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1 Introduction

Fixed point theory is one of the most powerful tool for the study of a lot of
problems arising in pure and applied mathematics. The main purpose of this paper is
to report several fixed point results and selection theorems for multi-valued operators.
The structure of this paper is the following: first of all, in the second section, we
consider some notations, notions and preliminary results that we need throughout the
paper. Then in the third paragraph, we present some Krasnoselskii-type fixed points
theorems for multi-valued operators. In section 4, we concentrate on some properties
of the fixed points set of a multi-valued operator. Finally, in the last paragraph
we consider some selection theorems for multi-valued operators with decomposable
values. For more details and further results, we refer to [49], [51] and [64].

2 Preliminaries

Let (X, d) be a metric space, x0 ∈ X and r > 0. We denote:
B(x0; r) = {x ∈ X : d(x0, x) < r}, B̃(x0; r) = {x ∈ X : d(x0, x) ≤ r},

P(X) = {A : A is a subset of X}, P (X) = {A ∈ P(X) : A is nonempty},
Pp(X) = {A ∈ P (X) : A has the property ”p”}, where ”p” could be: cl = closed,
b = bounded, cp = compact, cv = convex (for normed spaces X), etc.

If A,B ∈ P (X), we define the functional:
D : P (X)× P (X) → R+, D(A,B) = inf{d(a, b)| a ∈ A, b ∈ B}

and the following generalized functionals:
δ : P (X)× P (X) → R+ ∪ {+∞}, δ(A,B) = sup{d(a, b)| a ∈ A, b ∈ B}
ρ : P (X)× P (X) → R+ ∪ {+∞}, ρ(A,B) = sup(D(a,B)| a ∈ A}
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H : P (X)× P (X) → R+ ∪ {+∞}, H(A,B) = max{ρ(A,B), ρ(B, A)}.
Throughout the paper, the symbol M indicates the family of all metric spaces.

Let X ∈ M. The space X is called an absolute retract for metric spaces (briefly
X ∈ AR(M)) if, for any Y ∈ M and any Y0 ∈ Pcl(X), every continuous function
f0 : Y0 → X has a continuous extension over Y, that is f : Y → X. Obviously,
any absolute retract is arcwise connected. Let X,Y ∈ M and T : X → P (Y ) be a
multifunction. We will denote by the symbol G(T ) = {(x, y) ∈ X × Y | y ∈ T (x)}
the graph of T. If T : X → P (X) is a multi-valued operator then we denote by
FixT the fixed points set of T , i.e. FixT = {x ∈ X| x ∈ T (x)}. A multi-function
T : X → Pcl(Y ) is, by definition, lower semi-continuous (briefly, l.s.c.) if, for any
open set A of Y, the set T−1(A) := {x ∈ X : T (x) ∩ A 6= ∅} is open in X. When for
any open set A of Y , the set {x ∈ X : T (x) ⊂ A} is open in X, we say that T is
upper semi- continuous (briefly u.s.c.). A continuous multi-function T : X → Pcl(Y )
is, by definition, both l.s.c. and u.s.c. Also, T is said to be closed if and only if the
set G(T ) is closed in X × Y .

Definition 2.1. (see Rus-Petruşel-Ŝıntămărian [73]) Let (X, d) be a metric space
and T : X → P (X) a multi-valued operator. By definition, T is a multi-valued weakly
Picard operator (briefly m.w.P.o.) if and only if for all x ∈ X and all y ∈ T (x) there
exists a sequence (xn)n∈N such that:

i) x0 = x, x1 = y

ii) xn+1 ∈ T (xn), for all n ∈ N
iii) the sequence (xn)n∈N is convergent and its limit is a fixed point of T .
Let us remark that a sequence (xn)n∈N satisfying the conditions (i) and (ii) in

the previous definition is, by definition, a sequence of successive approximations of T ,
starting from (x, y).

Definition 2.2. (see Covitz-Nadler [23]) Let (X, d) be a metric space. Then
T : X → Pcl(X) is a multi-valued L-contraction, if there exists L ∈]0, 1[ such that:
H(T (x), T (y)) ≤ Ld(x, y), for every x, y ∈ X.

Definition 2.3. (see Reich [66]) Let (X, d) be a metric space. Then T :
X → Pcl(X) is said to be a multi-valued Reich-type operator if there exist
α, β, γ ∈ R+, α + β + γ < 1 such that: H(T (x), T (y)) ≤ αd(x, y) + βD(x, T (x)) +
γD(y, T (y)), for all x, y ∈ X.

Definition 2.4. (see Rus [70] and Petruşel [49]) Let (X, d) be a complete
metric space. A multi-valued operator T : X → Pcl(X) is said to be a multi-
valued Rus-type graphic-contraction if G(T) is closed and the following condition
is satisfied: there exist α, β ∈ R+, α + β < 1 such that: H(T (x), T (y)) ≤
αd(x, y)+βD(y, T (y)), for every x ∈ X and every y ∈ T (x). Moreover, the operator
T is a multi-valued graphic-contraction if T is a multi-valued Rus-type contraction
with β = 0.

