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1 The discrete continuation principle

Let us first recall Banach contraction principle.

Proposition 1 Let (X, d) be a complete metric space and T : X → X a contraction,
i.e.

d (T (x) , T (y)) ≤ l d (x, y)

for all x, y ∈ X and some fixed l ∈ [0, 1). Then T has a unique fixed point x∗ and for
every x0 ∈ X and k ∈ N, one has

d
(
T k (x0) , x∗

) ≤ lk

1− l
d (x0, T (x0)) .

A continuation version of the Banach contraction principle was given by Gatica-
Kirk [10] in case of Banach spaces and later by Granas [14] for general complete metric
spaces. Extensions for set-valued maps are due to Frigon-Granas [8] and for weakly
contractive maps, to Frigon [6]. In [24] we stated and proved the following compu-
tational version of Granas’ continuation principle for contraction maps on complete
metric spaces.
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Theorem 1 [24] Let (X, d) be a complete metric space and U be an open set of X.
Let H : U × [0, 1] → X, Hλ = H (., λ) , and assume that the following conditions are
satisfied:

(a1) there is l ∈ [0, 1) such that

d (H (x, λ) ,H (y, λ)) ≤ l d (x, y)

for all x, y ∈ U and λ ∈ [0, 1] ;

(a2) H (x, λ) 6= x for all x ∈ ∂U and λ ∈ [0, 1] ;

(a3) H is continuous in λ, uniformly for x ∈ U, i.e. for each ε > 0 and λ ∈ [0, 1] ,
there is ρ > 0 such that d (H (x, λ) ,H (x, µ)) < ε whenever x ∈ U and
|λ− µ| < ρ.

In addition suppose that H0 has a fixed point. Then, for each λ ∈ [0, 1] , there
exists a unique fixed point x (λ) of Hλ. Moreover, x (λ) depends continuously on λ
and there exists 0 < r ≤ ∞, integers m, n1, n2, ..., nm−1 and numbers 0 < λ1 <
λ2 < ... < λm−1 < λm = 1 such that for any x0 ∈ X satisfying d (x0, x (0)) ≤ r, the
sequences (xj,k)k≥0, j = 1, 2, ..., m,

x1,0 = x0

xj,k+1 = Hλj (xj,k), k = 0, 1, ...
xj+1,0 = xj,nj , j = 1, 2, ..., m− 1

are well defined and satisfy

d(xj,k, x(λj)) ≤ lk

1− l
d(xj,0,Hλj (xj,0)) (k ∈ N) .

To make applicable the above iterative method we have to know how to obtain r,
m, n1, ...,nm−1 and the partition 0 < λ1 < ... < λm−1 < 1. Thus, we may take

r ≤ inf {d (x (λ) , y) : y ∈ ∂U, λ ∈ [0, 1]} .

Next we consider h > 0 such that

d (H (x, λ) ,H (x, µ)) ≤ (1− l) r

for all x ∈ U and λ, µ ∈ [0, 1] with |λ− µ| ≤ h. Such a h exists because of (a3).
Now we choose any partition 0 = λ0 < λ1 < ... < λm−1 < λm = 1 of [0, 1] such that
λj+1− λj ≤ h for j = 0, 1, ..., m− 1. Suppose we know the unique fixed point x (0)
of H0 and we wish to obtain an approximation x1 of x (1) with d (x1, x (1)) ≤ ε.
Then we take any point x0 such that d (x0, x (0)) ≤ r and we apply the following

Iterative procedure:
Set n0 := 0 and x0,n0 := x0;
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For j := 1 to m− 1 do
xj,0 := xj−1,nj−1

k := 0
While lk (1− l)−1

d(xj,0,Hλj
(xj,0)) > r

xj,k+1 := Hλj (xj,k)
k := k + 1

nj := k
Set k := 0
While lk (1− l)−1

d (xm,0,H1 (xm,0)) > ε
xm,k+1 := H1 (xm,k)
k := k + 1

Finally take x̄1 = xm,k.

This result has a more general version for spaces endowed with two metrics.

Theorem 2 [24] Let (X, δ) be a complete metric space and d another metric on X.
Let D ⊂ X be δ-closed and U a d-open set of X with U ⊂ D. Let H : D×[0, 1] → X
and assume that the following conditions are satisfied:

(i) there is l ∈ [0, 1) such that

d (H (x, λ) , H (y, λ)) ≤ l d (x, y)

for all x, y ∈ D and λ ∈ [0, 1] ;

(ii) H (x, λ) 6= x for all x ∈ D \ U and λ ∈ [0, 1] ;

(iii) H is uniformly (d, δ)-continuous;

(iv) H is (δ, δ)-continuous;

(v) H (x, λ) is d-continuous in λ, uniformly for x ∈ U, i.e. for each ε > 0 and
λ ∈ [0, 1] , there is ρ > 0 such that d (H (x, λ) , H (x, µ)) < ε whenever x ∈ U
and |λ− µ| < ρ.

