
Modelling with first order differential equations 
 
> restart:with(DEtools): 

Radioactive decay 
Ratherford Law: The rate of decay for radioactive material is proportional to the number of atoms 
present 
 

( )x t  - the amount of radioactive material at the time t 
x

0  - the amount of radioactive material at the initial time  (t
0

t
0

0 ) 

 
dx/dt=x'(t) represent the rate of decay 
 
The model: 
x'(t) =  k ( )x t

( )x 0 x
0  

 
k-decay constant 
 
> RD_eq:=diff(x(t),t)=-k*x(t); 

 := RD_eq 
d
d
t

( )x t k ( )x t  

> sol:=dsolve({RD_eq,x(0)=x0},x(t)); 

 := sol ( )x t x0 e
( )k t

 

> x_sol:=unapply(rhs(sol),t,x0,k); 

 := x_sol ( ), ,t x0 k x0 e
( )k t

 

> 
plot([x_sol(t,2,1/8000),x_sol(t,4,1/8000),x_sol(t,2,1/10000)],t=0..10
0000);  
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The half-life time of a radioactive substance is the lenght of time it takes the material to decay to half 
of its original amount. 

the half-life time can be calculated from the ecuation 





x T
1
2

x
0

2
 

> eq:=x_sol(T12,x0,k)=x0/2; 
 

 := eq x0 e
( )k T12 x0

2
 

> T12=solve(eq,T12); 

T12
( )ln 2
k

 

Usualy the rate of decay for radioactive material is given in the terms of the half-life time, so, if we 
want to apply this model first we have to find the decay constant k. 
For example, in the case radioactive carbon isotope , the half-life time is 5730 years, then the 
corresponding decay constant is  

C14

> T12_C14:=5730; 
:= T12_C14 5730  

> k_C14:=ln(2)/T12_C14; 

 := k_C14
1

5730
( )ln 2  

> evalf(k_C14); 
0.0001209680943  

> plot(x_sol(t,200,k_C14),t=0..100000);  
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C14  Radiocarbon Dating method 
 
An important tool in archeological research is radiocarbon dating. This is a means of determining the 
age of certain wood and plant remains, hence of animal or human bones or artifacts found buried at the 
same levels. The procedure was developed by the American chemistWillard Libby (1908–1980) in the 
early 1950s and resulted in his winning the Nobel prize for chemistry in 1960. Radiocarbon dating is 
based on the fact that somewood or plant remains contain residual amounts of carbon-14, a radioactive 
isotope of carbon. This isotope is accumulated during the lifetime of the plant and begins to decay at its 
death. Since the half-life of carbon-14 is long (approximately 5730 years), measurable amounts of 
carbon-14 remain after many thousands of years. Libby showed that if even 
a tiny fraction of the original amount of carbon-14 is still present, then by appropriate laboratory 
measurements the proportion of the original amount of carbon-14 that remains can be accurately 
determined. In other words, if x(t) is the amount of carbon-14 at time t and x0 is the original amount, 
then the ratio x(t)/x0 can be determined, at least if this quantity is not too small. Present measurement 
techniques permit the use of this method for time periods up to about 50,000 years, after which the 
amount of carbon-14 remaining is only about 0.00236 of the original amount. 
 
> RD_eq; 


d
d
t

( )x t k ( )x t  

> x_sol(t,x0,k); 

x0 e
( )k t

 

Suppose that at the discovering time T  the amount of rezidual has the value x
1  then the value of T  

can be found it from the equation 
( )x T x

1  

 
> eq:=x_sol(T,x0,k_C14)=x1; 

 := eq x0 e
( ) /1 5730 ( )ln 2 T

x1  

> T=solve(eq,T); 

T 
5730 






ln

x1
x0

( )ln 2
 

Usualy, the value of x
1  is given in procent from original amount x

0 . For example, Suppose that 

certain remains are discovered in which the current residual amount of carbon-14 is 20% of the original 
amount. Determine the age of these remains. 
 
> p:=20/100; 

 := p
1
5

 

> x1:=p*x0; 

 := x1
x0
5
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> eq:=x_sol(T,x0,k_C14)=x1; 

 := eq x0 e
( ) /1 5730 ( )ln 2 T x0

5  

> Tf:=solve(eq,T); 

 := Tf
5730 ( )ln 5

( )ln 2
 

> evalf(Tf); 
13304.64798  

>  

Thermal Cooling 
 
Newton’s law of cooling. If T(t) is the temperature of an object at time t and ( )T

out
t  is the 

temperature of its surroundings, then the change rate of the surface temperature of an object is 
proportion with the difference between the object temperature T and the surrounding temperature 

( )T
out

t  

 


dT
dt

k ( )T T
out  

( )T 0 T
0  

where k is a positive constant called the cooling coefficient. 
 
