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1 Introduction

Fixed point theory is one of the most powerful tool for the study of a lot of
problems arising in pure and applied mathematics. The main purpose of this paper is
to report several fixed point results and selection theorems for multi-valued operators.
The structure of this paper is the following: first of all, in the second section, we
consider some notations, notions and preliminary results that we need throughout the
paper. Then in the third paragraph, we present some Krasnoselskii-type fixed points
theorems for multi-valued operators. In section 4, we concentrate on some properties
of the fixed points set of a multi-valued operator. Finally, in the last paragraph
we consider some selection theorems for multi-valued operators with decomposable
values. For more details and further results, we refer to [49], [51] and [64].

2 Preliminaries

Let (X, d) be a metric space, g € X and r > 0. We denote:

B(zoir) = {z € X : d(xg,z) <7}, B(zo;r) = {z € X : d(zo,z) <1},
P(X)={A: Aisasubset of X}, P(X)={A € P(X): Aisnonempty},
P,(X)={A € P(X): A has the property ”p”}, where "p” could be: ¢l = closed,
b = bounded, ¢p = compact, cv = convex (for normed spaces X), etc.

If A,B € P(X), we define the functional:

D:P(X)x P(X)— Ry, D(A,B) =inf{d(a,b)| a € A, b€ B}
and the following generalized functionals:

§:P(X)x P(X)— Ry U{4o0}, (A, B) = sup{d(a,b)| a € A, b€ B}

p: P(X)x P(X)— Ry U{+o0}, p(A,B) =sup(D(a, B)| a € A}
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H:P(X)x P(X)—> RyU{+o0}, H(A,B) =max{p(4, B),p(B, A)}.

Throughout the paper, the symbol M indicates the family of all metric spaces.
Let X € M. The space X is called an absolute retract for metric spaces (briefly
X € AR(M)) if, for any Y € M and any Yy € P,(X), every continuous function
fo : Yo — X has a continuous extension over Y, that is f : ¥ — X. Obviously,
any absolute retract is arcwise connected. Let X, Y € M and T : X — P(Y) be a
multifunction. We will denote by the symbol G(T) = {(z,y) € X x Y| y € T(x)}
the graph of T. If T : X — P(X) is a multi-valued operator then we denote by
FizT the fixed points set of T, i.e. FizT = {z € X| z € T(x)}. A multi-function
T:X — Py(Y) is, by definition, lower semi-continuous (briefly, l.s.c.) if, for any
open set A of Y, the set T7*(A) := {z € X : T(z) N A # 0} is open in X. When for
any open set A of Y , the set {x € X : T(z) C A} is open in X, we say that T is
upper semi- continuous (briefly u.s.c.). A continuous multi-function 7' : X — P.(Y)
is, by definition, both L.s.c. and u.s.c. Also, T is said to be closed if and only if the
set G(T') is closed in X x Y.

Definition 2.1. (see Rus-Petrugel-Sintamarian [73]) Let (X, d) be a metric space
and T : X — P(X) a multi-valued operator. By definition, T is a multi-valued weakly
Picard operator (briefly m.w.P.o.) if and only if for all € X and all y € T'(z) there
exists a sequence (z,)nen such that:

1) Top =T, 1 =Y
il) zp41 € T(xy), for all n € N
iii) the sequence (z,,)nen is convergent and its limit is a fixed point of T.

Let us remark that a sequence (z,)nen satisfying the conditions (i) and (ii) in
the previous definition is, by definition, a sequence of successive approximations of 7T,
starting from (z,y).

Definition 2.2. (see Covitz-Nadler [23]) Let (X,d) be a metric space. Then
T : X — Py(X) is a multi-valued L-contraction, if there exists L €]0,1[ such that:
H(T(x),T(y)) < Ld(x,y), for every z,y € X.

Definition 2.3. (see Reich [66]) Let (X,d) be a metric space. Then T :
X — Py(X) is said to be a multi-valued Reich-type operator if there exist
a,B,7 € Ry, a+ B+~ < 1such that: H(T(x),T(y)) < ad(z,y) + 8D(z,T(x)) +
vD(y,T(y)), for all z,y € X.

Definition 2.4. (see Rus [70] and Petrusel [49]) Let (X,d) be a complete
metric space. A multi-valued operator T : X — P.(X) is said to be a multi-
valued Rus-type graphic-contraction if G(T) is closed and the following condition
is satisfied: there exist o, € R4, o+ 8 < 1 such that: H(T(z),T(y)) <
ad(z,y)+ 6D(y,T(y)), for every z € X and every y € T'(z). Moreover, the operator
T is a multi-valued graphic-contraction if T is a multi-valued Rus-type contraction
with g = 0.