In addition suppose that H0 has a fixed point. Then, for each λ ∈ [0, 1] , there
exists a unique fixed point x (λ) of Hλ := H ( . , λ) . Moreover, x (λ) depends d-
continuously on λ and there exists 0 < r ≤ ∞, integers m, n1, n2, ..., nm−1 and
numbers 0 < λ1 < λ2 < ... < λm−1 < λm = 1 such that for any x0 ∈ X satisfying
d (x0, x (0)) ≤ r, the sequences (xj,k)k≥0, j = 1, 2, ..., m,

x1,0 = x0

xj,k+1 = Hλj (xj,k), k = 0, 1, ...
xj+1,0 = xj,nj , j = 1, 2, ..., m− 1

are well defined and satisfy

d(xj,k, x(λj)) ≤ lk

1− l
d(xj,0, Hλj (xj,0)) (k ∈ N) ,

δ(xj,k, x(λj)) → 0 as k →∞.
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The following application of Theorem 1 to evolution equations in Hilbert spaces
was presented in [25]. Consider the initial-value problem for a nonlinear evolution
equation in a Hilbert space E

{
u′ (t) + Au (t) = f (t, u (t)) , 0 ≤ t ≤ T
u (0) = 0 (1)

where A : D (A) ⊂ E → E is a linear maximal monotone map. Let {S (t)}t≥0 be
the continuous semigroup of linear contractions generated by A. We seek generalized
solution (mild solution) of (1), that is a function u ∈ C ([0, T ] ; E) with

u (t) =
∫ t

0

S (t− s) f (s, u (s)) ds, 0 ≤ t ≤ T.

Theorem 3 [25] Let E be a Hilbert space, f : [0, T ] × E → E and A : D (A) ⊂
E → E. Assume that the following conditions are satisfied:

(i) A is a maximal monotone linear map;
(ii) f is a continuous map, and for each r > 0, there exists Lr ≥ 0 such that

|f (t, x)− f (t, y)| ≤ Lr |x− y| (2)

for all t ∈ [0, T ] and x, y ∈ E satisfying |x| , |y| ≤ r;
(iii) there exists a nondecreasing continuous function ψ : [0,∞) → (0,∞) such

that
|f (t, x)| ≤ ψ (|x|) (3)

for all t ∈ [0, T ] , x ∈ E, and

T <

∫ ∞

0

1
ψ (τ)

dτ. (4)

Then (1) has a unique generalized solution which can be approximated by iterations.

Proof. Consider the family of equations

u (t) = λ

∫ t

0

S (t− s) f (s, u (s)) ds, 0 ≤ t ≤ T, (5)

for λ ∈ [0, 1] . According to (4), there exists R > 0 with

T <

∫ R

0

1
ψ (τ)

dτ. (6)

Suppose that u ∈ C ([0, T ] ; E) is any solution of (5), for some λ ∈ [0, 1] . We have
|u (t)| < R for all t ∈ [0, T ] . Indeed, from (5), we obtain

|u (t)| ≤ λ

∫ t

0

|S (t− s) f (s, u (s))| ds.
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Since S (t) is a contractive linear map and λ ∈ [0, 1] , by (3), we deduce that

|u (t)| ≤
∫ t

0

|f (s, u (s))| ds ≤
∫ t

0

ψ (|u (s)|) ds, 0 ≤ t ≤ T. (7)

Denote

ϕ (t) =
∫ t

0

ψ (|u (s)|) ds.

Then, using the monotonicity of ψ and the inequality |u (t)| ≤ ϕ (t) , which is exactly
(7), we obtain

ϕ′ (t) = ψ (|u (t)|) ≤ ψ (ϕ (t)) , 0 ≤ t ≤ T.

Dividing by ψ (ϕ (t)) and integrating from 0 to any t ∈ (0, T ], we get

∫ ϕ(t)

0

1
ψ (τ)

dτ =
∫ t

0

ϕ′ (s)
ψ (ϕ (s))

ds ≤ t ≤ T.

This together with (6) guarantees that ϕ (t) < R for all t ∈ [0, T ] . Consequently,
|u (t)| < R on [0, T ] as we claimed. Now we choose any θ > LR if LR ≥ 1, and
θ = 0 when LR < 1, where LR is the Lipschitz constant in (2), and we consider on
C ([0, T ] ; E) the norm

|u|θ = max
{
e−tθ |u (t)| : t ∈ [0, T ]

}
.