Definition 2.5. (see Frigon-Granas [29] and Petruşel [59]) Let (X, d) be a com-
plete metric space, x0 ∈ X and r > 0. The multi-valued operator T is called a
Frigon-Granas-type operator if T : B̃(x0; r) → Pcl(X) and satisfies the following
assertion:
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i) there exist α, β, γ ∈ R+, α + β + γ < 1 such that:

H(T (x), T (y)) ≤ αd(x, y) + βD(x, T (x)) + γD(y, T (y)), for all x, y ∈ B̃(x0; r)

We also recall the definition of Kuratowski’s measure of non-compactness :
Definition 2.6. Let X be a metric space and S a bounded subset of X. We set

α(S) = inf{ε > 0|there exists m and exists S1, ..., Sm such that S =
⋃

i≤m

Si and

diam(Si) ≤ ε}.
Definition 2.7. Let X a Banach space and T : X → Pb,cl(X) be a multivalued

operator. Then T is said to be an (α, L)-contraction if and only if there exists L ∈]0, 1[
such that α(T (A)) ≤ Lα(A), for each A ∈ Pb(X). (where α is the Kuratowski measure
of non-compactness on X)

A multivalued operator T : X → P (X) is called compact if and only if T (A) is
relatively compact, for each A ∈ Pb(X).

Definition 2.8. Let F : [a, b]×Rn → Pcl(Rn) a multivalued operator. Then F is
called integrably bounded if and only if there exists a function r ∈ L1[a, b] such that
for every v ∈ F (t, x), |v| ≤ r(t) a.e.

Definition 2.9. Let (X, d) be a metric space and E be a Banach space. Then
F : X → P (E) is called:

a) locally selectionable at x0 ∈ X if and only if for all y0 ∈ F (x0) there exist a
neighborhood N(x0) and a continuous function f : N(x0) → E such that f(x0) = y0

and f(x) ∈ F (x), for each x ∈ N(x0).
b) measurable if and only if F−1(C) belongs to the σ-algebra B of Borel subsets

of X, for each closed subset C of E.
Definition 2.10. Let X be a nonempty set and E be a Banach space and F :

X → P (E) be a multivalued operator.
i) The set defined by F−1(y) = {x ∈ X|y ∈ F (x)} is said to be the fibre of F at

the point y ∈ E.
ii) The singlevalued operator f : X → E is a selection for F if and only if f(x) ∈

F (x) for every x ∈ X.
Definition 2.11. (see Deguire-Lassonde [24] and [25]) Let X be a topological

space and {Yi|i ∈ I} an arbitrary family of topological spaces.
i) We say that {fi : X → Yi|i ∈ I} is a selecting family for the family of multivalued

operators {Fi : X → P(Yi)|i ∈ I} if and only if for each x ∈ X there exists i ∈ I such
that fi(x) ∈ Fi(x).

ii) If {Yi| i ∈ I} is an arbitrary family of convex subsets of a Hausdorff topological
vector space then the family {Fi : X → P(Yi)|i ∈ I} is said to be of Ky Fan-type if
and only if each Fi has convex values and open fibres and for every x ∈ X there is
i ∈ I such that Fi(x) 6= ∅.

Definition 2.12. The topological space X has the compact fixed point property
if and only if every continuous mapping f : X → X with relatively compact image
has a fixed point.

We consider now some known results that will be used in the following sections.
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Theorem 2.13. (see [75]) Let X be a metric space and Y be a closed subset of
a Banach space Z. Assume that the multivalued operator F : X × Y → Pcl,cv(Y )
satisfies the following conditions:

i) H(F (x, y1), F (x, y2)) ≤ L‖y1 − y2‖, for each (x, y1), (x, y2) ∈ X × Y ;
ii) for every y ∈ Y , F (·, y) is l.s.c. on the space X.

Then there exists a continuous mapping f : X × Y → Y such that :

f(x, y) ∈ F (x, f(x, y)), for each (x, y) ∈ X × Y

.
Theorem 2.14. (see [51]) Let X be a Banach space and F1, F2 : X → Pb,cl(X) be

two multivalued operators, such that F1 is a L-contraction and F2 is compact. Then
F1 + F2 is (α, L)-contraction.

3 Fixed point theorems for the sum of two multi-
valued operators

A first multivalued version of the Krasnoselskii’s fixed point principle is:
Theorem 3.1. Let X be a Banach space, Y ∈ Pcl,cv(X) and A : Y → Pb,cl,cv(X),

B : Y → Pcp,cv(X) two multivalued operators. If the following conditions are satisfied:
(i) A(y1) + B(y2) ⊂ Y , for each y1, y2 ∈ Y ;
(ii) A is L-contraction;
(iii) B is l.s.c. and B(Y ) is relatively compact;

then Fix(A + B) 6= ∅.
Proof. Let C : Y → P(Y ) be a multivalued operator defined as follows:
a) for each x ∈ Y consider the multivalued operator Tx : Y → Pcp,cv(Y ), Tx(y) =

A(y) + B(x). Since Tx is multivalued L-contraction (indeed, on have:
H(Tx(y1), Tx(y2)) = H(A(y1)+B(x), A(y2)+B(x)) ≤ H(A(y1), A(y2)) ≤ L‖y1−y2‖,
for each y1, y2 ∈ Y ), from Covitz-Nadler fixed point theorem (see [23]) it follows that
for every x ∈ Y the fixed point set for the multifunction Tx, Fix Tx = {y ∈ Y | y ∈
A(y) + B(x)} is nonempty and closed.

b) From Theorem 2.13. it follows that there exists a continuous mapping f :
Y ×Y → Y such that f(x, y) ∈ A(f(x, y))+B(x). (Let us observe that the multivalued
operator F : Y × Y → Pcp,cv(Y ) defined by F (x, y) = A(y) + B(x), for each (x, y) ∈
Y × Y satisfies the hypothesis of Theorem 2.13.) Let us define C(x) = Fix Tx,
C : Y → Pcl(Y ). Let us consider the singlevalued operator c : Y → Y defined by
c(x) = f(x, x), for each x ∈ Y .

