions in (4.α) and (4.4) and performing some obvious
transformations we obtain for (pq) = (12), (21), α = 1, 2, 3 :
1

∆p
u̇(p)

α +
u

(p)
α

∆3
p

〈u(p), u̇(p)〉 =
Qp

c2

{
[c2 − 〈u(p), u(q)〉]ξ(pq)

α − [c2τpq − 〈u(p), ξ(pq)〉]uq
α

[c2τpq − 〈u(q), ξ(pq)〉]3 .

∆4
pq + Dpq

[
∆2

pq〈ξ(pq), u̇(q)〉+ (〈ξ(pq), u(q)〉 − c2τpq)〈u(q), u̇(q)〉]

∆2
pq

+ (5pα)

+Dpq

[〈u(p), ξ(pq)〉 − c2τpq][u̇
(q)
α + uq

α〈u(q), u̇(q)〉/∆2
pq]

[c2τpq − 〈u(q), ξ(pq)〉]2 −

−Dpq

[〈u(p), u̇(q)〉+ (〈u(p), u(q)〉 − c2)/∆2
pq]〈u(q), u̇(q)〉ξ(pq)

[c2τpq − 〈u(q), ξ(pq)〉]2

}
,

1
∆3

p

〈u(p), u̇(p)〉 =
Qp

c2

{ 〈u(p), ξ(pq)〉 − τpq〈u(p), u(q)〉
[c2τpq − 〈u(q), ξ(pq)〉]3[

∆2
pq + Dpq(〈ξ(pq), u̇(q)〉+ (〈ξ(pq), u(q)〉 − c2τpq)〈u(q), u̇(q)〉/∆2

pq)
]

+ (5p4)

+Dpq

〈u(p), ξ(pq)〉〈u(q), u̇(q)〉/∆2
pq − τpq〈u(p), u̇(q)〉 − τpq〈u(p), u(q)〉〈u(q), u̇(q)〉/∆2

pq

[c2τpq − 〈u(q), ξ(pq)〉]2
One can prove (as in [10]) that (5p4) is a consequence of (5pα). Indeed, multiplying

(5pα) by u
(p)

α , summing up in α and dividing into c2 we obtain (5p4). Therefore we
can consider a system consisting of the 1st, 2nd, 3rd, 5th, 6th and 7th equations. The
last equations form a nonlinear functional differential system of neutral type (cf. [7],
[8]) with respect to the unknown velocities. The delays τpq depend on the unknown
trajectories by the relations (3pq).

Let us formulate the initial value problem for (5pα) in the following way: to find
unknown velocities u

(p)
α (t)(p = 1, 2; α = 1, 2, 3) for t ≥ 0 satisfying equations (61α),

(62α) of motion (written in details below):
1

∆1
u̇(1)

α +
u

(1)
α

∆3
1

〈u(1), u̇(1)〉 =
Q1

c2

{
[c2 − 〈u(1), u(2)〉]ξ(12) − [c2τ12 − 〈u(1), ξ(12)〉]u(2)

α

[c2τ12 − 〈u(2), ξ(12)〉]3
.[∆4

12 + D12∆2
12〈ξ(12), u̇

(2)〉+ (〈ξ(12), u
(2)〉 − c2τ12)〈u(2), u̇(2)〉]/∆2

12 + (61α)
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+D12
(〈u(1), ξ(12)〉 − c2τ12)u̇

(2)
α − 〈u(1), u̇(2)〉ξ(12)

α + (〈u(1), ξ(12)〉 − c2τ12)u
(2)
α 〈u(2), u̇(2)〉/∆2

12

[c2τ12 − 〈u(2), ξ(12)〉]2

+D12
(c2 − 〈u(1), u(2)〉)ξ(12)

α 〈u(2), ˙u(2)〉/∆2
12

[c2τ12 − 〈u(2), ξ(12)〉]2
}

Recall that in the above equations u(1) = u(1)(t), u(2) = u(2)(t− τ12). We also have
1

∆2
u̇(2)

α +
u

(2)
α

∆3
2

〈u2, u̇(2)〉 =
Q1

c2

{
[c2 − 〈u2, u(1)〉]ξ(21) − c2τ21 − 〈u(2), ξ(21)〉]u(1)

α

[c2τ21 − 〈u(1), ξ(21)〉]3 .