Definition 2.5. (see Frigon-Granas [29] and Petrusel [59]) Let (X, d) be a com-
plete metric space, zg € X and r > 0. The multi-valued operator 7' is called a
Frigon-Granas-type operator if T : B(zo;r) — P.(X) and satisfies the following
assertion:
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i) there exist o, 8,7 € Ry, a + 4+ v < 1 such that:
H(T(z),T(y)) < ad(z,y) + BD(x, T(z)) + D (y, T(y)), for all x,y € Bwo;7)

We also recall the definition of Kuratowski’s measure of non-compactness :

Definition 2.6. Let X be a metric space and S a bounded subset of X. We set
a(S) = inf{e > O|there exists m and exists Si,...,S,, such that S = U S; and

i<m
diam(S;) < e}.

Definition 2.7. Let X a Banach space and T : X — P, (X) be a multivalued
operator. Then T is said to be an («, L)-contraction if and only if there exists L €]0, 1]
such that a(T(A)) < La(A), for each A € P,(X). (where « is the Kuratowski measure
of non-compactness on X)

A multivalued operator T': X — P(X) is called compact if and only if T(A) is
relatively compact, for each A € Py(X).

Definition 2.8. Let F': [a,b] x R™ — P, (R™) a multivalued operator. Then F is
called integrably bounded if and only if there exists a function r € L![a, b] such that
for every v € F(t,x), |v| < r(t) a.e.

Definition 2.9. Let (X,d) be a metric space and FE be a Banach space. Then
F:X — P(E) is called:

a) locally selectionable at xp € X if and only if for all yo € F(xo) there exist a
neighborhood N(z() and a continuous function f : N(xg) — F such that f(z¢) = yo
and f(x) € F(x), for each z € N(xp).

b) measurable if and only if F~1(C) belongs to the o-algebra B of Borel subsets
of X, for each closed subset C of E.

Definition 2.10. Let X be a nonempty set and F be a Banach space and F :
X — P(E) be a multivalued operator.

i) The set defined by F~1(y) = {x € X|y € F(x)} is said to be the fibre of F at
the point y € F.

ii) The singlevalued operator f : X — FE is a selection for F if and only if f(z) €
F(x) for every x € X.

Definition 2.11. (see Deguire-Lassonde [24] and [25]) Let X be a topological
space and {Y;|i € I'} an arbitrary family of topological spaces.

i) We say that { f; : X — Y;|i € I} is a selecting family for the family of multivalued
operators {F; : X — P(Y;)|i € I'} if and only if for each 2 € X there exists ¢ € I such
that fl(l‘) S Fl(l‘)

ii) If {Y;| ¢ € I} is an arbitrary family of convex subsets of a Hausdorff topological
vector space then the family {F; : X — P(Y;)|i € I} is said to be of Ky Fan-type if
and only if each F; has convex values and open fibres and for every x € X there is
1 € I such that Fj(x) # 0.

Definition 2.12. The topological space X has the compact fixed point property
if and only if every continuous mapping f : X — X with relatively compact image
has a fixed point.

We consider now some known results that will be used in the following sections.
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Theorem 2.13. (see [75]) Let X be a metric space and 'Y be a closed subset of
a Banach space Z. Assume that the multivalued operator F' 1 X XY — Py (YY)
satisfies the following conditions:

Z) H(F(xvyl)vF(m7y2)) < L”yl - y2H7 for each (xvyl)v (.’E,yg) €eX xY;

it) for everyy € Y, F(-,y) is l.s.c. on the space X.
Then there exists a continuous mapping f: X XY — Y such that :

flz,y) € F(z, f(x,y)), for each (z,y) € X XY

Theorem 2.14. (see [51]) Let X be a Banach space and Fy, Fy : X — Py (X) be
two multivalued operators, such that Fy is a L-contraction and Fs is compact. Then
Fy + F5 is (o, L)-contraction.

3 Fixed point theorems for the sum of two multi-
valued operators

A first multivalued version of the Krasnoselskii’s fixed point principle is:

Theorem 3.1. Let X be a Banach space, Y € Py c(X) and A:Y — Py o 0 (X),
B:Y — P, (X)) two multivalued operators. If the following conditions are satisfied:

(i) Ays) + B(y2) C Y, for each yr,yn € ¥

(ii) A is L-contraction;

(iii) B is l.s.c. and B(Y') is relatively compact;
then Fix(A+ B) # 0.