Then c is a continuous mapping having the property that c(x) = f(x, x) ∈
A(f(x, x)) + B(x) = A(c(x)) + B(x), for each x ∈ Y .

Now, we will prove that c(Y ) is relatively compact. For this purpose it is sufficient
to show that C(Y ) is relatively compact. Let us observe that C(Y ) is totally bounded:

Indeed B(Y ) being relatively compact it is also totally bounded. So, there exists

Z = {x1, . . . , xn} ⊂ Y such that B(Y ) ⊂ {z1, . . . , zn}+ B(0, (1− L)ε) ⊂
n⋃

i=1

B(xi) +
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B(0, (1 − L)ε) (where zi ∈ B(xi), for each i = 1, 2, . . . , n). It follows that, for each

x ∈ Y , B(x) ⊂
n⋃

i=1

B(xi) + B(0, (1 − L)ε) and hence there exists an element xk ∈ Z

such that ρ(B(x), B(xk)) < (1− L)ε. Then:

ρ(C(x), C(xk)) = ρ(Fix Tx, F ix Txk
) ≤ 1

1− L
sup
y∈Y

ρ(Tx(y), Txk
(y)) =

1
1− L

sup
y∈Y

ρ(A(y) + B(x), A(y) + B(xk)) ≤ 1
1− L

sup
y∈Y

ρ(B(x), B(xk)) <

<
1

1− L
(1− L)ε = ε

It follows that for each u ∈ C(x) there is vk ∈ C(xk) such that ‖u− vk‖ < ε. Hence,
for each x ∈ Y , C(x) ⊂ Q + B(0, ε), where Q = {v1, . . . , vk, . . . , vn}, vi ∈ C(xi),
i = 1, 2, . . . , n.

Since in a Banach space a totally bounded set is relatively compact the conclusion
follows.

Finally, let us observe that the mapping c : Y → Y satisfies the assumptions of
Schauder’s fixed point theorem. Let x∗ ∈ Y be a fixed point for c. On have that
x∗ = c(x∗) ∈ A(c(x∗)) + B(x∗) = A(x∗) + B(x∗).

Using the measures of non-compactness technique (see [51]) another fixed point
result for the sum of two multi-valued operators is the following:

Theorem 3.2. Let X be a Banach space, Y ∈ Pb,cl,cv(X) and A, B : Y →
Pcp,cv(X) two multivalued operators. If the following conditions are satisfied:

(i) A(y) + B(y) ⊂ Y , for each y ∈ Y ;
(ii) A is L-contraction;
(iii) B is u.s.c. and compact;

then Fix(A + B) 6= ∅.
As application, from Theorem 3.2., we get the following existence result for an

integral inclusion (see [51] for more details).
Theorem 3.3. Consider the following Fredholm-Volterra integral inclusion:

x(t) ∈ λ1

∫ b

a

K1(t, s, x(s)) + λ2

∫ t

a

K2(t, s, x(s))ds, t ∈ [a, b]. (3.1)

We assume that:
i) K1 : [a, b]× [a, b]×Rn → Pcl,cv(Rn) is a lower semicontinuous, measurable and

integrably bounded multivalued operator
ii) K2 : [a, b] × [a, b] × Rn → Pcp,cv(Rn) is an upper semicontinuous, measurable

and integrably bounded (by an integrable function mK2) multivalued operator
iii) there exists L > 0 such that

H(K1(t, s, u1),K1(t, s, u2))≤L‖u1−u2‖, for each (t, s, u1), (t, s, u2) ∈ [a, b]×[a, b]×Rn
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iv) λ2 satisfy the following relation:

|λ2| ≤ R

2MK2(b− a)
, where R ≥ δ

1− |λ1|L
2τ

(with MK2 = max
t∈[a,b]

mK2(t), τ > |λ1|L and δ is an upper bound for the set of contin-

uous selections for the multivalued operator t 7→ λ2

∫ b

a

K2(t, s, y(s))ds, y ∈ C[a, b]).

Then, there exists y0 ∈ C[a, b], such that the integral inclusion (3.1.) has a solution
y∗ ∈ B̃(y0; R) ⊂ C[a, b].