[∆4
21 + D21∆2

21〈ξ(21), u̇
(1)〉+ (〈ξ(21), u

(1)〉 − c2τ21)〈u(1), u̇(1)〉]/∆2
21 + (62α)

+D21
(〈u(2), ξ(21)〉 − c2τ21)u̇

(1)
α − 〈u(2), u̇(1)〉ξ(21)

α + (〈u(2), ξ(21)〉 − c2τ21)u
(1)
α 〈u(1), u̇(1)〉/∆2

21

[c2τ21 − 〈u(1), ξ(21)〉]2

+D21
(c2 − 〈u(2), u(1)〉)ξ(21)

α 〈u(1), u̇(1)〉/∆2
21

[c2τ21 − 〈u(1), ξ(21)〉]2

}

Recall that in the above equations u(2) = u(2)(t), u(1) = u(1)(t− τ21). We note the
delay functions τpq(t) satisfy functional equations (3pq) for t ∈ R1. For t ≤ 0 u

(p)
α (t)

are prescribed functions u
−(p)
α (t), i.e.

u(p)
α (t) = u−(p)

α (t), t ≤ 0, where u−(p)
α (t) =

dx
(p)
α (t)
dt

, t ≤ 0 (6αp)
This means that for prescribed trajectories

(x(1)
1 (t), x(1)

2 (t), x(1)
3 (t)), (x(2)

1 (t), x(2)
2 (t), x(2)

3 (t)) for t ≤ 0 one has to find trajectories,
satisfying the above system of equations for t > 0. (We recall, x(p)

α (t) = x
(p)
α0 +∫ t

0

u(p)
α (s)ds where x

(p)
α0 are the coordinates of the initial positions).

3. Equation of motion in polar coordinates

In what follows we consider plane motion in Ox2x3 coordinate plane for equations
(6pα), (6pq), (6αp), p = 1, 2;α = 1, 2, 3; (pq) = (12), (21). We suppose that the first

particle P1 is fixed at the origin O(0, 0, 0), that is, P1 :

∣∣∣∣∣∣∣

x
(1)
1 (t) = 0

x
(1)
2 (t) = 0, t ∈ (−∞,∞)

x
(1)
3 (t) = 0

.

It follows by necessity

∣∣∣∣∣∣∣

x
−(1)
1 (t) = 0

x
−(1)
2 (t) = 0

x
−(1)
3 (t) = 0

. Passing to the polar coordinates we can put

P2 :

∣∣∣∣∣∣∣

x
(2)
1 (t) = 0

x
(2)
2 (t) = ρ(t) cos ϕ(t)

x
(2)
3 (t) = ρ(t) sin ϕ(t)

where ρ(t) > 0.

For the velocities and accelerations of the particles we obtain∣∣∣∣∣∣∣

u
(1)
1 (t) = 0

u
(1)
2 (t) = 0

u
(1)
3 (t) = 0

∣∣∣∣∣∣∣

w
(1)
1 (t) = 0

w
(1)
2 (t) = 0

w
(1)
3 (t) = 0

∣∣∣∣∣∣∣

u
(2)
1 (t) = 0

u
(2)
2 (t) = ρ̇(t) cos ϕ(t)− ρ(t)ϕ̇(t) sin ϕ(t)

u
(3)
3 (t) = ρ̇(t) sin ϕ(t) + ρ(t)ϕ̇(t) cos ϕ(t)
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∣∣∣∣∣∣∣

w
(2)
1 (t) = 0

w
(2)
2 (t) = [ρ̈(t)− ρ(t)ϕ̇2(t)] cos ϕ(t)− [2ρ̇(t)ϕ̇(t) + ρ(t)ϕ̈(t)] sin ϕ(t)

w
(3)
3 (t) = [ρ̈(t)− ρ(t)ϕ̇2(t)] sin ϕ(t) + [2ρ̇(t)ϕ̇(t) + ρ(t)ϕ̈(t)] cos ϕ(t)

Then for (pq) = (12) we have
∆1 = c, ∆12 =

√
c2 − ρ̇2 − ρ2ϕ̇2,

〈u(1), u̇(1)〉 = 0, 〈u(1), u(2)〉 = 0, 〈u(1), ξ(12)〉 = 0, 〈u(2), ξ(12)〉 = −ρρ̇2,
ξ(12)(0,−ρ cosϕ,−ρ sin ϕ).

Recall that in the above equations u(1) = u(1)(t), u(2) = u(2)(t − τ12(t)) and the
argument of ρ, ρ̇, ρ̈, ϕ, ϕ̇, ϕ̈ is t− τ12(t).