We apply Theorem 1 to: X = C ([0, T ] ; E) endowed with the norm |.|θ (thus d is
the metric induced by |.|θ),

U = {u ∈ C ([0, T ] ; E) : |u (t)| < R for all t ∈ [0, T ]}

and H : U × [0, 1] → C ([0, T ] ; E) given by

H (u, λ) (t) = λ

∫ t

0

S (t− s) f (s, u (s)) ds, t ∈ [0, T ] .

It is easy to show that all the assumptions of Theorem 1 are satisfied with l =
θ−1LR. Thus (1) has a unique generalized solution. Finally, the iterative procedure
of Theorem 1 can be used in order to approximate the mild solution of (1). In this
case we may take

r = (R−R0) e−θT ,

where R0 is such that

T =
∫ R0

0

1
ψ (τ)

dτ,

and

h =
(1− LR/θ) r

Tψ (R)
.
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Here the approximation sequences are given by

uj,k+1 (t) = λj

∫ t

0

S (t− s) f (s, uj,k (s)) ds, k ∈ N

and we may start with u1,0 = 0.
Applications of Theorem 2 have been given in [24] to boundary value problems on

bounded sets in Banach spaces and in [26] to abstract integral equations. Thus, in
[26] we proved the following existence and uniqueness result for the equation

u (t) =
∫ T

0

f (t, s, u (s)) ds, t ∈ [0, T ] (8)

in a Banach space (E, |.|) . We denote by B the closed ball {x ∈ E : |x| ≤ R} , by
K a closed convex set of continuous functions from [0, T ] into E, and by KR the
set {u ∈ K : ‖u‖∞ ≤ R} . Here ‖.‖∞ is the max norm on the space of continuous
functions from [0, T ] into E.

Theorem 4 [26] Let f : [0, T ]2 ×B → E. Suppose

(h1) for any t ∈ [0, T ] and x ∈ B, the map f (t, . , x) is strongly measurable and
f (t, . , 0) ∈ L1 ([0, T ] ; E) ;

(h2) there exists φ : [0, T ]2 → R+ and q ∈ [1,∞] such that




the map t 7−→ φ (t, . ) (also denoted by φ) belongs to
L∞ ([0, T ] ; Lq [0, T ]) and
‖φ‖Lp([0,T ]; Lq [0,T ]) < 1 (1/p + 1/q = 1)

and
|f (t, s, x)− f (t, s, y)| ≤ φ (t, s) |x− y|

for a.e. s ∈ [0, T ] , all x, y ∈ B and each t ∈ [0, T ] ;

(h3) there exists w : [0, T ] → R+ bounded, continuous at 0 and with w (0) = 0,
such that ∫ T

0

sup
|x|≤R

|f (t, s, x)− f (t′, s, x)| ds ≤ w (|t− t′|)

for all t, t′ ∈ [0, T ] ;

(h4) for each λ ∈ (0, 1) , each possible solution u ∈ KR of equation

u (t) = λ

∫ T

0

f (t, s, u (s)) ds, t ∈ [0, T ]

is such that ‖u‖∞ < R.

Then (8) has a unique solution in KR.

In this case δ is the metric on K induced by ‖.‖∞ while d is the metric induced
by the Lp-norm ‖.‖p .
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2 Continuation principles for mappings of Caristi
type

First we recall the fixed point theorem of Caristi:

Proposition 2 Let M be a complete metric space, ϕ : M → R+ a lower semicontin-
uous function and T : M → M a map such that

d(x, T (x)) ≤ ϕ(x)− ϕ(T (x))

for each x ∈ M. Then T has at least one fixed point.

Theorem 5 [22] Let M be a complete metric space, X ⊂ M a non-empty closed set,
ψ : X × [0, 1] → R+ a lower semicontinuous function and N : X × [0, 1] → M a map.
Let Xλ be the biggest subset invariated by Nλ := N (., λ) , i.e.

Xλ = ∩
{(

Nk
λ

)−1
(X) : k = 1, 2, ...

}
.

Suppose
(i) d(x,Nλ (x)) ≤ ψλ (x) − ψλ (Nλ (x)) for all x ∈ Xλ and λ ∈ [0, 1] , where

ψλ = ψ (., λ) ;
(ii) there exists a non-empty closed set S ⊂ {(x, λ) ∈ X × [0, 1] : x ∈ Xλ} such

that (N1 (x) , 1) ∈ S whenever (x, 1) ∈ S and if (x0, λ0) ∈ S and λ0 < 1, then there
exists (x, λ) ∈ S with λ0 < λ and d (x0, x) ≤ ψλ0 (x0)− ψλ (x) .