Sketch of the proof. Let A,B : C[a, b] → P(C[a, b]) be two multivalued opera-
tors given by

A(y) =
{

u ∈ C[a, b]| u(t) ∈ λ1

∫ t

a

K1(t, s, y(s))ds, t ∈ [a, b]
}

B(y) =
{

v ∈ C[a, b]| v(t) ∈ λ2

∫ t

a

K2(t, s, y(s))ds, t ∈ [a, b]
}

Obviously y∗ ∈ Fix(A + B) if and only if y∗ is a solution for (3.1.).
Then on can prove that the multifunctions A and B satisfies the assumptions of

Theorem 3.2. ¤

4 Properties of the fixed points set for multifunc-
tions

Contrary to the single-valued case, the fixed points set for a multivalued contraction
is not necessarily a singleton and hence it is of interest to study some properties
(compactness, absolute retract property , data dependence etc. ) of it.

In this framework, J. Saint-Raymond established the following theorem.
Theorem 4.1. ([65]) Let T be a multi-valued contraction from the complete metric

space X to itself. If T takes compact values, the fixed points set FixT is compact too.
As regard to the same problem, B. Ricceri stated the following very important

theorem:
Theorem 4.2. ([69]) Let E be a Banach space and let X be a nonempty, closed,

convex subset of E. Suppose T : X → Pcl,cv(X) is a multi-valued contraction. Then
FixT is an absolute retract for metric spaces.

Using a similar idea as in [29] we shall prove first the following existence result:
Theorem 4.3. Let (X, d) be a complete metric space x0 ∈ X, r > 0 and

T : B̃(x0, r) → Pcl(X) a multivalued operator satisfying the following assertions:
i) T is a Reich-type multivalued operator

ii) D(x0, T (x0)) <
1− (α + β + γ)

1− γ
r.

Then FixT 6= ∅.
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Proof. We shall prove, by induction, the existence of a sequence (xn)n∈N in
B̃(x0, r) such that

a) xn ∈ T (xn−1), for each n ∈ N∗

b) d(xn−1, xn) < (α + β + γ)n−1 1− (α + β + γ)
1− γ

r, for each n ∈ N∗.
For n = 1 the assertions a) and b) are true.
If the relations hold for i ∈ {1, n} let us show the existence of xn+1.
We have:

H(T (xn−1), T (xn)) ≤ αd(xn−1, xn) + βD(xn−1, T (xn−1) + γD(xn, T (xn)) ≤

≤ αd(xn−1, xn) + βd(xn−1, xn) + γH(T (xn−1), T (xn)).

Hence

H(T (xn−1), T (xn)) ≤ α + β

1− γ
d(xn−1, xn) <

α + β

1− γ
(α + β + γ)n−1 1− (α + β + γ)

1− γ
r <

< (α + β + γ)n 1− (α + β + γ)
1− γ

r.

So we get that there exists xn+1 ∈ T (xn) such that

d(xn, xn+1) < (α + β + γ)n 1− (α + β + γ)
1− γ

r,

proving the existence of the point xn+1 satisfying a) and b). Let us denote by l =
α + β + γ. Further on, we shall prove that (xn)n∈N is a Cauchy sequence. Indeed

d(xn, xn+p) < (ln + . . . + ln+p−1)
1− l

1− γ
r ≤ ln

1− γ
r → 0, as n →∞.

This implies that xn → x∗ as n → ∞ and because T has closed values we get by
standard arguments that x∗ ∈ T (x∗). ¤

Remark 4.4. When β = γ = 0 we get Theorem 3.1 from [29].
Remark 4.5. When α = 0 and β = γ = h (with h ∈ R, 0 < h < 1/2) we obtain

a fixed point result for a Kannan-type multivalued operator.
Another result of this type is:
Theorem 4.6. Let (X, d) be a complete metric space, x0 ∈ X, r > 0 and

T : B̃(x0; r) → Pcl(X) satisfying:
i) T is a graphic-contraction
ii) T is a closed multifunction
iii) D(x0, T (x0)) < (1− α)r.

Then FixT 6= ∅.
For the fixed points set of a Frigon-Granas type multifunction we have:
Theorem 4.7. Let (X, d) be a complete metric space, x0 ∈ X and r > 0. Let us

suppose that T : B̃(x0; r) → Pcp(X) satisfies the following two conditions:
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i) there exist α, β ∈ R+, α + 2β < 1 such that

H(T (x), T (y)) ≤ αd(x, y) + β[D(x, T (x)) + D(y, T (y))], for each x, y ∈ B̃(x0; r)

ii) D(x0, T (x0)) < [1− (α + 2β)](1− β)−1r.
Then the fixed points set FixT is compact.
Proof. It is not difficult to see that FixT ∈ Pcl(B̃(x0; r)). Assume that FixT

is not compact. Because FixT is complete, it cannot be precompact, so there exist
δ > 0 and a sequence (xi)i∈N ⊂ FixT such that d(xi, xj) ≥ δ, for each i 6= j. Put
ρ = inf{R| there exists a ∈ B̃(x0; r) such that B(a,R) contains infinitely many xi;s}.
Obviously ρ ≥ δ

2
> 0. Let ε > 0 such that ε <

1− α− 2β

1 + α
ρ and choose a ∈ B̃(x0; r)

such that the set J = {i : xi ∈ B(a, ρ + ε)} is infinite.
For each i ∈ J , we have

D(xi, T (a)) ≤ H(T (xi), T (a)) ≤ αd(xi, a) + βi[D(xi, T (xi)) + D(a, T (a))] =

= αd(xi, a) + βD(a, T (a)) < α(ρ + ε) + βd(a, y), for every y ∈ T (a).