Proof. Let C : Y — P(Y') be a multivalued operator defined as follows:

a) for each z € Y consider the multivalued operator T, : Y — Pep o (Y), Ti(y) =
A(y) + B(z). Since T, is multivalued L-contraction (indeed, on have:
H(T, (1), T (y2)) = H(A(y2) + Bx), Alye) + B(x)) < H(A(y), A(ye)) < Ll — sl
for each y1,y2 € Y), from Covitz-Nadler fixed point theorem (see [23]) it follows that
for every x € Y the fixed point set for the multifunction T}, Fiza T, = {y € Y| y €
A(y) + B(z)} is nonempty and closed.

b) From Theorem 2.13. it follows that there exists a continuous mapping f :
Y xY — Y such that f(z,y) € A(f(x,y))+B(z). (Let us observe that the multivalued
operator F : Y XY — P, .,(Y) defined by F(z,y) = A(y) + B(z), for each (x,y) €
Y x Y satisfies the hypothesis of Theorem 2.13.) Let us define C(z) = Fiz T,
C:Y — Py(Y). Let us consider the singlevalued operator ¢ : Y — Y defined by
c(x) = f(z,x), for each x € Y.

Then ¢ is a continuous mapping having the property that c(z) = f(z,z) €
A(f(z,x)) + B(z) = A(c(z)) + B(x), for each z € Y.

Now, we will prove that ¢(Y") is relatively compact. For this purpose it is sufficient
to show that C(Y) is relatively compact. Let us observe that C(Y) is totally bounded:

Indeed B(Y) being relatively compact it is also totally bounded. So, there exists

n
Z ={x1,...,2,} CY such that B(Y) C {z1,..., 2.} + B(0,(1 = L)e) C | | B(x:) +
=1
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B(0,(1 — L)e) (where z; € B(z;), for each ¢ = 1,2,...,n). It follows that, for each

xeY, B(x) C U B(x;) + B(0, (1 — L)e) and hence there exists an element 3 € Z
i=1
such that p(B(x), B(xy)) < (1 — L)e. Then:

p(0($)70(xk)) = p(FixTz,FixTzk) < 1 i 5161)12 p(Tx(y)vTxk (y)) =

=L P(A(y) + B(2), Aly) + Blaw)) < 7— sup p(B(z), B(zk)) <

< ﬁ(l —Le=¢
It follows that for each u € C(z) there is vy, € C(zy) such that ||u — vg|| < e. Hence,
for each z € Y, C(x) C Q + B(0,¢), where Q = {v1,..., 0%, ..., 00}, v; € C(x;),
i=1,2,...,n.

Since in a Banach space a totally bounded set is relatively compact the conclusion
follows.

Finally, let us observe that the mapping ¢ : Y — Y satisfies the assumptions of
Schauder’s fixed point theorem. Let z* € Y be a fixed point for ¢. On have that
x* = c(z*) € A(e(z*)) + B(a*) = A(z*) + B(x*).

Using the measures of non-compactness technique (see [51]) another fixed point
result for the sum of two multi-valued operators is the following:

Theorem 3.2. Let X be a Banach space, ¥ € Py co(X) and A,B 1Y —
P, e (X) two multivalued operators. If the following conditions are satisfied:

(i) A(ly) + B(y) C Y, for eachy € Y;

(i) A is L-contraction;

(i) B is u.s.c. and compact;
then Fix(A+ B) # 0.

As application, from Theorem 3.2., we get the following existence result for an
integral inclusion (see [51] for more details).

Theorem 3.3. Consider the following Fredholm-Volterra integral inclusion:

z(t) € )\1/ Ki(t,s,x(s)) + )\2/ Ky(t,s,xz(s))ds, t¢€ [a,b]. (3.1)

We assume that:

i) Ky : [a,b] X [a,b] x R™ — P c,(R™) is a lower semicontinuous, measurable and
integrably bounded multivalued operator

i) Ko @ [a,b] x [a,b] X R™ — Py o (R™) is an upper semicontinuous, measurable
and integrably bounded (by an integrable function mg, ) multivalued operator

iii) there exists L > 0 such that

H(K1(t,s,u1), K1(t, s,u2)) < L||ui—us||, for each (t,s,u1),(t,s,uz) € [a,b]x[a,b]xR"
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iv) Ao satisfy the following relation:
R )
< ————, where R> ————
~ 2Mkg,(b—a) - 17\/\1|L
2T

[ Az

(with Mg, = m[a%] m,(t), 7> |Ai|L and § is an upper bound for the set of contin-
t€la,
b

uous selections for the multivalued operator t — )\2/ Ky (t, s,y(s))ds, y € Cla,b]).

