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1 The discrete continuation principle

Let us first recall Banach contraction principle.

Proposition 1 Let (X, d) be a complete metric space and T : X — X a contraction,
i.e.

d(T (x),T (y)) <ld(z,y)

for all x,y € X and some fized l € [0,1). Then T has a unique fized point x* and for
every xg € X and k € N, one has

d (Tk (1’0) ,CE*) < 7ld (:I,’(), T (ZL’())) .

A continuation version of the Banach contraction principle was given by Gatica-
Kirk [10] in case of Banach spaces and later by Granas [14] for general complete metric
spaces. Extensions for set-valued maps are due to Frigon-Granas [8] and for weakly
contractive maps, to Frigon [6]. In [24] we stated and proved the following compu-
tational version of Granas’ continuation principle for contraction maps on complete
metric spaces.
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Theorem 1 [24] Let (X, d) be a complete metric space and U be an open set of X.
Let H:U x[0,1] = X, Hy = H(.,\), and assume that the following conditions are
satisfied:

(al) there is 1 € [0,1) such that
d(H (z,A),H (y,\) < ld(z,y)
forall x,y €U and X € [0,1];
(a2) H (z,\) # =z forall € OU and X € [0,1];

(a3) H is continuous in \, uniformly for x € U, i.e. for each € >0 and \ €[0,1],
there is p > 0 such that d(H (x,\),H (z,pn)) < ¢ whenever x € U and
A —ul <p.

In addition suppose that Hy has a fized point. Then, for each X\ € [0,1], there
exists a unique fived point x (N\) of Hy. Moreover, x (\) depends continuously on A
and there exists 0 < r < oo, integers m, nyi, Na, ..., y—1 and numbers 0 < A\; <
A2 < oo < A1 < A = 1 such that for any xo € X satisfying d(xo,x (0)) <, the
sequences (z;x)k>0, J =1, 2, ..., m,

1,0 = To
Tjk+1 ZH)\j(.Z‘j,k), k=0,1,...
Tji+1,0 = Tjn;y J =12.,m-1

are well defined and satisfy

k

d(@jk, (X)) < T3

d(.’lﬁj’o, H)\]. (.’L‘j,o)) (k S N) .

To make applicable the above iterative method we have to know how to obtain r,
m, ni, ...,Nym_1 and the partition 0 < A\; < ... < A\,,,_1 < 1. Thus, we may take

r <inf{d(z(\),y): y€dU, XA e0,1]}.
Next we consider h > 0 such that
d(H(ﬂUv)\)vH(%M)) S (1 _Z)T

for all # € U and A, pu € [0,1] with |\ — u| < h. Such a h exists because of (a3).
Now we choose any partition 0 = Ay < A\; < ... < A1 < Ay, =1 of [0,1] such that
Ajt1—Aj <h for j=0,1, .., m—1. Suppose we know the unique fixed point z (0)
of Hy and we wish to obtain an approximation Z; of z (1) with d (71,2 (1)) < e.
Then we take any point zy such that d (zg,2 (0)) <r and we apply the following

Iterative procedure:
Set ng :=0 and zg p, := xo;
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Forj:=1to m—1 do
Lj,0 = Tj—1,n;_1
k=0
While * (1 — 1)~ d(zj0, Hy, (z50)) > r
Tj k41 = Hy, ()
k=k+1
n; = k
Set k:=0
While 1% (1 —1)"" d (€m0, Hi (€mo)) > €
T 1 = Hi (T k)
E=k+1
Finally take Z1 = xpm k-

This result has a more general version for spaces endowed with two metrics.

Theorem 2 [2/] Let (X, 0) be a complete metric space and d another metric on X.
Let D C X be d-closed and U a d-open set of X with U C D. Let H : Dx[0,1] — X
and assume that the following conditions are satisfied:

(i) there is 1 €[0,1) such that
d(H (z, ), H(y,\) <ld(z, y)
forall x,y € D and X € [0,1];
(i) H(z,\) #z forall z € D\U and X € [0,1];
(iii) H is uniformly (d, J)-continuous;
(iv) H is (6, 9)-continuous;

(v) H(x,\) is d-continuous in A, uniformly for x € U, i.e. for each € > 0 and
A €[0,1], thereis p >0 such that d(H (x,\), H (z,p)) < & whenever x € U
and |\ — p| < p.

