NUMERICAL SIMULATIONS OF INFLATED RANDOM DYNAMICAL SYSTEMS

David Julitz

Department of Research, Gollmann Kommissioniersysteme GmbH

The theory of random dynamical systems considers dynamical systems under random influences (for the non random theory see Temam [4]). To uncover the dynamics and bifurcation behavior, we need new concepts (see Arnold [1], Crauel and Flandoli [2]). In this talk we are interested in *inflated random dynamical systems* generated by random differential inclusions of the form $\frac{dx}{dt} \in F(\theta_t \omega, x)$ where $F : \mathbb{R}^+ \times \Omega \times \mathbb{R}^d \Rightarrow \mathbb{R}^d$ is a set-valued inflation mapping with convenient conditions and θ is the model for the noise driving the deterministic dynamics. We present implementations of numerical schemes for approximation of selections of random differential inclusions. Later we apply this to dynamical systems

REFERENCES

- L. Arnold, Random dynamical systems, Springer Monographs in Mathematics, Springer-Verlag, Berlin, 1998.
- H. Crauel and F. Flandoli, Attractors for random dynamical systems, Prob. Th. Related Fields, 100 (365-393), 1994.
- [3] P. E. Kloeden, V. S. Kozyakin, The inflation of attractors and their discretization: the autonomous case Nonlinear Anal., 40 (1-8, Ser. A: Theory Methods): 333–343, 2000. Lakshmikantham's legacy: a tribute on his 75th birthday,
- [4] R. Temam, Infinite-dimensional dynamical systems in mechanics and physics, Applied Mathematical Sciences, Vol. 68, Springer-Verlag, New York, second edition, 1997.