Then, there exists yo € Cla,b], such that the integr[zzl inclusion (3.1.) has a solution
y* € B(yo; R) C Cla, b].

Sketch of the proof. Let A, B : C[a,b] — P(Cla,b]) be two multivalued opera-
tors given by

Aly) = {u € Cla,b]| u(t) € )\1/ Ky(t,s,y(s))ds, t€la, b]}

B(y) {v € Cla,b]| v(t) € )\2/ Kot s,y(s))ds, te€ [a,b]}

Obviously y* € Fiz(A + B) if and only if y* is a solution for (3.1.).
Then on can prove that the multifunctions A and B satisfies the assumptions of
Theorem 3.2. [J

4 Properties of the fixed points set for multifunc-
tions

Contrary to the single-valued case, the fixed points set for a multivalued contraction
is not necessarily a singleton and hence it is of interest to study some properties
(compactness, absolute retract property , data dependence etc. ) of it.

In this framework, J. Saint-Raymond established the following theorem.

Theorem 4.1. ([65]) Let T be a multi-valued contraction from the complete metric
space X to itself. If T takes compact values, the fived points set FixT is compact too.

As regard to the same problem, B. Ricceri stated the following very important
theorem:

Theorem 4.2. ([69]) Let E be a Banach space and let X be a nonempty, closed,
conver subset of E. Suppose T : X — Pey (X)) is a multi-valued contraction. Then
FixT is an absolute retract for metric spaces.

Using a similar idea as in [29] we shall prove first the following existence result:

Theorem 4.3. Let (X,d) be a complete metric space xo € X, r > 0 and

T : B(xg,r) — Py(X) a multivalued operator satisfying the following assertions:
i) T is a Reich-type multivalued operator
1—
ii) D(zo, T(xo)) < @B+

L=~
Then FixT # 0.
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Proof. We shall prove, by induction, the existence of a sequence (x,)nen In
B(xq,r) such that

a) xn € T'(zp_1), for each n € N*

1—(a+8+

b) d(xn—1,2n) < (a+f+ W“l(l—vw

For n = 1 the assertions a) and b) are true.

If the relations hold for ¢ € {1,n} let us show the existence of ,,41.

We have:

r, for each n € N*,

H(T(tn1), T(0)) < ad(@o1,20) + BD(@n—1, T(2n_1) + 7D(@n, Tx,)) <

< ad(zn—1,2n) + Bd(xyn_1,2n) + YH (T (xn—1), T (7))

Hence
H(T(zn-1),T(zn)) < %fd(xn_l,xn) < ‘i‘jf(awﬂ)nlwr _
<(a+ 8+ V)HMT.
I—vy

So we get that there exists x,41 € T(x,) such that

1—(a+8+7)

d(@n, Tnt1) < (@ + B4+7)" T

T?

proving the existence of the point z,41 satisfying a) and b). Let us denote by [ =
a + 3+ . Further on, we shall prove that (z,)nen is a Cauchy sequence. Indeed
1-1 < m
—7

11—y T 1—v

ATy Tpyp) < (1" + .+ 1P r—0, as n— oo.

This implies that z,, — x* as n — oo and because T has closed values we get by
standard arguments that z* € T'(z*). O

Remark 4.4. When § = v = 0 we get Theorem 3.1 from [29].

Remark 4.5. When a =0 and =~ =h (with h € R, 0 < h < 1/2) we obtain
a fixed point result for a Kannan-type multivalued operator.

Another result of this type is:

Theorem 4.6. Let (X,d) be a complete metric space, xg € X, r > 0 and
T : B(wo;r) — Pu(X) satisfying:

i) T is a graphic-contraction

it) T is a closed multifunction

i11) D(xo,T(x0)) < (1 — a)r.
Then FixT # 0.

For the fixed points set of a Frigon-Granas type multifunction we have:

Theorem 4.7. Let (X,d) be a complete metric space, xyg € X and r > 0. Let us

suppose that T : E(mo; r) — P, (X) satisfies the following two conditions:
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i) there exist a, f € Ry, o+ 20 < 1 such that
H(T(x),T(y)) < ad(z,y) + B[D(z, T(x)) + D(y, T(y))], for each z,y € B(xo;r)

ii) Do, T(x0)) < [1 — (a +20)](1 - B)Ir.

Then the fixed points set FixT is compact. B

Proof. It is not difficult to see that FizT € P,(B(zo;r)). Assume that FizT
is not compact. Because FixT is complete, it cannot be precompact, so there exist
d > 0 and a sequence (z;)ien C FlizT such that d(z;,x;) > 0, for each i # j. Put
p = inf{R| there exists a € B(xo;r) such that B(a, R) contains infinitely many z;:s}.
1—a-—20

14+«
such that the set J = {i: z; € B(a,p+¢)} is infinite.