Then

D(xi, T (a)) < α(ρ + ε) + β[d(a, xi) + d(xi, y)] < α(ρ + ε) + β(ρ + ε) + βd(xi, y),

for every y ∈ T (a). Taking inf
y∈T (a)

we get : D(xi, T (a)) ≤ (α + β)(ρ + ε)(1 −
β)−1, for each i ∈ J. So, we can choose some yi ∈ T (a) such that d(xi, yi) ≤
(α + β)(ρ + ε)(1− β)−1, for each i ∈ J. By the compactness of T (a) there exists b ∈
T (a) such that the following set: J ′ = {i ∈ J | d(yi, b) < ε} is infinite. Then, for each
i ∈ J ′ we get d(xi, b) ≤ d(xi, yi)+d(yi, b) < (α + β)(ρ + ε)(1−β)−1 +ε = (α + β)(1−
β)−1ρ + ε

(
1 + (α + β)(1− β)−1

)
< ρ. This contradicts the definition of ρ, because

the set B(b,R) contains infinitely many xi’s.
(
where R = (α + β)ρ(1− β)−1 +

ε
(
1 + (α + β)(1− β)−1

))
. ¤

Corollary 4.8. Let (X, d) be a complete metric space and T : X → Pcp(X) be a
multivalued operator. Let us suppose that there exist α, β ∈ R+ with α + 2β < 1 such
that

H(T (x), T (y)) ≤ αd(x, y) + β[D(x, T (x)) + D(y, T (y))],

for each x, y ∈ X.
Then the fixed points set FixT is compact.
Only minor modifications of the above technique are needed in order to obtain the

following result:
Theorem 4.9. Let (X, d) be a complete metric space and T : X → Pcp(X) be a

multivalued operator. If the following assertions are true:
i) there exist α, β ∈ R+, α + β < 1 such that

H(T (x), T (y)) ≤ αd(x, y) + βD(x, T (x)), for each x, y ∈ X

ii)D(x0, T (x0)) < [1− (α + β)](1− β)−1r.
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then the fixed points set FixT is compact.
We consider now another result regarding the structure of the set of all fixed points

for a multi-valued Reich-type operator with convex values.
Theorem 4.10. Let E be a Banach space, X ∈ Pclc,cv(E) and T : X → Pcl,cv(X)

be a l.s.c. multi-valued Reich-type operator. Then FixT ∈ AR(M).
Proof. Let us remark first that FixT ∈ Pcl(X) (see for example [73]). Let K

be a paracompact topological space, A ∈ Pcl(K) and ψ : A → FixT a continuous
mapping. Using Theorem 2 from B. Ricceri [69] (taking G(t) = X, for each t ∈ K) it
follows the existence of a continuous function ϕ0 : K → X such that ϕ0|A = ψ. We
next consider q ∈]1, (α + β + γ)−1[. We claim that there exists a sequence (ϕn)n∈N of
continuous functions from K to X with the following properties:

(i) ϕn|A = ψ
(ii) ϕn(t) ∈ T (ϕn−1(t)), for all t ∈ K
(iii) ‖ϕn(t)− ϕn−1(t)‖ ≤ [(α + β + γ)q]n−1‖ϕ1(t)− ϕ0(t)‖, for all t ∈ K.
To see this, we proceed by induction on n. Clearly, for each t ∈ A we have that

ψ(t) ∈ T (ϕ0(t)). On the other hand, the multi-function t 7→ T (ϕ0(t)) is l.s.c. on K
with closed, convex values and hence using again Theorem 2 in [69] it follows that
there is a continuous function ϕ1 : K → X such that ϕ1|A = ψ and ϕ1(t) ∈ T (ϕ0(t)),
for all t ∈ K. Hence, the conditions (i), (ii), (iii) are true for ϕ1. Suppose now we
have constructed p continuous functions ϕ1, ϕ2, . . . , ϕp from K to X in such a way
that (i), (ii), (iii) are true for n ∈ {1, 2, . . . , p}. Using the Reich-type contraction
condition for T , we have

D(ϕp(A), T (ϕp(t))) ≤ H(T (ϕp−1(t)), T (ϕp(t))) ≤

≤ α‖ϕp−1(t)− ϕp(t)‖+ βD(ϕp−1(t), T (ϕp−1(t))) + γD(ϕp(t), T (ϕp(t))) ≤
≤ α‖ϕp−1(t)− ϕp(t)‖+ β‖ϕp−1(t)− ϕp(t)‖+ γD(ϕp(t), T (ϕp(t)))

so that
D(ϕp(t), T (ϕp(t))) ≤ (α + β)(1− γ)−1‖ϕp(t)− ϕp−1(t)‖ ≤

≤ (α + β)(1−γ)−1[(α+β+γ)q]p−1‖ϕ1(t)−ϕ0(t)‖ < (α+β+γ)pqp−1‖ϕ1(t)−ϕ0(t)‖ <

< [(α + β + γ)q]p‖ϕ1(t)− ϕ0(t)‖.
We next define

Qp(t) =
{

B(ϕp(t), [(α + β + γ)q]p‖ϕ1(t)− ϕ0(t)‖), if t ∈ K and ϕ1(t) 6= ϕ0(t)
{ϕp(t)}, if ϕ1(t) = ϕ0(t)