In addition suppose that Hy has a fized point. Then, for each X\ € [0,1], there
exists a unique fized point x (X)) of Hy := H(.,\). Moreover, x(\) depends d-
continuously on A and there exists 0 < r < 0o, integers m, ni, Na, ..., Nm—1 and
numbers 0 < A\ < As < ... < Apm—1 < Ay = 1 such that for any zg € X satisfying
d(zo, (0)) <7, the sequences (xjk)r>0, j =1, 2, ..., m,

T1,0 = To
Tik+1 = Hy(z5%), k=01, ..
Tjr1,0 = 'Tj,nja J = 1, 2, ey T — 1

are well defined and satisfy
k
d(zjk, z(Nj)) < T-1 d(xj0, Hx,(750)) (k€ N),

(xjk, x(Aj)) =0 as k— oo.
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The following application of Theorem 1 to evolution equations in Hilbert spaces
was presented in [25]. Consider the initial-value problem for a nonlinear evolution
equation in a Hilbert space F

W8+ Au(t) = f(hu(t), 0<t<T ,
{ w(0) =0 (1)

where A : D(A) C E — E is a linear maximal monotone map. Let {S(t)},., be
the continuous semigroup of linear contractions generated by A. We seek generalized
solution (mild solution) of (1), that is a function u € C'([0,T]; E) with

u(t):/o S(t—s)f(s,u(s))ds, 0<t<T.

Theorem 3 [25] Let E be a Hilbert space, f:[0,T| x E — E and A: D(A) C
E — E. Assume that the following conditions are satisfied:

(i) A is a maximal monotone linear map;

(i) [ is a continuous map, and for each r > 0, there exists L. >0 such that

|f(t,.’£) - f(tay)| < Lr |$ - y| (2)

for all t € [0,T] and z,y € E satisfying |z|, |y| < r;
(i) there exists a nondecreasing continuous function i : [0,00) — (0,00) such
that

|f(t,2)] < ¢ (lz) (3)
forall t €[0,T], z € E, and

<1
T < /0 e dr. (4)

Then (1) has a unique generalized solution which can be approzimated by iterations.

Proof. Consider the family of equations
t
u(t):)\/ S(t—s)f(s,uls))ds, 0<t<T, (5)
0
for A €[0,1]. According to (4), there exists R > 0 with

L
T</O mdr (6)

Suppose that v € C (]0,T]; F) is any solution of (5), for some A € [0,1]. We have
|u(t)| < R for all ¢ € [0,T]. Indeed, from (5), we obtain

|u<t>|9/0 1 (t— 8) f (s,u(s))| ds.
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Since S (t) is a contractive linear map and X € [0,1], by (3), we deduce that

|u<t>|s/0 |f<s,u<s>>|dss/0 (lu(s))ds, 0<t<T, (7)

Denote )
o (1) =/0 & (Ju (5))) ds.

Then, using the monotonicity of ¥ and the inequality |u ()| < ¢ (¢), which is exactly
(7), we obtain

et =v(u®)) <v(p®), 0<t<T
Dividing by ¢ (¢ (¢)) and integrating from 0 to any ¢ € (0,7T], we get

AU S A O N
/o wmd“/o ey =t=T

This together with (6) guarantees that ¢ (t) < R for all ¢ € [0,T]. Consequently,
lu(t)] < R on [0,T] as we claimed. Now we choose any § > Lg if Lr > 1, and

6 =0 when Lg <1, where Lg is the Lipschitz constant in (2), and we consider on
C([0,7T]; FE) the norm

lul, = max {e” " Ju(t)| : t €[0,T]}.