For each ¢ € J, we have

5 ~
Obviously p > 3 > 0. Let € > 0 such that ¢ < p and choose a € B(xo;r)

D(z;,T(a)) < H(T(x;),T(a)) < ad(x;,a) + B;[D(x;, T(x;)) + D(a,T(a))] =

= ad(z;,a) + D(a,T(a)) < alp+¢)+ pd(a,y), for every y € T'(a).
Then

D(zs,T(a)) < alp+e) + Bld(a, z:) + d(zi, y)] < alp+€) + B(p + ) + Bd(z:, y),

for every y € T(a). Taking igl(") we get : D(z;,T(a)) < (a+B)(p+e)(1 —
yel'(a

B)~L, for each i € J. So, we can choose some y; € T(a) such that d(z;,y;) <
(a+B)(p+e)(1—pB3)~L, for each i € J. By the compactness of T'(a) there exists b €
T'(a) such that the following set: J' = {i € J| d(y;,b) < €} is infinite. Then, for each
i € ' we get d(z:,b) < d(zs,yi) +d(yi,b) < (a+ B)(p+2)(1—B) "+ = (o + H)(1-
B)tp+e(l+ (a+pB)(1—3)"") < p. This contradicts the definition of p, because
the set B(b, R) contains infinitely many z;’s. (where R = (a+ 3)p(1 — 8) " +
c(1+ (a+B) (1)) 0

Corollary 4.8. Let (X,d) be a complete metric space and T : X — P.,(X) be a
multivalued operator. Let us suppose that there exist a, § € Ry with o+ 28 < 1 such
that

H(T(x),T(y)) < ad(x,y) + B[D(x,T(x)) + D(y, T(y))],

for each z,y € X.

Then the fixed points set FixT is compact.

Only minor modifications of the above technique are needed in order to obtain the
following result:

Theorem 4.9. Let (X,d) be a complete metric space and T : X — Po,(X) be a
multivalued operator. If the following assertions are true:

i) there exist o, 8 € Ry, a+ [ <1 such that

H(T(z),T(y)) < ad(z,y) + 8D(z,T(z)), for each z,y€ X

i4)D(z0, T(10)) < [1 — (a + B)](1 — B)"tr.
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then the fixed points set FixT is compact.

We consider now another result regarding the structure of the set of all fixed points
for a multi-valued Reich-type operator with convex values.

Theorem 4.10. Let E be a Banach space, X € P co(E) and T : X — Py (X))
be a l.s.c. multi-valued Reich-type operator. Then FixT € AR(M).

Proof. Let us remark first that FiaT € P.(X) (see for example [73]). Let K
be a paracompact topological space, A € Py(K) and ¢ : A — FixT a continuous
mapping. Using Theorem 2 from B. Ricceri [69] (taking G(t) = X, for each ¢t € K) it
follows the existence of a continuous function ¢g : K — X such that pg|a = ¥. We
next consider g €]1, (a+ 3+ )" 1[. We claim that there exists a sequence (¢, )nen of
continuous functions from K to X with the following properties:

(i) nla =1

(i) pn(t) € T(on-1(t)), for all t € K

(i) on(t) — w1 < @+ B+ al" o1 (t) = po(t)], for all t € .

To see this, we proceed by induction on n. Clearly, for each ¢t € A we have that
P(t) € T(po(t)). On the other hand, the multi-function ¢ — T'(¢o(t)) is l.s.c. on K
with closed, convex values and hence using again Theorem 2 in [69] it follows that
there is a continuous function ¢; : K — X such that ¢1]4 = ¢ and 1(t) € T(¢o(t)),
for all t € K. Hence, the conditions (i), (ii), (iii) are true for ;. Suppose now we
have constructed p continuous functions @1, ¢2,..., ¢, from K to X in such a way
that (i), (ii), (iii) are true for n € {1,2,...,p}. Using the Reich-type contraction
condition for T', we have

D(pp(A), T(pp(t)) < H(T(pp-1(1)), T(pp(t))) <

< allgp-1(t) = ppO + BD(pp-1(t), T(pp-1(1))) + 7D (pp (1), T(0p(1))) <

< allpp-1(t) = ep(O)]| + Bllep-1(t) — wp(O)Il + D (ep(t), T(pp(t)))
so that
D(pp(1), T(p(1)) < (4 B)(1 =) lgp(t) = ppar(B)] <

< (a+B) 1= a+B+7)dP e () —po®) < (a+B8+7)7¢" lpr(t) —po(t)]| <
<[(a+B+7)d"[le1(t) = o(®)]-
We next define