We know from [6] that τ12 =
√
〈ξ(12), ξ(12)〉/c or in polar coordinates τ12(t) = ρ(t−

τ12)/c. The last equation has a unique solution provided |ρ̇| ≤ c̄ < c for some constant

c̄ > 0 (cf. [9]). Since D12 =
c
√
〈ξ(12), ξ(12)〉 − 〈ξ(12), u(2)〉

c
√
〈ξ(12), ξ(12)〉 − 〈ξ(12), u(1)〉

=
c2τ12 + ρρ̇

c2τ12
=

c + ρ̇

ρ
,

〈u(1), u̇(2)〉 = 0, 〈ξ(12), u̇(2)〉 = ρ2ϕ̇2 − ρρ̈,

〈u(2), u̇(2)〉 = ρ̇ρ̈ + ρρ̇ϕ̇2 + ρ2ϕ̇ϕ̈
then replacing the above expressions in (61α) we obtain
c2ξ

(12)
α − c12τ12u

2
α

[c2τ12 + ρρ̇]3

[
∆2

12 + D12(ρ2ϕ̇2 − ρρ̈) +
D12(−ρρ̇− c2τ12)

∆2
12

〈u(2), u̇(2)〉
]

+

+D12
−c12τ12[u̇

(2)
α + u

(2)
α 〈u(2), u̇(2)〉/∆2

12] + c2〈u(2), u̇(2)〉ξ(12)
α /∆2

12

[c2τ12 + ρρ̇]2
= 0,

τ12D12(c2τ12 + ρρ̇)u̇(2)
α + ρD12(ξ(12)

α − τ12u
(2)
α )ρ̈ = (∆2

12 + ρ2D12ϕ̇
2)(ξ(12)

α − τ12u
(2)
α ).

For α = 1 we obtain the identity 0 = 0. For α = 2, 3 we obtain the system
[(c+ ρ̇)2 cosϕ+(c+ ρ̇)M ]ρ̈− (c+ ρ̇)2ρ sin ϕϕ̈ = (c+ ρ̇)2(ρϕ̇2 cos ϕ+2ρ̇ϕ̇ sin ϕ)+MP12

[(c+ ρ̇)2 sin ϕ+(c+ ρ̇)N ]ρ̈+(c+ ρ̇)2ρ cos ϕϕ̈ = (c+ ρ̇)2(ρϕ̇2 sin ϕ− 2ρ̇ϕ̇ cos ϕ)−NP12

where M = −c cos ϕ − ρ̇ cosϕ + ρϕ̇ sin ϕ,N = c sin ϕ + ρ̇ cos ϕ + rhoϕ̇ cosϕ,P12 =
∆2

12 + ρ2ϕ̇2D12. We assume there is no collision for t ≤ 0, i.e. ρ(t − τ12(t)) 6= 0.
Therefore the above system has no solution because its determinant

δ =
∣∣∣∣

(c + ρ̇)2 cos ϕ + (c + ρ̇)M −(c + ρ̇)2ρ sin ϕ
(c + ρ̇)2 sin ϕ− (c + ρ̇)N (c + ρ̇)2ρ cos ϕ

∣∣∣∣ = 0, while in view of |ρ̇| ≤ c̄ < c

δ1 =
∣∣∣∣

(c + ρ̇)2(ρϕ̇ cos ϕ + 2ρ̇ϕ̇ sin ϕ) + MP12 −(c + ρ̇)2ρ sin ϕ
(c + ρ̇)2(ρϕ̇ sin ϕ− 2ρ̇ϕ̇ cos ϕ)−NP12 (c + ρ̇)2ρ cosϕ

∣∣∣∣ = −ρ(c+ ρ̇)3∆2
12 6=

0.
So we have to consider only the second group of equations namely (62α)

(α = 1, 2, 3). Since
ξ(21)(0, ρ(t) cos ϕ(t), ρ(t) sin ϕ(t)); 〈u(1), u̇(1)〉 = 0; 〈u(2), u̇(1)〉 = 0;
〈ξ(21), u̇(1)〉 = 0, 〈u(2), u̇(2)〉 = ρ̇ρ̈ + ρρ̇ϕ̇2 + ρ2ϕ̇ϕ̈; 〈u(2), u(1)〉 = 0;

〈u(2), ξ(21)〉 = −ρρ̇; 〈u(1), ξ(21)〉 = 0; τ21(t) =
ρ(t)
c

; ∆2 =
√

c2 − ρ̇2 − ρ2ϕ̇2;