We apply Theorem 1 to: X = C([0,T]; E) endowed with the norm |.|, (thus d is
the metric induced by |.|,),

U={ueC(0,T);E): |u(t)] <R for all te[0,T]}

and H :U x [0,1] — C ([0,T]; E) given by

H(u,/\)(t):/\/o S(t—s)f(s,u(s)ds, te[0,T].

It is easy to show that all the assumptions of Theorem 1 are satisfied with [ =
9~'Lg. Thus (1) has a unique generalized solution. Finally, the iterative procedure
of Theorem 1 can be used in order to approximate the mild solution of (1). In this
case we may take

r= (R — Ry) 6_9T7

where Ry is such that

Ro 1
T = —d
o v
and
(1 — LR/Q) T

"= T (R)



28 Radu Precup

Here the approximation sequences are given by

¢
Uj et (B) = )\j/o S(t—s)f(s,ujr(s))ds, keN

and we may start with u; 0 =0. m

Applications of Theorem 2 have been given in [24] to boundary value problems on
bounded sets in Banach spaces and in [26] to abstract integral equations. Thus, in
[26] we proved the following existence and uniqueness result for the equation

T
w(t) = /0 Flts,u(s))ds, tel0,T] (8)

in a Banach space (E,|.|). We denote by B the closed ball {z € E: |z| < R}, by
K a closed convex set of continuous functions from [0,7] into E, and by Kg the
set {ue K : |jul|, < R}. Here |||, is the max norm on the space of continuous
functions from [0, 7] into E.

Theorem 4 [26] Let f:[0,T)° x B — E. Suppose

(h1) for any t € [0,T] and = € B, the map f(t,.,xz) is strongly measurable and
f(t,.,0)€ LY([0,T]; B);

(h2) there exists ¢ :[0,T)> — Ry and q € [1,00] such that

the map t— ¢ (t,.) (also denoted by @) belongs to
L ([0,T]; L2[0,T]) and
el oo,y Lapory <1 (/p+1/a=1)
and
|f(t,s,2) = f(t,s.9)| < (L s) [z —yl
for a.e. s€[0,T], all z, y € B and each t € [0,T];

(h3) there exists w : [0,T] — Ry bounded, continuous at 0 and with w (0) = 0,
such that

T
/ sup |f (t,s,2) — f (', s,2)]ds <w (|t —1])
0

lz|<R
for all t, t' €10,T];

(h4) for each X € (0,1), each possible solution uw € K of equation

T
u(t):)\/o f(t,s,u(s))ds, t€][0,T]

is such that ||ul . < R.
Then (8) has a unique solution in Kg.

In this case ¢ is the metric on K induced by ||.||,, while d is the metric induced
by the LP-norm |||, .
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2 Continuation principles for mappings of Caristi
type
First we recall the fixed point theorem of Caristi:

Proposition 2 Let M be a complete metric space, ¢ : M — R a lower semicontin-
uwous function and T : M — M a map such that

d(z,T(z)) < p(z) — o(T(2))
for each x € M. Then T has at least one fixed point.

Theorem 5 [22] Let M be a complete metric space, X C M a non-empty closed set,
P X x[0,1] — Ry a lower semicontinuous function and N : X x [0,1] — M a map.
Let X be the biggest subset invariated by Ny := N (., \), i.e.

Xy =N {(Nf)’1

(X): k= 1,2,...}.

Suppose

(i) d(xz, Ny (x)) < ¥ (z) — YA (Na(z)) for all x € X and A € [0,1], where
Ya =19 (,A);

(i) there exists a non-empty closed set S C {(z,\) € X x [0,1] : & € X} such
that (N1 (x),1) € S whenever (x,1) € S and if (xg,Ag) € S and A\g < 1, then there
exists (x,\) € S with Ao < X and d (xg,x) < Py, (xg) — ¥ (2).

Then, if No has a fized point x with (x,0) € S, N1 also has a fixed point.

This theorem immediately yields the following result for continuous mappings N.