Then, if N0 has a fixed point x with (x, 0) ∈ S, N1 also has a fixed point.

This theorem immediately yields the following result for continuous mappings N.

Theorem 6 [22] Let M be a complete metric space, X ⊂ M a closed set, ψ : X ×
[0, 1] → R+ a lower semicontinuous function and N : X × [0, 1] → M a continuous
map. Suppose

(1) d(x, Nλ(x)) ≤ ψλ(x)− ψλ(Nλ(x)) for all x ∈ Xλ and λ ∈ [0, 1];

(2) if Nλ0(x0) = x0 and λ0 < 1, there exists λ ∈]λ0, 1[ such that x0 ∈ Xλ and
ψλ(x0) ≤ ψλ0(x0).

Then, if X0 6= ∅, each map Nλ, λ ∈ [0, 1], has at least one fixed point.

For maps not necessarily continuous it is true the following result.

Theorem 7 [22] Let M be a complete metric space, X ⊂ M a closed set, ψ : M ×
[0, 1] → R+ a lower semicontinuous function, and N : X×[0, 1] → M a map. Suppose
that the following conditions hold:

(i) Xλ is closed for every λ ∈ [0, 1];

(ii) d(x, Nλ(x)) ≤ ψλ(x)− ψλ(Nλ(x)) for all x ∈ X and λ ∈ [0, 1];

(iii) ψλ(x) ≤ d(x, ∂X) for all λ ∈ [0, 1] and whenever Nη(x) = x for some η ∈ [0, 1].

Then, if X0 6= ∅, each map Nλ, λ ∈ [0, 1], has at least one fixed point.
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3 Continuation results for nonexpansive mappings

For the beginning we recall a continuation result from Dugundji-Granas [5] in Hilbert
spaces:

Proposition 3 [5] Let H be a Hilbert space, B be the closed ball {x ∈ H : |x| ≤ R}
and T : B → H be nonexpansive, i.e.

|T (x)− T (y)| ≤ |x− y|
for all x, y ∈ B. If

x 6= λT (x)

for |x| = R, λ ∈ (0, 1) , then T has at least one fixed point in B.

This result was generalized by Guennoun (see [6]), O’Regan [16] and Precup [21],
independently, as follows:

Theorem 8 Let E be a uniformly convex Banach space, U a bounded open convex
set with 0 ∈ U and T : U → E a nonexpansive map. If

x 6= λT (x)

for all x ∈ ∂U, λ ∈ (0, 1) , then T has at least one fixed point in U.

We showed in [21] that in case of Hilbert spaces, one may renounce at the as-
sumption that U is convex and also that a much simpler proof is possible. Thus, the
following result holds:

Theorem 9 [21] Let (H, 〈., .〉) be a Hilbert space, U a bounded open set of H (not
necessarily convex) with 0 ∈ U and T : U → H a nonexpansive map. If

x 6= λT (x)

for all x ∈ ∂U, λ ∈ (0, 1) , then T has at least one fixed point in U.

Proof. Assume x 6= λT (x) for all x ∈ ∂U and λ ∈ [0, 1] . For each λ ∈ (0, 1) ,
the map λT is a contraction. If we define h : U × [0, 1] → H, by h (x, µ) = µλT,
then we easily see that all the assumptions of Theorem 1 are fulfilled. Hence there
exists a unique xλ ∈ U with xλ − λT (xλ) = 0. Let us denote by xn the element xλ

for λ = 1− 1/n, n ∈ N \ {0} . We have
〈
(n− 1)−1

xn − (m− 1)−1
xm, xn − xm

〉

= 〈T (xn)− T (xm) , xn − xm〉 − |xn − xm|2 ≤ 0

for all integers n,m > 1. Let rn = (n− 1)−1
. Using the identity

2 〈rnxn − rmxm, xn − xm〉 = (rn + rm) |xn − xm|2 + (rn − rm)
(
|xn|2 − |xm|2

)
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we deduce
0 ≤ (rn + rm) |xn − xm|2 ≤ (rn − rm)

(
|xm|2 − |xn|2

)
.

Since (rn) is a decreasing sequence, we get that (|xn|) is increasing. In addition, U
being bounded, (|xn|) is also bounded and so convergent. Next, from

|xn − xm|2 ≤
(
|xm|2 − |xn|2

)
(rn − rm) / (rn + rm)

it follows that (xn) is convergent. Obviously, its limit is a fixed point of T.
Theorems 8-9 were generalized for weakly inward nonexpansive maps in [23]. Also

in [23] we gave some existence and approximation results for nonzero fixed points in
cones of weakly inward nonexpansive maps. The set-valued analog of Theorem 8 is
due to Frigon [6]. Applications can be found in [21] and [17].