∆21 = c; D21 = c
c+ρ̇ for (62α)(α = 1, 2, 3) we obtain:

∆2
2u̇

(2)
α + u(2)

α < u(2), u̇(2) >= Q2∆3
2ξ

(21)
α /cρ3.
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For α = 1 we obtain the identity 0 = 0. For α = 2, 3 we obtain the following system:
[∆2

2 cosϕ + ρ̇(ρ̇ cos ϕ− ρϕ̇ sin ϕ)]ρ̈ + [(ρ̇ cosϕ− ρϕ̇ sin ϕ)ρ2ϕ̇−∆2
2ρ sinϕ]ϕ̈ =

= ∆2
2ρϕ̇2 cosϕ + 2∆2

2ρ̇ϕ̇ sin ϕ + (ρϕ̇ sin ϕ− ρ̇ cos ϕ)ρρ̇ϕ̇2 +
Q2∆3

2 cosϕ

cρ2
,

[∆2
2 sin ϕ + ρ̇(ρ̇ sinϕ + ρϕ̇ cosϕ)]ρ̈ + [(ρ̇ sin ϕ + ρϕ̇ cos ϕ)ρ2ϕ̇ + ∆2

2ρ cosϕ]ϕ̈ =

= ∆2
2ρϕ̇2 sinϕ− 2∆2

2ρ̇ϕ̇ cosϕ− (ρϕ̇ cosϕ + ρ̇ sin ϕ)ρρ̇ϕ̇2 +
Q2∆3

2 sin ϕ

cρ2
.

The above system can be solved with respect to ρ̈, ϕ̈ because

δ =

˛̨
˛̨ ∆2

2 cos ϕ + ρ̇(ρ̇ cos ϕ− ρϕ̇ sin ϕ) (ρ̇ cos ϕ− ρϕ̇ sin ϕ)ρ2ϕ̇−∆2
2ρ sin ϕ

∆2
2 sin ϕ + ρ̇(ρ̇ sin ϕ + ρϕ̇ cos ϕ) (ρ̇ sin ϕ + ρϕ̇ cos ϕ)ρ2ϕ̇ + ∆2

2ρ cos ϕ

˛̨
˛̨ = c2ρ∆2

2 6= 0.

δ1 = ∆2
2c

2ρ2ϕ̇2 +
Q2∆

3
2(c

2 − ρ̇2)

cρ
and δ2 = −2∆2

2ρ̇ϕ̇(c2 +
Q2∆2

2cρ
)

Then we have

ρ̈ = ρϕ̇2 +
Q2∆2(c2 − ρ̇2)

ρ2c3
and ϕ̈ = −2ρ̇ϕ̇

ρ
− Q2ρ̇ϕ̇∆2

c3ρ2
(7)

Therefore we consider just equations (7) for t ≥ 0.

4. One dimensional case

Here we consider the motion of two charged particles on a straight line ϕ̇ = 0.
Then the second equation from (7) becomes the identity and the first one ρ̈ =
Q2(c2 − ρ̇2)

3
2 /c3ρ2, where ρ = ρ(t) and t ≥ 0. Assume that the particles have

opposite signs. Therefore −Q2 > 0. Denote by A = −Q2

c3
> 0. Then as usually we

set ρ̇ = z, ρ̈ = z
dz

dρ
. So we obtain z

dz

dρ
= −A

(c2 − z2)
3
2

ρ2
, (c2− ρ̇2)−

1
2 =

A

ρ
+ D, where

D = (c2− ρ̇2
0)
− 1

2 +
Q2

c3ρ0
and ρ0 = ρ(0), ρ̇0 = ρ̇(0) are initial conditions.Further on we

have
∫

Dρ + A√
(c2D2 − 1)ρ2 + 2c2DAρ + c2A2

dρ = ±t + E, where E is a constant.

Introduce a new variable η by Euler substitution and putting B = c2D2 − 1 we

obtain (Bρ2 + 2c2DAρ + c2A2)
1
2 = ρη + cA. Hence 2A

∫ −η2 + 2cDη −B − 2
(η2 −B2)

dη =

±t + E.