Theorem 6 [22] Let M be a complete metric space, X C M a closed set, 1) : X X
[0,1] — Ry a lower semicontinuous function and N : X x [0,1] — M a continuous
map. Suppose

(1) d(z, Nx(x)) < ¢a(z) — Ya(Na(x)) for all x € Xy and X € [0, 1];

(2) if Na,(xo) = mo and Ao < 1, there exists A €]Xo, 1] such that xo € X and
Ya(wo) < ¥xy (20)-

Then, if Xo # 0, each map Ny, X € [0,1], has at least one fized point.
For maps not necessarily continuous it is true the following result.

Theorem 7 [22] Let M be a complete metric space, X C M a closed set, ¥ : M x
[0,1] — R4 a lower semicontinuous function, and N : X x[0,1] — M a map. Suppose
that the following conditions hold:

(i) X is closed for every A € [0,1];

(i) d(z, Nx(z)) < Ya(z) — Yx(Na(z)) for allz € X and X € [0,1];

(iii) ¥a(z) < d(z,0X) for all X € [0,1] and whenever N,(x) = x for some n € [0, 1].
Then, if Xo # 0, each map Ny, A € [0,1], has at least one fized point.
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3 Continuation results for nonexpansive mappings

For the beginning we recall a continuation result from Dugundji-Granas [5] in Hilbert
spaces:

Proposition 3 [5] Let H be a Hilbert space, B be the closed ball {x € H :|x| < R}
and T : B — H be nonexpansive, i.e.

T (z) =T (y)| < &=yl

forall x,y € B. If
x # N\T (x)

for |z =R, A € (0,1), then T has at least one fized point in B.

This result was generalized by Guennoun (see [6]), O'Regan [16] and Precup [21],
independently, as follows:

Theorem 8 Let E be a uniformly convex Banach space, U a bounded open convex
set with0 € U and T : U — E a nonezpansive map. If

x £ T (z)
for all x € OU, X\ € (0,1), then T has at least one fized point in U.

We showed in [21] that in case of Hilbert spaces, one may renounce at the as-
sumption that U is convex and also that a much simpler proof is possible. Thus, the
following result holds:

Theorem 9 [21] Let (H,(.,.)) be a Hilbert space, U a bounded open set of H (not
necessarily convex) with 0 € U and T : U — H a nonexpansive map. If

x # N\T (x)
for all x € U, X\ € (0,1), then T has at least one fized point in U.

Proof. Assume x # AT (z) for all z € OU and X € [0,1]. For each A € (0,1),
the map AT is a contraction. If we define h : U x [0,1] — H, by h(z,u) = pAT,
then we easily see that all the assumptions of Theorem 1 are fulfilled. Hence there
exists a unique ) € U with xy — AT (x)) = 0. Let us denote by z,, the element x)
for A\=1-1/n,n € N\ {0}. We have

<(n — 1)71 Ty — (M — 1)71 Tony Ty — xm>
= (T (zn) =T (xm) ,Tn — Tp) — |Tp — xm|2 <0

for all integers n,m > 1. Let r,, = (n — 1)71 . Using the identity

2 <Tn$n — 'mTm, Tn — xm> = (Tn + Tm) ‘-Tn - $m|2 + (rn - rm) (‘xn|2 - |$m|2)
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we deduce
0= (rn+ 1) [on = @l* < (70 = ) (J2m]” = l2nl*)

Since (r,) is a decreasing sequence, we get that (|x,|) is increasing. In addition, U
being bounded, (|z,|) is also bounded and so convergent. Next, from

20 =2l < (Jeml® = l2nl?) (rn =) / (2 + 720)

it follows that (z,,) is convergent. Obviously, its limit is a fixed point of 7. m

Theorems 8-9 were generalized for weakly inward nonexpansive maps in [23]. Also
in [23] we gave some existence and approximation results for nonzero fixed points in
cones of weakly inward nonexpansive maps. The set-valued analog of Theorem 8 is
due to Frigon [6]. Applications can be found in [21] and [17].