4 Fixed point theorems in syntopogenous spaces

A syntopogenous space [3] is a pair (X,S) , where X is a non-empty set and S is a
collection of relations < defined on the set of all subsets of X, such that for every two
relations <, <′∈ S, the following conditions are satisfied:

(S1) ∅ < ∅ and X < X;
(S2) A < B implies A ⊂ B;
(S3) A′ ⊂ A < B ⊂ B′ implies A′ < B′;
(S4) Ai < Bi, i = 1, 2 implies A1 ∪A2 < B1 ∪B2 and A1 ∩A2 < B1 ∩B2;
(S5) there exists <′′∈ S with < ∪ <′⊂<′′;
(S6) there exists <′′′∈ S with <⊂<′′′2 .
A syntopogenous space (X,S) is Hausdorff if for every two distinct elements

x, y ∈ X there exists <∈ S and A ⊂ X such that x < A and y < X \A.
A system R of non-empty subsets of X is called a filter base if any intersection of

two sets belonging toR contains a subset fromR.R is said to be a Cauchy filter base if
for each <∈ S there exists R ∈ R such that if A < B then A∩R = ∅ or (X \B)∩R =
∅. The sequence (xn) ⊂ X is called Cauchy sequence if the corresponding sequential
filter base R = {Rk : k ∈ N} , Rk = {xn : n ≥ k} , is a Cauchy filter base. We say
that the filter base R converges to x ∈ X if for each neighborhood V of x, i.e. V ⊂ X
with x < V for some <∈ S, there exists R ∈ S such that R < V. The syntopogenous
space (X,S) is said to be sequentially complete if every Cauchy sequence is convergent.

Let (X,S) , (X ′,S ′) be syntopogenous spaces. The map T : X → X ′ is said to be
(S,S ′)-continuous if for each <′ ∈ S ′ there exists <∈ S such that T−1 (A) < T−1 (B)
whenever A <′ B.

Let S and S ′ be two syntopogenous structures on X. We say that S ′ is finer than
S and we denote this by S ⊂ S ′, provided that for each <∈ S there is <′∈ S ′ with
<⊂<′ .

Let X be a non-empty set. A system ϕ of real functions defined on X is said to be
ordering system on X if ϕ contains all constant functions on X and f +c, max {f, g} ,
min {f, g} ∈ ϕ whenever f, g ∈ ϕ and c ∈ R. A non-empty collection Φ of ordering
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systems on X is said to be ordering structure on X. To each ordering structure on a
set X we may attach a syntopogenous structure on X, namely

SΦ = {<ϕ,ε: ϕ ∈ Φ, ε > 0} ,

where A <ϕ,ε B if and only if f (A) <ε R \ f (X \B) for some f ∈ ϕ. Here C <ε D
(C, D ⊂ R) means sup C+ε ≤ inf (R \D) . It is known [3] that for each syntopogenous
structure S on X there exists an ordering structure Φ on X compatible with S, i.e.
S ∼ SΦ in the sense that SΦ ⊂ S ⊂ SΦ. Thus each syntopogenous structure S can be
identified with any ordering structure Φ compatible with S.

Definition 1 [18] Let Φ be an ordering structure on X. We say that a map T : X →
X is a contractive on X with respect to Φ (Φ-contractive), if there exist two functions
α : Φ → R+, β : Φ → Φ such that for every ϕ ∈ Φ one has: (a)

A <ϕ,ε B implies T−1 (A) <β(ϕ), ε
α(ϕ)

T−1 (B)

and (b) for every x, y ∈ X, the family of series
{ ∞∑

n=0

α (ϕ)α (β (ϕ)) ...α (βn (ϕ)) |fn (x)− fn (y)| : fn ∈ βn+1 (ϕ)

}

is uniformly convergent.

We now recall our generalizations to syntopogenous spaces of the Banach and
Maia theorems on contractive maps in metric spaces.

Theorem 10 [18] Let (X,S) be a sequentially complete, Hausdorff syntopogenous
space. Let also Φ be an ordering structure on X compatible with the syntopogenous
structure S. If the map T : X → X is contractive with respect to Φ, then T has
a unique fixed point which can be found by the method of successive approximations
starting from any element of X.

Theorem 11 [19] Let X be a non-empty set endowed with two syntopogenous struc-
tures S and S ′. Let also Φ be an ordering structure on X compatible S and T : X → X
a map. Assume that the following conditions are satisfied:

(i) (X,S ′) is a sequentially complete, Hausdorff syntopogenous space;
(ii) there exists k ∈ N such that T k is (S,S ′)-continuous;
(iii) T is (S ′,S ′)-continuous;
(iv) T is Φ-contractive.
Then T has a unique fixed point which can be obtained in (X,S ′) by successive

approximations starting from any element of X.