This becomes a “law of warming” if the surroundings are hotter than the object. 
 
> N_eq:=diff(T(t),t)=-k*(T(t)-T_out); 

 := N_eq 
d
d
t

( )T t k ( )( )T t T_out  

> sol:=dsolve({N_eq,T(0)=T0},T(t)); 

 := sol ( )T t T_out ( ) T_out T0 e
( )k t

 

> T_sol:=unapply(rhs(sol),t,k,T0,T_out); 

 := T_sol ( ), , ,t k T0 T_out T_out ( ) T_out T0 e
( )k t

 

> plot([T_sol(t,2,30,15),T_sol(t,2,10,15),T_sol(t,2,15,15)],t=0..5); 
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Exercise: How long will it take for a  C egg to cool to  C in a  C room if k = 0.03419 

? 

100o 60o 21o

min
( )1

 
we have the solution of Newton cooling model 
> T_sol(t,k,T0,T_out); 

T_out ( ) T_out T0 e
( )k t

 

> T0:=100;T_out:=21;k:=0.03419;Tf:=60; 
:= T0 100  

:= T_out 21  

:= k 0.03419  

:= Tf 60  

The answer can be obtained from the equation 
( )T time T

final  

> eq:=T_sol(t1,k,T0,T_out)=Tf; 

 := eq 21 79 e
( )0.03419 t1

60  

> t1=solve(eq,t1); 
t1 20.64598439  

>  
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Time-Dependent Outside Temperature 
When considering the cooling model is separable because T

out  is constant in this instance. Let’s 

consider what happens when the outside temperature changes with time. 
We can still use Newton’s law of cooling, so that if T(t) is the object temperature and ( )T

out
t  is the 

room’s temperature, then 
 


dT
dt

k ( )( )T t ( )T
out

t  

( )T 0 T
0  

 
Note that this equation is not separable (because T

out  varies with time) but it is linear, so we can find 

its general solution as follows. Rearrange the terms to give the linear ODE in standard form: 


dT
dt

k ( )T t k ( )T
out

t  

( )T 0 T
0  

 
> restart;with(DEtools): 
> N_eq_var:=diff(T(t),t)=-k*(T(t)-T_out(t)); 

 := N_eq_var 
d
d
t

( )T t k ( )( )T t ( )T_out t  

> sol_var:=dsolve({N_eq_var,T(0)=T0},T(t)); 

 := sol_var ( )T t











d




0

t

k ( )T_out _z1 e
( )k _z1

_z1 T0 e
( )k t

 

 

Exercise: Find the solution in the case of ( )T
out

t 21 5 





sin

2  ( )t 3
24

 in the case of the egg 

problem 
> T_out:=t->21-5*sin(2*Pi*(t+3)/24); 

 := T_out t 21 5 





sin

1
12

 ( )t 3  

> N_eq_var; 


d
d
t

( )T t k 





 ( )T t 21 5 






sin

 ( )t 3
12

 

>  
>  
> T0:=100;k:=0.03419; 

:= T0 100  

:= k 0.03419  

> sol_var:=dsolve({N_eq_var,T(0)=T0},T(t)); 

 6



sol_var ( )T t
1
2

 := 

e








3419 t
100000

(   16622555742 98750000000 2 1282125000 )2  526030245 2

105206049 625000000 2

3 736442343 4375000000 2 427375000 





cos 

1
12

 t
1
4
  




175343415 





sin 

1
12

 t
1
4
 


 105206049 625000000 2( )

 

> T_sol1:=unapply(rhs(sol_var),t); 

T_sol1 t
1
2

 := 

e








3419
100000

t

(   16622555742 98750000000 2 1282125000 )2  526030245 2

105206049 625000000 2

3 736442343 4375000000 2 427375000 





cos 

1
12

 t

4

 



175343415 





sin 

1
12

 t

4

 

 105206049 625000000 2( )

 

> plot([T_sol1(t),T_out(t)],t=0..4*60); 

 
>  
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Air Conditioning a Room 
 
Now let’s build a model that describes a room cooled by an air conditioner. Without air conditioning, 
we can model the change in temperature using the Newton model. When the air conditioner is running, 
its coils remove heat energy at a rate proportional to the difference between ( )T

r
t , the room 

temperature, and the temperature T
ac  of the coils. So, using Newton’s law of cooling for the 

temperature change due to both the air outside the room and the air conditioner coils, our model ODE 
is 
 


dT

r

dt
 k ( )( )T

r
t T

out
k

ac
( )( )T

r
t T

ac  

( )T
r

0 T
0  

 
where T

out  is the temperature of the outside air and k and k
ac  are the appropriate cooling coefficients. 