4 Fixed point theorems in syntopogenous spaces

A syntopogenous space [3] is a pair (X,S), where X is a non-empty set and S is a
collection of relations < defined on the set of all subsets of X, such that for every two
relations <, <’€ S, the following conditions are satisfied:

(S1) 0 < P and X < X;

(S2) A < B implies A C B;

(S3) A’ ¢ A< B C B’ implies A’ < B';

(84) A; < Bi, 1=1,2 implies AiUAs < BiUBgand AiNAs < BN BQ;

(S5) there exists <€ S with < U <'C <”;

(S6) there exists <"’€ S with < C <2 .

A syntopogenous space (X,S) is Hausdorff if for every two distinct elements
z,y € X there exists <€ S and A C X such that x < A and y < X \ A.

A system R of non-empty subsets of X is called a filter base if any intersection of
two sets belonging to R contains a subset from R. R is said to be a Cauchy filter base if
for each < € S there exists R € R such that if A < Bthen ANR=0or (X\ B)NR =
(). The sequence (x,) C X is called Cauchy sequence if the corresponding sequential
filter base R = {Ry : k € N}, Ry = {z,: n >k}, is a Cauchy filter base. We say
that the filter base R converges to x € X if for each neighborhood V of x,ie. V C X
with z < V for some < € S, there exists R € S such that R < V. The syntopogenous
space (X, S) is said to be sequentially complete if every Cauchy sequence is convergent.

Let (X,S8), (X', 8’) be syntopogenous spaces. The map T': X — X' is said to be
(S, 8')-continuous if for each <’ € &’ there exists <€ S such that 7! (4) < T~ (B)
whenever A <’ B.

Let S and 8’ be two syntopogenous structures on X. We say that S’ is finer than
S and we denote this by & C &', provided that for each <€ S there is <’ S’ with
<c<’.

Let X be a non-empty set. A system ¢ of real functions defined on X is said to be
ordering system on X if ¢ contains all constant functions on X and f+e¢, max{f, g},
min{f,g} € ¢ whenever f, g € ¢ and ¢ € R. A non-empty collection ® of ordering
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systems on X is said to be ordering structure on X. To each ordering structure on a
set X we may attach a syntopogenous structure on X, namely

So ={<ye: p P, >0},

where A <, B if and only if f (4) <. R\ f (X \ B) for some f € ¢. Here C' <. D
(C,D C R) means sup C+¢ < inf (R \ D). It is known [3] that for each syntopogenous
structure S on X there exists an ordering structure ® on X compatible with S, i.e.
S ~ 83 in the sense that S C S C Sp. Thus each syntopogenous structure S can be
identified with any ordering structure ® compatible with S.

Definition 1 [18] Let ® be an ordering structure on X. We say that a map T : X —
X is a contractive on X with respect to ® (P-contractive), if there exist two functions
a:®—- Ry, §:P— D such that for every ¢ € ® one has: (a)

A <, Bimplies T~ (A) <g(p),—=. T~ (B)

a(e)

and (b) for every x,y € X, the family of series

{Z a(p)a(B(p).a(B” (@) |fa(x) = fu @) foep"™ (w)}

n=0
is uniformly convergent.

We now recall our generalizations to syntopogenous spaces of the Banach and
Maia theorems on contractive maps in metric spaces.

Theorem 10 [18] Let (X,S) be a sequentially complete, Hausdorff syntopogenous
space. Let also @ be an ordering structure on X compatible with the syntopogenous
structure S. If the map T : X — X is contractive with respect to ®, then T has
a unique fized point which can be found by the method of successive approrimations
starting from any element of X.

Theorem 11 [19] Let X be a non-empty set endowed with two syntopogenous struc-
tures S and S’. Let also ® be an ordering structure on X compatible S and T : X — X
a map. Assume that the following conditions are satisfied:

(i) (X,8’) is a sequentially complete, Hausdorff syntopogenous space;

(ii) there exists k € N such that T* is (S,S’)-continuous;

(ii3) T is (S',S")-continuous;

(iv) T is ®-contractive.