Q) (0) :{ Blep(t), [(a+B+7)alllex(t) = o)), if ¢ € K and p1(t) # po(t)
? {ep()}, it p1(t) = o(t)

Obviously T'(pp(t)) N Qp(t) # 0, for all t € K. We can apply now (taking G(t) =
F(gp(t)), [(t) = p(t) and the mapping g(t) = [(@ + B + NaPller(t) — wo(t)],
for all ¢ € K). Proposition 3 from [69], we obtain that the multi-function ¢ —
T(pp(t)) NQp(¢) is Ls.c. on K with nonempty, closed, convex values. Because of
Theorem 2 in [69], this produces a continuous function ¢,41 : K — X such that
Opt1lt = ¥ and ppp1(t) € T(pp(H)) NQp(t), for all ¢ € T. Thus the existence of
the sequence {¢,} is established. Consider now the open covering of K defined by
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the formula: ({t € K| ||p1(t) — wo(t)|| < A})rs0. Moreover, because of (iii) and the
fact that X is complete, the sequence {@,}nen converges uniformly on each of the
following set K\ = {t € K| |[¢1(t) — po(t)|| < A} (A > 0). Let ¢ : K — X be the
pointwise limit of (¢p)nen. Obviously ¢ is continuous and ¢|4 = 1. Moreover, a
simple computation ensures that : ¢(t) € T(¢(t)) for all t € K and this completes
the proof. [J

Remark 4.11. If B8 = v = 0 then the previous theorem coincides with B. Ricceri’s
result (Theorem 4.2 below).

Remark 4.12. Of course, it is also possible to formulate version of Theorem
4.10., where T is a multi-valued Rus-type graphic contraction. It is an open question
if such a result holds for a Frigon-Granas type multi-function.

The second aim of this section is to study the data dependence problem of the
fixed points set for some Frigon-Granas-type multifunctions.

Theorem 4.13. Let (X, d) be a complete metric space, xo € X, r > 0 and

T, T : E(,To; r) — Py(X) be multifunctions satisfying the following assertions:

i) T; is a multivalued o;-contraction, for i € {1,2}

i1) 6(xo, Ti(x0)) < (1 — ay)r, fori e {1,2}

iii) there exists > 0 such that H(Ty(z), To(z)) <1, for each = € B(zg;r).
Then: B

a) FixT; € Py(B(xo;r)) fori e {1,2}

b) H(F’L.’I,'Tl, F7,$T2) S 1— max{ah 0[2} .

Proof. a) We denote by T each of the two multifunctions 7} and T5. For each
x € B(wo;r) we have that T(z) C B(zo; 7). Indeed, let u € T(x) be arbitrary. Then

d(zg,u) < d(zo,y) +d(y,u) < (1 —a)r +d(y,u) foreach y e T(xg).
Taking the infimum after y € T'(zo) we get:
d(zo,u) < (1 —a)r+ D(u,T(x0)) < (1 —a)r+ H(T(z), T(xp)) <
<(1—a)r+ ad(z,zg) <,

proving the fact that T : B(xzo;7) — Pu(B(z0;7)). The conclusion a) follows from
Covitz-Nadler theorem (see [23]) and the part b) from Rus-Petrugel-Sintamarian result
in [73]. O

Remark 4.14. It is an open problem, the data dependence of the fixed points set
for the Frigon-Granas-type multifunctions satisfying the weaker condition

D(zg,T(z0)) < (1 — a)r.

Similarily, we can prove:

Theorem 4.15. Let (X,d) be a complete metric space, xg € X, r > 0 and
Ty, Ty : B(zo;r) — P.y(X) be multifunctions such that:

i) T; is a multivalued Reich-type operator with «;, B;,v: € Ry, a; + 0; + v < 1,
for each i € {1,2}.
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1— (i +Bi +
i) (a0, Tian)) < 2 F AL
— Y

iii) there exists 1 > 0 such that H(Ti(z),T2(x)) <mn, for each x € B(zg;r).
Then: _

a) FiaxT; € Py(B(xo,7)), forie {1,2}

_ . 1 — min{~y,7v2}

b) H(FixTy, FixTy) < .

) H(FiaTh 2)—1—maxia1+ﬂl+fyl,az+ﬁz+vz}

Let us remark now that, if 7' : B(zg;r) — Pu(X) is a Frigon-Granas-type multi-
function, such that

r fori e {1,2}.

D(xo,T(x0)) < (1 — a)r,

then T is not necessarily a m.w.P.o.