Consider the case B > 0, that is, c2

[
(c2 − ρ̇2

0)
− 1

2 +
Q2

c3ρ0

]2

− 1 > 0. The last

inequality is satisfied for suitably chosen ρ0, ρ̇0. It is easy to formulate conditions

implying the above inequality. Indeed, since (c2− ρ̇2
0)
− 1

2 > 1/c then D >
1
c

+
Q2

c3ρ0
=

1
c

ρ0c
2 + Q2

c2ρ0
> 0 because for the hydrogen atom Q2 = e2

1/m2, e1 = 1, 6.10−19q, m2 =

9.1031kg, c = 3.108m/s which yields ρ0c
2 + Q2 =, 28.10−11.9.1016 − 2, 84.10−8 > 0.

Then B > 0 ⇔ cD > 1 or c(c2− ρ̇2
0)
− 1

2 +
Q2

c2ρ0
> 0 ⇔ c(c2− ρ̇2

0)
− 1

2 > 1− Q2

c2ρ0
> 1.
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Denote by q = 1 − Q2

c2ρ0
. It follows c > ρ̇0 > c

√
q2 − 1/q Therefore B > 0 and

then we have

2A

∫ −η2 + 2cDη −B − 2
(η2 −B2)

dη =

2A

(
− A1

η −√B
+ A2 ln |η −

√
B| − A3

η +
√

B
+ A4 ln |η +

√
B|

)
= ±t + E (8)

where A1 = (−B+cD
√

B−1)/2B,A2 = 1/2B
√

B,A3 = −(B+cD
√

B+1)/2B, A4 =
−1/2B

√
B.

It is easy to verify that−A1 > 0 and A2 > 0. Since η = (
√

Bρ2 + 2c2DAρ + c2A2−
cA)/ρ then we have η−

√
B = (

√
Bρ2 + 2c2DAρ + c2A2−cA−

√
Bρ)/ρ. For t → ±∞

the right-hand side of (8) should tend to ±∞. This is possible if η − √
B → 0.

Obviously the last relation is implied by ρ(t) → ∞ as t → ∞. On the other hand

the differential equation ρ̈(t) =
Q2

c3

[c2 − ρ̇2(t)]
3
2

ρ2(t)
shows that if lim

t→t0
ρ(t) = 0 for some

t0 > 0 it follows by necessity lim
t→t0

ρ̇(t) = c because ρ̈(t) should be bounded. So we

obtain a confirmation of the results from [6].

It remains to consider the case B > 0 or ρ̇0 <
c
√

q2 − 1
q

. Put B1 = −B > 0 and

then (8) becomes

2A

∫ −η2 + 2cDη −B1 − 2
(η2 −B2

1)
dη=2A(−B

− 3
2

1 arctg(
η√
B1

) +
(B1 − 1)η

B1(η2 + B1)
− cD

η2 + B1
) =

±t + const.
Obviously the left-hand side of the last equality remains bounded while the right

hand side is unbounded for any values of t →∞.

5. Two-dimensional case

This section is devoted to the investigation of two-dimensional case of two-body
problem. First we consider the system of equations of motion already derived in a
previous section, namely

ρ̈(t) = ρ(t)ϕ̇2(t) +
Q2

c3

[c2 − ρ̇2(t)]
√

c2 − ρ̇2(t)− ρ2(t)ϕ̇2(t)
ρ2(t)

(9.1)

ϕ̈ = −2ρ̇(t)ϕ̇(t)
ρ(t)

[
1 +

Q2

√
c2 − ρ̇2(t)− ρ2(t)ϕ̇2(t)

2c3ρ(t)

]
(9.2)

for t > 0 and initial conditions ρ(0) = ρ0, ρ̇(0) = ρ̇0, ϕ(0) = ϕ0, ϕ̇(0) = ϕ̇0.
Let us put ρ = const which implies ρ̇(t) = ρ̈(t) = 0. Then (9.1) and (9.2) become

ρ(t)ϕ̇2(t) +
Q2

√
c2 − ρ2(t)ϕ̇2(t)

cρ2(t)
= 0, ϕ̈(t) = 0. (10)

The second equation of (10) yields ϕ(t) = ϕ̇0t + ϕ0. Without loss of generality
one can assume ϕ0 = 0. Since ν = ρϕ̇ then for the linear velocity ν we obtain the
following equation

cρν2 + Q2

√
c2 − ν2 = 0.
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This equation obviously has a positive solution ν2 =
−Q2

2 +
√

Q4
2 + 4c4ρ2Q2

2

2c2ρ2
since

Q2 = e2/m < 0. But Q2 = −(1, 6.10−19)2/9.10−31 ≈ −2, 84.10−8 and then ν2 ≈
|Q2|/ρ = e2/mρ which consides with known results (cf.[14]).

In the next paper we prove more general existence result.
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