Then T has a unique fixed point which can be obtained in (X,S’) by successive
approximations starting from any element of X.

Remark 1 If S’ C S, then (ii), (iii) are guaranteed if

(v) T is (S, S)-continuous.

Assumption (v) also guarantees that the successive approximation sequences are
not only S’-convergent, but also S-convergent.
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The set-valued analog of Theorem 10 was also given in [18].

Definition 2 [18] Let ® be an ordering structure on the set X and T : X — 2%\ {0}
a map. We say that T is contractive on X with respect to ® (P-contractive), if there
exist two functions a: ® — Ry, §: ® — D such that for every ¢ € ® condition (b)

and (a*):

A <. B implies T-' (A) <B(y), 7' (B)

£
a(yp)

hold. Here
T-'(A)={zeX :T(@)NA£0}, T;'(A) ={re X :I'(z) C A}.

Theorem 12 [18] Let (X,S) be a sequentially complete, Hausdorff syntopogenous
space. Let also @ be an ordering structure on X compatible with the syntopogenous
structure S. If the map T : X — 2% \ {0} is contractive with respect to ®, then T
has a unique fized point x* which is the limit of the sequence of the iterations of any
selection of T, and T (z*) = {«*}.

Obviously, a set-valued variant of Theorem 11 can also be given.

We conclude this section by a result given in [20] which represents a natural
generalization to syntopogenous spaces of Granas’ topological transversality theorem
[13].

Let (X,S) be a syntopogenous space with a countable syntopogenous structure
S = {<,: n € N} satisfying the additional condition

<nC<hiq 9)
for every n € N.

Definition 3 [{] A function f : X — I :=[0,1] is said to be associated with the
sequence {<,: n € N} if

P.QC 1, d(P,Q) > 1/2" implies f~" (P) <nss 1 (I\ Q)
for every n € N.

Lemma 1 [/] Let (X,S) be a syntopogenous space with a countable syntopogenous
structure S = {<,: n € N} satisfying (9). If M <o N, then there exists a function f
associated with S such that f () =0 for allx € M and f(x) =1 for allz € X \ N.

Let Y C X and () # A C Y. Consider a class of maps
AaV; X)Cc{T:Y - X: Fiz (T)NA=0}.

Here Fixz (T) stands for the set of all fixed points of T.
For every relation <€ S we shall denote by <[, the restriction of < toY (see
[3], (6.19)), i.e.

M<|yNif M,NCY and M < NU(X\Y).

It is easily seen that the sequence S|y 1= {<,|y : n € N} is a syntopogenous struc-
ture on Y which also satisfies (9).
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Definition 4 A map T € A4 (Y; X) is said to be essential if for eachT' € As (Y; X)
having the same restriction to A as T, i.e. T'|, = T|,, one has Fiz (T") # 0.
Otherwise, T is said to be inessential.

Let us consider an equivalence relation ~ on Ay4 (Y; X) such that the following
two conditions are satisfied:
(i)if 7"|, = T|, then T' ~ T}
(ii) if 77 ~ T then there exists a map H : Y x I — X such that H (.,0) = T",
H(,1)=T,
Z =U{Fiz (H(,\): Ael} <o X\A

and H (.,0(.)) € Aa(Y;X) for every function § : Y — I associated to S|, with
0(x)=1 forall z € A.

Lemma 2 [20] The map T € Ay (Y;X) is inessential if and only if there exists
T € Ax (Y5 X) with T ~T and Fiz (T") = 0.

Proof. The necessity follows from the definition of an inessential map and con-
dition (i). Now assume that 77 ~ T and Fliz (T") = (. Let H be a map like in (ii).
If Z =0, then Fix (H(.,1)) = 0, hence T = H (.,1) is inessential. Suppose Z # {).
Since Z <9 X \ A one has Z <¢|y, Y \ A. Then by Lemma 1 there exists a function
0 :Y — I associated to S|, such that 6 (z) = 0 for all z € Z and 6 (x) = 1 for all
x € A Let H*: Y — X be given by

H* (z) = H (z,0 (x)).
According to (ii), H* € A4 (Y;X). In addition H*|, = H(,1)], = T|, and
Fix (H*) = Fixz (T') = (0. Hence T is inessential. m

Now we can state and prove the topological transversality theorem in syntopoge-
nous spaces.