Remark 1 If S ′ ⊂ S, then (ii), (iii) are guaranteed if
(v) T is (S ′,S)-continuous.
Assumption (v) also guarantees that the successive approximation sequences are

not only S ′-convergent, but also S-convergent.
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The set-valued analog of Theorem 10 was also given in [18].

Definition 2 [18] Let Φ be an ordering structure on the set X and T : X → 2X \{∅}
a map. We say that T is contractive on X with respect to Φ (Φ-contractive), if there
exist two functions α : Φ → R+, β : Φ → Φ such that for every ϕ ∈ Φ condition (b)
and (a*):

A <ϕ,ε B implies T−1
− (A) <β(ϕ), ε

α(ϕ)
T−1

+ (B)

hold. Here

T−1
− (A) = {x ∈ X : Γ (x) ∩A 6= ∅} , T−1

+ (A) = {x ∈ X : Γ (x) ⊂ A} .

Theorem 12 [18] Let (X,S) be a sequentially complete, Hausdorff syntopogenous
space. Let also Φ be an ordering structure on X compatible with the syntopogenous
structure S. If the map T : X → 2X \ {∅} is contractive with respect to Φ, then T
has a unique fixed point x∗ which is the limit of the sequence of the iterations of any
selection of T, and T (x∗) = {x∗} .

Obviously, a set-valued variant of Theorem 11 can also be given.
We conclude this section by a result given in [20] which represents a natural

generalization to syntopogenous spaces of Granas’ topological transversality theorem
[13].

Let (X,S) be a syntopogenous space with a countable syntopogenous structure
S = {<n: n ∈ N} satisfying the additional condition

<n⊂<2
n+1 (9)

for every n ∈ N.

Definition 3 [4] A function f : X → I := [0, 1] is said to be associated with the
sequence {<n: n ∈ N} if

P, Q ⊂ I, d (P, Q) > 1/2n implies f−1 (P ) <n+2 f−1 (I \Q)

for every n ∈ N.

Lemma 1 [4] Let (X,S) be a syntopogenous space with a countable syntopogenous
structure S = {<n: n ∈ N} satisfying (9). If M <0 N, then there exists a function f
associated with S such that f (x) = 0 for all x ∈ M and f (x) = 1 for all x ∈ X \N.

Let Y ⊂ X and ∅ 6= A ⊂ Y. Consider a class of maps

AA (Y ;X) ⊂ {T : Y → X : Fix (T ) ∩A = ∅} .

Here Fix (T ) stands for the set of all fixed points of T.
For every relation <∈ S we shall denote by <|Y the restriction of < to Y (see

[3], (6.19)), i.e.

M <|Y N if M,N ⊂ Y and M < N ∪ (X \ Y ) .

It is easily seen that the sequence S|Y := {<n|Y : n ∈ N} is a syntopogenous struc-
ture on Y which also satisfies (9).
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Definition 4 A map T ∈ AA (Y ; X) is said to be essential if for each T ′ ∈ AA (Y ; X)
having the same restriction to A as T, i.e. T ′|A = T |A , one has Fix (T ′) 6= ∅.
Otherwise, T is said to be inessential.

Let us consider an equivalence relation ' on AA (Y ;X) such that the following
two conditions are satisfied:

(i) if T ′|A = T |A then T ′ ' T ;
(ii) if T ′ ' T then there exists a map H : Y × I → X such that H (., 0) = T ′,

H (., 1) = T,
Z := ∪{Fix (H (., λ)) : λ ∈ I} <0 X \A

and H (., θ (.)) ∈ AA (Y ; X) for every function θ : Y → I associated to S|Y with
θ (x) = 1 for all x ∈ A.

Lemma 2 [20] The map T ∈ AA (Y ;X) is inessential if and only if there exists
T ′ ∈ AA (Y ; X) with T ′ ' T and Fix (T ′) = ∅.

Proof. The necessity follows from the definition of an inessential map and con-
dition (i). Now assume that T ′ ' T and Fix (T ′) = ∅. Let H be a map like in (ii).
If Z = ∅, then Fix (H (., 1)) = ∅, hence T = H (., 1) is inessential. Suppose Z 6= ∅.
Since Z <0 X \ A one has Z <0|Y Y \ A. Then by Lemma 1 there exists a function
θ : Y → I associated to S|Y such that θ (x) = 0 for all x ∈ Z and θ (x) = 1 for all
x ∈ A. Let H∗ : Y → X be given by

H∗ (x) = H (x, θ (x)) .