If the unit is turned off, then k
ac

0  and this equation reduces to Newton equation. 

> restart: 
> deq:=diff(T_r(t),t)=-k*(T_r(t)-T_out)-k2*(T_r(t)-T_ac); 

 := deq 
d
d
t

( )T_r t  k ( )( )T_r t T_out k2 ( )( )T_r t T_ac
 

> dsolve({deq,T_r(0)=T0},T_r(t)); 

( )T_r t 
e

( )( )k k2 t
( )  k T0 k T_out k2 T0 k2 T_ac

k k2
k T_out k2 T_ac
k k2

 

Let's assume that the initial temperature of the room is  C and the outside temperature is a constant 
 C. The air conditioner operates with a coil 

15o

35o

temperature of  C, k = 0.03  and 5o min
( )1

k
ac  = 0.1 min

( )1
, then the solution is 

> T0:=15;T_out:=35;T_ac:=5;k:=0.03;k2:=0.1; 
:= T0 15  

:= T_out 35  

:= T_ac 5  

:= k 0.03  

:= k2 0.1  

> sol:=dsolve({deq,T_r(0)=T0},T_r(t)); 

 := sol ( )T_r t 
155
13

40
13

e








13 t
100

 

> T_r_sol:=unapply(rhs(sol),t); 

 := T_r_sol t 
155
13

40
13

e








13
100

t

 

> plot(T_r_sol(t),t=0..60); 
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Let's complicate the problem. The air conditioner switches on when the room reaches  C, and 
switches off at  C. 

25o

20o

At some time  the room's temperature will reach  C and the air conditioner will switch on. For t 

>  the temperature is modeled by the IVP 

t
on

25o

t
on


dT

r

dt
 k ( )( )T

r
t T

out
k

ac
( )( )T

r
t T

ac  

( )T
r

0 T
0  

 

with T
0

25 , T
out

35 ,  k = 0.03 min
( )1

 and k
ac  = 0.1 min

( )1
, which is valid until the room 

cools to  C at some time  . 20o t
of f

 
> T0:=25; 

:= T0 25  

> deq; 


d
d
t

( )T_r t  0.13 ( )T_r t 1.55  

> sol1:=dsolve({deq,T_r(0)=T0},T_r(t)); 

 := sol1 ( )T_r t 
155
13

170
13

e








13 t
100

 

> T_on:=unapply(rhs(sol1),t); 

 := T_on t 
155
13

170
13

e








13
100

t

 

t
off   is found from the equation ( )T_on t

off
20  

> eq:=T_on(t_off)=20; 

 := eq 
155
13

170
13

e








13 t_off
100

20  
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> t_off:=solve(eq,t_off); 

 := t_off 
100
13







ln

21
34

 

> evalf(t_off); 
3.706446822  

For t >   the air conditioner is turned off which means t
off

k
ac

0  and we have the solution 

> deq1:=diff(T_r(t),t)=-k*(T_r(t)-T_out); 

 := deq1 
d
d
t

( )T_r t  0.03 ( )T_r t 1.05  

> sol2:=dsolve({deq1,T_r(t_off)=20},T_r(t)); 

 := sol2 ( )T_r t 35
5
7

e








3 t
100

21








10
13

34
( )/3 13

 

> T_off:=unapply(rhs(sol2),t); 

 := T_off t 35
5
7

e
( ) /3 100 t

21








10
13

34
( )/3 13

 

> eq1:=T_off(t_on)=25; 

 := eq1 35
5
7

e








3 t_on
100

21








10
13

34
( )/3 13

25  

> t_on:=solve(eq1,t_on); 

 := t_on 
100
39







ln

351232
290107737

 

> evalf(%); 
17.22195042  

> T_sol:=t->piecewise(0<=t and t<t_off,T_on(t),t_off<=t and 
t<=t_on,T_off(t)); 

 := T_sol t (piecewise , , , and 0 t t t_off ( )T_on t and )t_off t t t_on ( )T_off t
 

> plot(T_sol(t),t=0..t_on); 
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