Theorem 13 [20] Assume T, T’ belong to Ax (Y;X) and T ~T'. Then T and T’
are both essential or both inessential.

Proof. Assume T is inessential. Then, by Lemma 2, there exists T" € A4 (Y; X)
with 7" ~ T and Fiz (T"”) = 0. From T” ~ T, T ~ T’ and the transitivity of
the relation ~ it follows that T ~ T’. According to Lemma 2, this together with
Fix (T") = (), guarantees that T’ is inessential. For the converse implication: T’
inessential implies T inessential, use the symmetry of ~ . m

Remark 2 The assumption Z <q X \ A in (ii) is satisfied if we require that
Y\A<o X\ Aand Fiz (H(,A\)NA=0 forall € I.

Indeed, this last condition guarantees Z C'Y \ A. This together with Y \ A <o X \ A
implies Z <o X \ A.

As a consequence of Theorem 13, we have the topological transversality theorem
in normal topological spaces.
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Theorem 14 [20] Let X be a normal topological space, ) # A CY C X and A)Y
closed in X. Let

A (V;X)C{T:Y — X : Fiz (T)NA =0}

and let ~ be an equivalence relation on A (Y; X) satisfying (i) and

(i) if T' ~ T, then there exists H : Y x I — X such that H(.,0) = T,
H(,1) =T, cd(U{Fiz (H(,A): A€eI})NA=0and H(,0(.)) € Aa(Y;X) for
every continuous function 0 :Y — I with 0 (x) =1 for all x € A.

If T ~T', then T and T’ are both essential or both inessential.

5 Contractive maps on quasi-uniform spaces

Since the category of quasi-uniform spaces is isomorphic to a subcategory of that of
syntopogenous spaces, all the results presented in the above section yield, in particu-
lar, fixed point theorems in quasi-uniform spaces.

By a quasi-uniform space we mean a pair (X, X)) of a non-empty set X and a non-
empty family ¥ of quasi-metrics on X. Here a quasi-metricon X isamap d : X x X —
R such that for every x,y,z € X one has: d (z,2) = 0and d (z,2) < d(z,y)+d (y, 2).

A quasi-metric d on X is called pseudo-metric (or a gauge) if d(x,y) = d(y,x)
for all z,y € X. A pair (X,X) of a non-empty set and a non-empty family of pseudo-
metrics on X is said to be a uniform space.

Definition 5 [11] Let (X,X) be a quasi-uniform space with¥ = {d; : j € J}. A map
T:X — X is said to be contractive with respect to 3 (X-contractive) if there exist
two functions a1 J — Ry, B:J — J such that for all j € J and x,y € X one has:
(a)
dj (T, Ty) < o (j) dgy) (2,y)

and (b) the series

doal)aB () aB" () dg (@,y) (10)

n=0

is convergent.

The Banach contraction principle was extended to locally convex spaces by Mari-
nescu [15] and to uniform spaces by Colojoard [2] and Gheorghiu [11]. The analog
for set-valued maps on uniform spaces is due to Avramescu [1]. A generalization
of Maia’s theorem to uniform spaces endowed with two uniform structures was first
given by Gheorghiu [12].

There is a broad literature in metric fixed point theory (see Rus [27]) on the
so called generalized contractions. In [19] we showed that in many cases, such a
generalized contraction 7' is in fact a usual contraction with respect to a suitable
quasi-uniform (or uniform) structure associated to T. Consequently, the fixed point
theorems in quasi-uniform spaces yield fixed point results for generalized contractions.
Now we describe some types of generalized contractions.