According to (ii), H∗ ∈ AA (Y ; X) . In addition H∗|A = H (., 1)|A = T |A and
Fix (H∗) = Fix (T ′) = ∅. Hence T is inessential.

Now we can state and prove the topological transversality theorem in syntopoge-
nous spaces.

Theorem 13 [20] Assume T, T ′ belong to AA (Y ; X) and T ' T ′. Then T and T ′

are both essential or both inessential.

Proof. Assume T is inessential. Then, by Lemma 2, there exists T ′′ ∈ AA (Y ; X)
with T ′′ ' T and Fix (T ′′) = ∅. From T ′′ ' T, T ' T ′ and the transitivity of
the relation ' it follows that T ′′ ' T ′. According to Lemma 2, this together with
Fix (T ′′) = ∅, guarantees that T ′ is inessential. For the converse implication: T ′

inessential implies T inessential, use the symmetry of ' .

Remark 2 The assumption Z <0 X \A in (ii) is satisfied if we require that

Y \A <0 X \A and Fix (H (., λ)) ∩A = ∅ for all λ ∈ I.

Indeed, this last condition guarantees Z ⊂ Y \ A. This together with Y \A <0 X \A
implies Z <0 X \A.

As a consequence of Theorem 13, we have the topological transversality theorem
in normal topological spaces.
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Theorem 14 [20] Let X be a normal topological space, ∅ 6= A ⊂ Y ⊂ X and A, Y
closed in X. Let

AA (Y ; X) ⊂ {T : Y → X : Fix (T ) ∩A = ∅}
and let ' be an equivalence relation on AA (Y ; X) satisfying (i) and

(ii’) if T ′ ' T, then there exists H : Y × I → X such that H (., 0) = T ′,
H (., 1) = T, cl (∪{Fix (H (., λ)) : λ ∈ I}) ∩ A = ∅ and H (., θ (.)) ∈ AA (Y ; X) for
every continuous function θ : Y → I with θ (x) = 1 for all x ∈ A.

If T ' T ′, then T and T ′ are both essential or both inessential.

5 Contractive maps on quasi-uniform spaces

Since the category of quasi-uniform spaces is isomorphic to a subcategory of that of
syntopogenous spaces, all the results presented in the above section yield, in particu-
lar, fixed point theorems in quasi-uniform spaces.

By a quasi-uniform space we mean a pair (X, Σ) of a non-empty set X and a non-
empty family Σ of quasi-metrics on X. Here a quasi-metric on X is a map d : X×X →
R+ such that for every x, y, z ∈ X one has: d (x, x) = 0 and d (x, z) ≤ d (x, y)+d (y, z).

A quasi-metric d on X is called pseudo-metric (or a gauge) if d (x, y) = d (y, x)
for all x, y ∈ X. A pair (X, Σ) of a non-empty set and a non-empty family of pseudo-
metrics on X is said to be a uniform space.

Definition 5 [11] Let (X, Σ) be a quasi-uniform space with Σ = {dj : j ∈ J} . A map
T : X → X is said to be contractive with respect to Σ (Σ-contractive) if there exist
two functions α : J → R+, β : J → J such that for all j ∈ J and x, y ∈ X one has:
(a)

dj (Tx, Ty) ≤ α (j) dβ(j) (x, y)

and (b) the series
∞∑

n=0

α (j) α (β (j)) ...α (βn (j)) dβn+1(j) (x, y) (10)

is convergent.

The Banach contraction principle was extended to locally convex spaces by Mari-
nescu [15] and to uniform spaces by Colojoară [2] and Gheorghiu [11]. The analog
for set-valued maps on uniform spaces is due to Avramescu [1]. A generalization
of Maia’s theorem to uniform spaces endowed with two uniform structures was first
given by Gheorghiu [12].

There is a broad literature in metric fixed point theory (see Rus [27]) on the
so called generalized contractions. In [19] we showed that in many cases, such a
generalized contraction T is in fact a usual contraction with respect to a suitable
quasi-uniform (or uniform) structure associated to T. Consequently, the fixed point
theorems in quasi-uniform spaces yield fixed point results for generalized contractions.
Now we describe some types of generalized contractions.

Let (X, d) be a metric space and T : X → X be a map.
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Theorem 15 [19] Assume T satisfies

d (Tx, Ty) ≤ a d (x, Tx) + b d (y, Ty) + c d (x, y)

for all x, y ∈ X, where a, b, c are non-negative numbers with a+b+c < 1 and a+bc > 0.
Then T is contractive with respect to Σ = {dn : n ∈ N} , where

dn (x, y) =
rn − cn

r − c
[a d (x, Tx) + b d (y, Ty)] + cnd (x, y) for x 6= y

= 0 for x = y.