Obviously T (ϕp(t)) ∩ Qp(t) 6= ∅, for all t ∈ K. We can apply now (taking G(t) =
F (ϕp(t)), f(t) = ϕp(t) and the mapping g(t) = [(α + β + γ)q]p‖ϕ1(t) − ϕ0(t)‖,
for all t ∈ K). Proposition 3 from [69], we obtain that the multi-function t 7→
T (ϕp(t)) ∩Qp(t) is l.s.c. on K with nonempty, closed, convex values. Because of
Theorem 2 in [69], this produces a continuous function ϕp+1 : K → X such that
ϕp+1|t = ψ and ϕp+1(t) ∈ T (ϕp(H)) ∩Qp(t), for all t ∈ T . Thus the existence of
the sequence {ϕn} is established. Consider now the open covering of K defined by
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the formula: ({t ∈ K| ‖ϕ1(t) − ϕ0(t)‖ < λ})λ>0. Moreover, because of (iii) and the
fact that X is complete, the sequence {ϕn}n∈N converges uniformly on each of the
following set Kλ = {t ∈ K| ‖ϕ1(t) − ϕ0(t)‖ < λ} (λ > 0). Let ϕ : K → X be the
pointwise limit of (ϕn)n∈N. Obviously ϕ is continuous and ϕ|A = ψ. Moreover, a
simple computation ensures that : ϕ(t) ∈ T (ϕ(t)) for all t ∈ K and this completes
the proof. ¤

Remark 4.11. If β = γ = 0 then the previous theorem coincides with B. Ricceri’s
result (Theorem 4.2 below).

Remark 4.12. Of course, it is also possible to formulate version of Theorem
4.10., where T is a multi-valued Rus-type graphic contraction. It is an open question
if such a result holds for a Frigon-Granas type multi-function.

The second aim of this section is to study the data dependence problem of the
fixed points set for some Frigon-Granas-type multifunctions.

Theorem 4.13. Let (X, d) be a complete metric space, x0 ∈ X, r > 0 and
T1, T2 : B̃(x0; r) → Pcl(X) be multifunctions satisfying the following assertions:

i) Ti is a multivalued αi-contraction, for i ∈ {1, 2}
ii) δ(x0, Ti(x0)) < (1− αi)r, for i ∈ {1, 2}
iii) there exists η > 0 such that H(T1(x), T2(x)) ≤ η, for each x ∈ B̃(x0; r).

Then:
a) FixTi ∈ Pcl(B̃(x0; r)) for i ∈ {1, 2}
b) H(FixT1, F ixT2) ≤ η

1−max{α1, α2} .
Proof. a) We denote by T each of the two multifunctions T1 and T2. For each

x ∈ B̃(x0; r) we have that T (x) ⊂ B̃(x0; r). Indeed, let u ∈ T (x) be arbitrary. Then

d(x0, u) ≤ d(x0, y) + d(y, u) ≤ (1− α)r + d(y, u) for each y ∈ T (x0).

Taking the infimum after y ∈ T (x0) we get:

d(x0, u) ≤ (1− α)r + D(u, T (x0)) ≤ (1− α)r + H(T (x), T (x0)) ≤
≤ (1− α)r + αd(x, x0) ≤ r,

proving the fact that T : B̃(x0; r) → Pcl(B̃(x0; r)). The conclusion a) follows from
Covitz-Nadler theorem (see [23]) and the part b) from Rus-Petruşel-Ŝıntămărian result
in [73]. ¤

Remark 4.14. It is an open problem, the data dependence of the fixed points set
for the Frigon-Granas-type multifunctions satisfying the weaker condition

D(x0, T (x0)) < (1− α)r.

Similarily, we can prove:
Theorem 4.15. Let (X, d) be a complete metric space, x0 ∈ X, r > 0 and

T1, T2 : B̃(x0; r) → Pcl(X) be multifunctions such that:
i) Ti is a multivalued Reich-type operator with αi, βi, γi ∈ R+, αi + βi + γi < 1,

for each i ∈ {1, 2}.
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ii) δ(x0, Ti(x0)) <
1− (αi + βi + γi)

1− γi
r for i ∈ {1, 2}.

iii) there exists η > 0 such that H(T1(x), T2(x)) ≤ η, for each x ∈ B̃(x0; r).
Then:

a) FixTi ∈ Pcl(B̃(x0, r)), for i ∈ {1, 2}
b) H(FixT1, F ixT2) ≤ 1−min{γ1, γ2}

1−max{α1 + β1 + γ1, α2 + β2 + γ2} .
Let us remark now that, if T : B̃(x0; r) → Pcl(X) is a Frigon-Granas-type multi-

function, such that
D(x0, T (x0)) < (1− α)r,

then T is not necessarily a m.w.P.o.
This situation suggests the following concept:
Definition 4.16. Let (X, d) be a metric space, Y ∈ P (X) and T : Y → P (X)

be a multivalued operator. By definition, T is a multivalued weakly pseudo-Picard
operator (briefly m.w.p.P.o.) if and only if there exist x0 ∈ Y , y0 ∈ T (x0) and a
sequence (un)n∈N ⊂ Y such that

i) u0 = x0, u1 = y0

ii) un+1 ∈ T (un) for all n ∈ N
iii) the sequence (un)n∈N converges and its limit is a fixed point of T .
Example 4.17. Let (X, d) be a complete metric space, x0 ∈ X, r > 0 and

T : B̃(x0; r) → Pcl(X) a multifunction such that D(x0, T (x0)) < (1− α)r. Then T is
a m.w.p.P.o.