This situation suggests the following concept:

Definition 4.16. Let (X,d) be a metric space, Y € P(X) and T : Y — P(X)
be a multivalued operator. By definition, T" is a multivalued weakly pseudo-Picard
operator (briefly m.w.p.P.o.) if and only if there exist g € Y, yo € T(xp) and a
sequence (up)nen C Y such that

i) up = wo, u1 = Yo

i) up+1 € T(uy) for alln € N

iii) the sequence (uy)nen converges and its limit is a fixed point of T'.

Example 4.17. Let (X,d) be a complete metric space, x9 € X, r > 0 and
T : B(wo:r) — Poy(X) a multifunction such that D(zo,T(x0)) < (1 —a)r. Then T is
a m.w.p.P.o.

Proof. The conclusion follows from Frigon-Granas theorem (see [29] Theorem
3.1).0

Example 4.18. Let (X,d) be a complete metric space, xg € X, r > 0 and
T : B(wo:r) — Py(X) a Reich-type multifunction, such that

D(zo, T(x0)) < Mr.
1—7y
Then T is a m.w.p.P.o.

Proof. The conclusion follows from Theorem 4.3. [J

Example 4.19. Let (X, d) be a complete metric space, € >0 and T : X — Py(X)
be a multi-valued operator satisfying the following assertions:

i) there exists o € [0, 1] such that for each x,y € X with d(z,y) < e

H(T(x),T(y)) < ad(z,y).

it) there exists xg € X such that D(zo,T(x9)) < €.
Then T is a m.w.p.P.o.
Proof. The conclusion is an easy consequence of Theorem 3.1 in [10]. O
Example 4.20. Let (X, d) be a complete metric space and let p : Ry — Ry be a
map which satisfies:
a) ¢ is nondecreasing and continuous from the right

b) for each u > 0, Zcp”(u) < oo
n>0
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c) o(u) =0 if and only if w=0.

Assume that T : X — Py (X)) is a multifunction for which there exists € > 0 such
that the following two conditions are satisfied:

i) for each x,y € X with d(x,y) < & we have that

H(T(x), T(y)) < e(d(z,y))

it) there exists xg € X such that D(zo,T(x0)) < €.
Then T is a m.w.p.P.o.

Proof. The conclusion follows from Theorem 3.1 in [10]. O

In [74], we proved the data dependence of the fixed points set for so-called c-
m.w.P.o. It is an open question, if some similar results can be obtained for some
multivalued weakly pseudo-Picard operators.

5 Fixed points and selections for multifunctions
with decomposable values

Throughout this section (2, A, 1) is a complete o-finite nonatomic measure space and
E is a Banach space. Let L'(£, E) be the Banach space of all measurable functions
u : Q — E which are Bochner y-integrable. We call a set K C L(Q, E') decomposable
if for all u,v € K and each A € A:

uxa +ovxo\a € K, (5.2)

where x4 stands for the characteristic function of the set A.

This notion is, somehow, similar to convexity, but there exist also major dif-
ferences. For example, the following theorem is a ”decomposable” version of the
well-known Michael’s selection theorem for l.s.c. multifunctions.

Theorem 5.1. (see [15]) Let (X,d) be a separable metric space, E a separable
Banach space and let F : X — Pugec(LY (2, E)) be a Ls.c. multivalued operator.
Then F has a continuous selection.

Our first result, concerning the existence of continuous selections for a locally
selectionable multifunction, is as follows:

Lemma 5.2. Let (X,d) be a separable metric space, (2, A,pn) be a complete
o-finite and nonatomic measure space and E be a Banach space. Let F' : X —
Piee(LY (2, E)) be a locally selectionable multivalued operator. Then F has a contin-
uous selection.

Proof We associate to any y € X and z € F(y) an open neighborhood N (y)
and a local continuous selection f, : N(y) — L'(Q, E), satisfying f,(y) = z and
fy(z) € F(z) when z € N(y). We denote by {V,},enn+ a countable locally finite
open refinement of the open covering {N(y)| y € X} and by {¢, }nenn+ & continuous
partition of unity associated to {V, }nenn*-

Then, for each n € NN* there exist y,, € X such that V,, C N(y,) and a continuous
function f,, : N(y,) — L*(Q, E) with fy, (yn) = 2n, fy.(z) € F(x), forallz € N(y,).
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We define \g(z) = 0 and A, (z) = Z Ym(z), n € NN*. Let gpn € L' (Q,Ry) be the
m<n
function defined by g, n(t) = ||2n(t) — 2m(t)], for each m,n > 1.
We arrange these functions into a sequence {gx }renn--
Consider the function 7(x) = Z Ym () (x). From Lemma 1 in [15], there
m,n>1
exists a family {Q(7, \)} of measurable subsets of ) such that:
(a) Q(T, )\1) Q Q(T, )\2)7 if )\1 S )\2
(D) (271, A )AQ (T2, A2)) < [Ad1 = Ao| + 2|71 — T2
(c) fQ(T’A) Indpn =X [ gnd,, ¥ n < 7 for all A\, A1, Xy € [0,1], and all 79, 71,72 > 0.