Here r = (a + c) / (1− b) and c < r < 1.

Proof. Take α : N → R+, α (n) = 1, β : N → N, β (n) = n+1 and observe that

for an arbitrary dm ∈ Σ, the series (10) is
∞∑

n=0
dm+n+1 (x, y) , which since 0 ≤ c < 1

and c < r < 1, is obviously convergent.

Theorem 16 [19] Assume T satisfies

d (Tx, Ty) ≤ a max{d (x, y) , d (x, Tx) , d (y, Ty) , d (x, Ty) , d (y, Tx)} (11)

for all x, y ∈ X and some a ∈ [0, 1). Then T is contractive with respect to Σ =
{dn : n ∈ N} , where dn is the pseudo-metric on X given by

dn (x, y) = max{d (
T ix, T jx

)
, d

(
T iy, T jy

)
, d

(
T ix, T jy

)
: i, j = 0, 1, ..., n}

for x 6= y

= 0 for x = y.

Proof. We have d0 = d and from (11), we deduce

d
(
T ix, T jx

) ≤ a dn (x, y) , d
(
T iy, T jy

) ≤ a dn (x, y)

d
(
T ix, T jy

) ≤ a dn (x, y)

for all x, y ∈ X and i, j ∈ {1, 2, ..., n} . It follows

dn (Tx, Ty) ≤ a dn+1 (x, y)

and also

dn (x, y) = max{d (
x, T ix

)
, d

(
y, T iy

)
, d

(
x, T iy

)
, d

(
y, T ix

)
: i = 0, 1, ..., n}.

If, for example, dn (x, y) = d
(
x, T ix

)
for some i ∈ {1, 2, ..., n} , then

dn (x, y) ≤ d (x, Tx) + d
(
Tx, T ix

) ≤ d (x, Tx) + a dn (x, y) .

Hence
dn (x, y) ≤ 1

1− a
d (x, Tx) ≤ 1

1− a
d1 (x, y) .
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Generally, we can prove similarly

dn (x, y) ≤ 1
1− a

d1 (x, y) (12)

for all x, y ∈ X and n ∈ N.
In this case α : N → R+, α (n) = a , β : N → N, β (n) = n + 1. Also, for an

arbitrary dm ∈ Σ, the series (10) is
∞∑

n=0
an+1dm+n+1 (x, y) , which is convergent as

follows from (12).

Theorem 17 [19] Let (X, d) be a generalized metric space endowed with a vector-
valued metric d : X×X → Rr. Assume T : X → X is contractive in the Perov sense,
i.e.

d (Tx, Ty) ≤ Ad (x, y)

for all x, y ∈ X and some matrix A ∈ Mr×r (R+) with An → 0 as n →∞.
Let di, i = 1, 2, ..., r, be the pseudo-metrics for which d = (d1, d2 , ..., dr) . Also, if

An =
(
an

ij

)
, we define the pseudo-metrics

din =
r∑

j=1

an
ijdj

for i = 1, 2, ..., r and n ∈ N.
Then T is contractive with respect to Σ = {din : (i, n) ∈ {1, 2, ..., r} ×N} .

Proof. Take α (i, n) = 1 and β (i, n) = (i, n + 1) . Also observe that from An → 0
as n →∞, we have

∞∑
n=0

Am+n+1 = Am+1 (I −A)−1

whence ∞∑
n=0

Am+n+1d (x, y) = Am+1 (I −A)−1
d (x, y) .

Hence, for all x, y ∈ X and (i, n) ∈ {1, 2, ..., r} ×N, the series

∞∑
n=0

r∑

j=1

am+n+1
ij dj (x, y) =

∞∑
n=0

di,m+n+1 (x, y)

which coincides with the series (10), is convergent.
Finally, we mention that a continuation type result in separated complete uniform

spaces was recently obtained by Frigon-Granas [9] (see also Frigon [7]) for particular
contractive maps, with β (j) = j for all j ∈ J. Thus, an open problem is to give
extensions of the Frigon-Granas theorem to general contractive maps on quasi-uniform
spaces, and to derive specific continuation results for several classes of generalized
contractions.
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[3] Á. Császár, Fondements de la topologie générale, Akadémiai Kiadó, Budapest,
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[10] J. A. Gatica and W. A. Kirk, Fixed point theorems for contraction mappings with
applications to nonexpansive and pseudo-contractive mappings, Rocky Mountain
J. Math. 4 (1974), 69-79.

[11] N. Gheorghiu, The contraction theorem in uniform spaces (Romanian), St. Cerc.
Mat. 19 (1967), 131-135.

[12] N. Gheorghiu, Fixed point theorems in uniform spaces, An. St. Univ. Al. I. Cuza
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