Proof. The conclusion follows from Frigon-Granas theorem (see [29] Theorem
3.1).¤

Example 4.18. Let (X, d) be a complete metric space, x0 ∈ X, r > 0 and
T : B̃(x0; r) → Pcl(X) a Reich-type multifunction, such that

D(x0, T (x0)) <
1− (α + β + γ)

1− γ
r.

Then T is a m.w.p.P.o.
Proof. The conclusion follows from Theorem 4.3. ¤
Example 4.19. Let (X, d) be a complete metric space, ε > 0 and T : X → Pcl(X)

be a multi-valued operator satisfying the following assertions:
i) there exists α ∈ [0, 1[ such that for each x, y ∈ X with d(x, y) < ε

H(T (x), T (y)) ≤ αd(x, y).

ii) there exists x0 ∈ X such that D(x0, T (x0)) < ε.
Then T is a m.w.p.P.o.

Proof. The conclusion is an easy consequence of Theorem 3.1 in [10]. ¤
Example 4.20. Let (X, d) be a complete metric space and let ϕ : R+ → R+ be a

map which satisfies:
a) ϕ is nondecreasing and continuous from the right
b) for each u > 0,

∑

n≥0

ϕn(u) < ∞
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c) ϕ(u) = 0 if and only if u = 0.
Assume that T : X → Pb,cl(X) is a multifunction for which there exists ε > 0 such

that the following two conditions are satisfied:
i) for each x, y ∈ X with d(x, y) < ε we have that

H(T (x), T (y)) ≤ ϕ(d(x, y))

ii) there exists x0 ∈ X such that D(x0, T (x0)) < ε.
Then T is a m.w.p.P.o.

Proof. The conclusion follows from Theorem 3.1 in [10]. ¤
In [74], we proved the data dependence of the fixed points set for so-called c-

m.w.P.o. It is an open question, if some similar results can be obtained for some
multivalued weakly pseudo-Picard operators.

5 Fixed points and selections for multifunctions
with decomposable values

Throughout this section (Ω,A, µ) is a complete σ-finite nonatomic measure space and
E is a Banach space. Let L1(Ω, E) be the Banach space of all measurable functions
u : Ω → E which are Bochner µ-integrable. We call a set K ⊂ L1(Ω, E) decomposable
if for all u, v ∈ K and each A ∈ A:

uχA + vχΩ\A ∈ K, (5.2)

where χA stands for the characteristic function of the set A.
This notion is, somehow, similar to convexity, but there exist also major dif-

ferences. For example, the following theorem is a ”decomposable” version of the
well-known Michael’s selection theorem for l.s.c. multifunctions.

Theorem 5.1. (see [15]) Let (X, d) be a separable metric space, E a separable
Banach space and let F : X → Pcl,dec(L1(Ω, E)) be a l.s.c. multivalued operator.
Then F has a continuous selection.

Our first result, concerning the existence of continuous selections for a locally
selectionable multifunction, is as follows:

Lemma 5.2. Let (X, d) be a separable metric space, (Ω,A, µ) be a complete
σ-finite and nonatomic measure space and E be a Banach space. Let F : X →
Pdec(L1(Ω, E)) be a locally selectionable multivalued operator. Then F has a contin-
uous selection.

Proof We associate to any y ∈ X and z ∈ F (y) an open neighborhood N(y)
and a local continuous selection fy : N(y) → L1(Ω, E), satisfying fy(y) = z and
fy(x) ∈ F (x) when x ∈ N(y). We denote by {Vn}n∈NN∗ a countable locally finite
open refinement of the open covering {N(y)| y ∈ X} and by {ψn}n∈NN∗ a continuous
partition of unity associated to {Vn}n∈NN∗ .

Then, for each n ∈ NN∗ there exist yn ∈ X such that Vn ⊂ N(yn) and a continuous
function fyn : N(yn) → L1(Ω, E) with fyn(yn) = zn, fyn(x) ∈ F (x), for all x ∈ N(yn).
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We define λ0(x) = 0 and λn(x) =
∑

m≤n

ψm(x), n ∈ NN∗. Let gm,n ∈ L1(Ω,R+) be the

function defined by gm,n(t) = ‖zn(t)− zm(t)‖, for each m,n ≥ 1.
We arrange these functions into a sequence {gk}k∈NN∗ .
Consider the function τ(x) =

∑

m,n≥1

ψm(x)ψn(x). From Lemma 1 in [15], there

exists a family {Ω(τ, λ)} of measurable subsets of Ω such that:
(a) Ω(τ, λ1) ⊆ Ω(τ, λ2), if λ1 ≤ λ2