Define f,(z) = fy, () and xn(2) = XQ(r(2),An (2))\Q(r(2),An_1 (z)) fOT each n € NN*.

Let us consider the singlevalued operator f : X — L(Q, E), defined by f(z) =
Yons1 fn(@)xn(z), € X.Then, f is continuous because the functions 7 and A,
are continuous, the characteristic function of the set (7, \) varies continuously in
LY(Q, E) with respect to the parameters 7 and A and because the summation defin-
ing f is locally finite. On the other hand, from the properties of the sets Q(7,\)
(see [64] for example) and because F has decomposable values, it follows that f is a
selection of F. [J

The following result is a selection theorem for the intersection of two multi-valued
operators.

Theorem 5.3. Let (X,d) be a separable metric space, E a separable Banach
space, F i X — Poaec(L*(Q E)) be a l.s.c. multivalued operator and G : X —
Puee(LY(Q, E)) be with open graph. If F(x) N G(z) # 0 for each x € X then there
exists a continuous selection of F'NG.

Proof Let xg € X and for each yy € F(z() we define the multifunction

Ay}, Hz=2x
Fo(x)_{ P?’J(Oa:), ifa:;éa:g.

Obviously Fy : X — Pegec(L (2, E)) is Ls.c. From Theorem 5.1. there exists a
continuous selection f of Fy, i.e. fo(xg) = yo and fo(zx) € F(z), for each z € X,
x # xo. Using Proposition 4, p.81 in [5] it follows that F' N G is locally selectionable
at xo and has decomposable values. From Lemma 5.2. the conclusion follows. [J

An important result is the following Browder-type selection theorem:

Theorem 5.4. Let E be a Banach space such that L'(Q, E) is separable. Let K be
a nonempty, paracompact, decomposable subset of L'(Q, E) and let F : K — Pye.(K)
be a multivalued operator with open fibres. Then F has a continuous selection.

Proof For each y € K, F~!(y) is an open subset of K. Since K is paracompact it
follows that the open covering {F~!(y)},ex admits a locally finite open refinement,
let say K = U Fﬁl(yj), with y; € K. Let {¢;};cs be a continuous partition of unity

jeJ
subordinate to {F~!(y;)};cs. Using the same construction as in the proof of Lemma
5.2., one can construct a continuous function f : K — K, f(x) = ij(x)xj(x),
JjeJ

where f;(x) € F(x) for each x € K. This function is a continuous selection for F. O
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Theorem 5.5. Let E be a Banach space such that L' (2, E) is separable. Let I be
an arbitrary set of indices, {K;|i € I} be a family of nonempty, decomposable subsets
of LY(Q%, E) and X a paracompact space. Let us suppose that the family
{F; : X = Paec(K;)|i € T} is of Ky Fan-type. Then there exists a selecting family for
{Fitier-

Proof Let {U;};csr be the open covering of the paracompact space X given by
Ui = {z € X| Fi(z) # 0} for each ¢ € I. It follows that there exists a locally finite
open cover {W;}ier such that W; C U; for i € I. Let V; = W;. For each i € I let us
consider the multivalued operator G; : X — P(K;), defined by the relation

{ Fi(z), ifzeV;

Gi@) =91 k. ifrev

Then G; is a multifunction with nonempty and decomposable values having open
fibres (indeed, G;*(y) = F; ' (y) U (X\V;)) , for each i € I.

Using Theorem 4.4. we have that there exists f; : X — K; continuous selection for
G; (i € I), for each ¢ € I. Tt follows that for each & € X there exists ¢ € I such that
x € V; and hence f;(z) € G;(z) = F;(x), proving that {f;}ics is a selecting family for
{Fi}ier- O

By a similar argument we have:

Theorem 5.6. Let E be a separable Banach space and X a separable metric
space. Let I be an arbitrary set of indices, {K;|i € I} be a family of nonempty,
closed, decomposable subsets of L*(Q,E). Let {F;, : X — Peaec(Ki)|i € I} be a
family of l.s.c. multivalued operators such that for each x € X there isi € I such that
Fi(z) #0. Then {F;}icr has a selecting family.
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