Let (X, d) be a metric space and T : X — X be a map.
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Theorem 15 [19] Assume T satisfies
d(Tz,Ty) < ad(z,Tz) +bd(y, Ty) + cd (z,y)

forallx,y € X, where a, b, c are non-negative numbers with a+b+c < 1 and a+bc > 0.
Then T is contractive with respect to ¥ = {d, : n € N}, where

o e
o (@) = = lad (@,T2) + bd (y Ty)] + "d (w.y) for oy
=0 forxz =y.

Herer=(a+c¢)/(1=0b) andc<r < 1.

Proof. Take : N —- R, a(n)=1,5: N —= N, §(n) = n+1 and observe that
for an arbitrary d,, € X, the series (10) is > dmyn+1 (z,y), which since 0 < ¢ < 1
n=0

and ¢ < r < 1, is obviously convergent. m
Theorem 16 [19] Assume T satisfies
d(Tz,Ty) < a max{d(z,y), d(z,Tz), d(y, Ty), d(x,Ty), d(y, Tz)} (11

for all x,y € X and some a € [0,1). Then T is contractive with respect to ¥ =
{d,, : n € N}, where d, is the pseudo-metric on X given by

dy, (z,y) = max{d (Tix,Tjac) ,d (Tiy7ij) , d (Tix,ij) 1i,7=0,1,..,n}
forxz#£y
=0 forx =y.

Proof. We have dy = d and from (11), we deduce

d (Tix,Tjac) <ady,(z,y), d (Tiy,ij) <ad,(x,y)
d (Ti%“aij) <ad, (z,y)

for all z,y € X and 4,5 € {1,2,...,n}. It follows
dp (T2, Ty) < adnyi (z,y)
and also
dy, (z,y) = max{d (:c,Tios) ,d (y,Tiy) ,d (z,Tiy) ,d (y, Tiz) :1=0,1,...,n}.
If, for example, d, (z,y) = d (z,T"z) for some i € {1,2,...,n}, then
dy (z,y) <d(2,Tz) +d (T2, T'z) < d(z,Tz) + ady, (z,y) .

Hence

1 1
< — Tz) <
do (2,y) < T—d (@.T2) < T—

dl (x,y) .
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Generally, we can prove similarly

o (,9) < ——ds (1) (12

a
for all z,y € X and n € N.
In this case a: N —- R4, a(n) =a, f: N = N, g(n) = n+ 1. Also, for an

o0
arbitrary d,, € ¥, the series (10) is Y. a"*'d,,1n41 (7,y), which is convergent as
n=0

follows from (12). =

Theorem 17 [19] Let (X,d) be a generalized metric space endowed with a vector-
valued metricd : X x X — R". Assume T : X — X is contractive in the Perov sense,
i.€.

d(Tz,Ty) < Ad(z,y)

for all z,y € X and some matriz A € Myw, (Ry) with A" — 0 as n — 0.
Let d;, i =1,2,...,7, be the pseudo-metrics for which d = (di, da, ..., d,.) . Also, if
A" = (a;‘j) , we define the pseudo-metrics

r

f§ n g

din = aijd]
j=1

fori=1,2,...,r and n € N.
Then T is contractive with respect to ¥ = {d;, : (i,n) € {1,2,...,r} x N}.

Proof. Take a(i,n) =1 and 3 (i,n) = (¢,n + 1). Also observe that from A™ — 0

as n — 00, we have
(o]

ZAm+n+1 :Aerl ([714)_1
n=0

whence

> AT (@, y) = AT (L= A)d (o).
n=0

Hence, for all z,y € X and (i,n) € {1,2,...,r} x N, the series

DD ant iy (zy) = Y dimint (2,9)

n=0 j=1 n=0

which coincides with the series (10), is convergent. m

Finally, we mention that a continuation type result in separated complete uniform
spaces was recently obtained by Frigon-Granas [9] (see also Frigon [7]) for particular
contractive maps, with §(j) = j for all j € J. Thus, an open problem is to give
extensions of the Frigon-Granas theorem to general contractive maps on quasi-uniform
spaces, and to derive specific continuation results for several classes of generalized
contractions.
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