(b) µ(Ω(τ1, λ1)∆Ω(τ2, λ2)) ≤ |λ1 − λ2|+ 2|τ1 − τ2|
(c)

∫
Ω(τ,λ)

gndµ = λ
∫
Ω

gndµ, ∀ n ≤ τ0 for all λ, λ1, λ2 ∈ [0, 1], and all τ0, τ1, τ2 ≥ 0.
Define fn(x) = fyn

(x) and χn(x) = χΩ(τ(x),λn(x))\Ω(τ(x),λn−1(x)) for each n ∈ NN∗.
Let us consider the singlevalued operator f : X → L1(Ω, E), defined by f(x) =∑

n≥1 fn(x)χn(x), x ∈ X.Then, f is continuous because the functions τ and λn

are continuous, the characteristic function of the set Ω(τ, λ) varies continuously in
L1(Ω, E) with respect to the parameters τ and λ and because the summation defin-
ing f is locally finite. On the other hand, from the properties of the sets Ω(τ, λ)
(see [64] for example) and because F has decomposable values, it follows that f is a
selection of F. ¤

The following result is a selection theorem for the intersection of two multi-valued
operators.

Theorem 5.3. Let (X, d) be a separable metric space, E a separable Banach
space, F : X → Pcl,dec(L1(Ω, E)) be a l.s.c. multivalued operator and G : X →
Pdec(L1(Ω, E)) be with open graph. If F (x) ∩ G(x) 6= ∅ for each x ∈ X then there
exists a continuous selection of F ∩G.

Proof Let x0 ∈ X and for each y0 ∈ F (x0) we define the multifunction

F0(x) =
{ {y0}, if x = x0

F (x), if x 6= x0.

Obviously F0 : X → Pcl,dec(L1(Ω, E)) is l.s.c. From Theorem 5.1. there exists a
continuous selection f of F0, i.e. f0(x0) = y0 and f0(x) ∈ F (x), for each x ∈ X,
x 6= x0. Using Proposition 4, p.81 in [5] it follows that F ∩G is locally selectionable
at x0 and has decomposable values. From Lemma 5.2. the conclusion follows. ¤

An important result is the following Browder-type selection theorem:
Theorem 5.4. Let E be a Banach space such that L1(Ω, E) is separable. Let K be

a nonempty, paracompact, decomposable subset of L1(Ω, E) and let F : K → Pdec(K)
be a multivalued operator with open fibres. Then F has a continuous selection.

Proof For each y ∈ K, F−1(y) is an open subset of K. Since K is paracompact it
follows that the open covering {F−1(y)}y∈K admits a locally finite open refinement,
let say K =

⋃

j∈J

F−1(yj), with yj ∈ K. Let {ψj}j∈J be a continuous partition of unity

subordinate to {F−1(yj)}j∈J . Using the same construction as in the proof of Lemma
5.2., one can construct a continuous function f : K → K, f(x) =

∑

j∈J

fj(x)χj(x),

where fj(x) ∈ F (x) for each x ∈ K. This function is a continuous selection for F . ¤
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Theorem 5.5. Let E be a Banach space such that L1(Ω, E) is separable. Let I be
an arbitrary set of indices, {Ki|i ∈ I} be a family of nonempty, decomposable subsets
of L1(Ω, E) and X a paracompact space. Let us suppose that the family
{Fi : X → Pdec(Ki)|i ∈ I} is of Ky Fan-type. Then there exists a selecting family for
{Fi}i∈I .

Proof Let {Ui}i∈I be the open covering of the paracompact space X given by
Ui = {x ∈ X| Fi(x) 6= ∅} for each i ∈ I. It follows that there exists a locally finite
open cover {Wi}i∈I such that Wi ⊂ Ui for i ∈ I. Let Vi = Wi. For each i ∈ I let us
consider the multivalued operator Gi : X → P(Ki), defined by the relation

Gi(x) =
{

Fi(x), if x ∈ Vi

Ki, if x 6∈ Vi.

Then Gi is a multifunction with nonempty and decomposable values having open
fibres (indeed, G−1

i (y) = F−1
i (y) ∪ (X\Vi)) , for each i ∈ I.

Using Theorem 4.4. we have that there exists fi : X → Ki continuous selection for
Gi (i ∈ I), for each i ∈ I. It follows that for each x ∈ X there exists i ∈ I such that
x ∈ Vi and hence fi(x) ∈ Gi(x) = Fi(x), proving that {fi}i∈I is a selecting family for
{Fi}i∈I . ¤

By a similar argument we have:
Theorem 5.6. Let E be a separable Banach space and X a separable metric

space. Let I be an arbitrary set of indices, {Ki|i ∈ I} be a family of nonempty,
closed, decomposable subsets of L1(Ω, E). Let {Fi : X → Pcl,dec(Ki)|i ∈ I} be a
family of l.s.c. multivalued operators such that for each x ∈ X there is i ∈ I such that
Fi(x) 6= ∅. Then {Fi}i∈I has a selecting family.
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inite ı̂n spaţii uniforme, An. Univ. Craiova, 1(1970), 63-67.



Fixed points and selections 17

[9] Y.M. Ayerbe Toledano, T. Dominguez Benavides, L. López Acedo, Measures of
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