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SOME (Λ, b)-TYPE MAPPINGS IN TOPOLOGICAL SPACES

JIARUL HOQUE and SHYAMAPADA MODAK

Abstract. In this paper, the authors introduce and study (Λ, b)-continuous,
(Λ, b)-irresolute and quasi-(Λ, b)-irresolute mappings. Some characterizations
and several properties concerning aforesaid mappings are obtained. The au-
thors also introduce (Λ, b)-compactness and (Λ, b)-connectedness. It is proved
that (Λ, b)-compactness (resp. (Λ, b)-connectedness) is preserved under (Λ, b)-
irresolute mappings. The paper also touches the topics frontier points, Dirichlet’s
function, filter and algebraic structure of some functions.
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1. INTRODUCTION

Maki [12] introduced the notion of Λ-sets and Andrijević [1] introduced the
b-open sets in topological spaces. In [4], Caldas et al. defined and investi-
gated Λb-sets using b-open sets. Via Λb-sets and b-closed sets, Boonpok [2]
introduced (Λ, b)-closed sets and investigated several properties in topologi-
cal spaces. In this paper, we introduce concepts of (Λ, b)-continuous, (Λ, b)-
irresolute, quasi-(Λ, b)-irresolute mappings and study several behaviours and
characterizations. We also introduce (Λ, b)-compactness and (Λ, b)-connec-
tedness and relate them with (Λ, b)-continuous, (Λ, b)-irresolute mappings. We
show that (Λ, b)-irresolute image of (Λ, b)-compact (resp. (Λ, b)-connected)
space is (Λ, b)-compact (resp. (Λ, b)-connected).

2. PRELIMINARIES

Throughout this paper, by (X, τ), (Y, σ) and (Z, η) (or simply X, Y and
Z) we mean topological spaces in which, unless explicitly mentioned, any kind
of separation axioms are not considered. From now, by space we understood
topological space. For A ⊆ X, Int(A), Cl(A) and X \ A are used to denote
interior, closure and complement of A respectively. For x ∈ X, τ(x) stands
for the collection of all open sets containing x.

A subset A of a space X is called b-open [1] or γ-open [9] if A ⊆ Cl(Int(A))∪
Int(Cl(A)). Complement of a b-open set is called b-closed. The b-closure (resp.
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b-interior) of A, denoted by bCl(A) [1] or Clb(A) [3] (resp. bInt(A) [1] or Intb(A)
[3]), is the smallest (resp. largest) b-closed (resp. b-open) set containing (resp.
contained in) A. The family of all b-open (resp. b-closed) sets in X is denoted
as BO(X, τ) (resp. BC(X, τ)). In [4], the subset AΛb (resp. AVb) is defined
as the intersection (resp. union) of all b-open (resp. b-closed) subsets of X
containing (resp. contained in) A. It is noticeable that AΛb is denoted as
bKer(A) in [3] and γ-Ker(A) in [6]. A is called a Λb-set (resp. Vb-set) [4] if
AΛb = A (resp. AVb = A). Furthermore, the authors Caldas et al. in [4] have
shown that for subsets A and B of a space X, (i) A ⊆ B implies AVb ⊆ BVb ;
(ii) (X \A)Λb = X \AVb ; (ii) for A ∈ BO(X, τ); A is a Λb-set and (iv) A is a
Λb-set if and only if X \A is a Vb-set.

In this paragraph we discuss some notations and terminologies of [2]. A
subset A of a space X is called (Λ, b)-closed if A = T ∩ C, where T is a
Λb-set and C is b-closed set. Complement of a (Λ, b)-closed set is called (Λ, b)-
open. The family of (Λ, b)-closed (resp. (Λ, b)-open) subsets of X is denoted
as ΛbC(X, τ) (resp. ΛbO(X, τ)). The (Λ, b)-closure (resp. (Λ, b)-interior) of

A, denoted by A(Λ,b) (resp. A(Λ,b)) is defined in analogous manner of Cl(A)
(resp. Int(A)). The symbol ΛbC(X,x) (resp. ΛbO(X,x)) denotes the family
of all (Λ, b)-closed (resp. (Λ, b)-open) sets containing x. The subset Λ(Λ,b)(A)
is defined as Λ(Λ,b)(A) =

⋂
{U ∈ ΛbO(X, τ) : A ⊆ U}. Again, we learnt from

[2] that every Λb-set (resp. b-closed set) is (Λ, b)-closed; and for subsets A and

B of a space X, (i) A ⊆ B implies A(Λ,b) ⊆ B(Λ,b); (ii) [A(Λ,b)](Λ,b) = A(Λ,b);

(iii) A is (Λ, b)-closed if and only if A = A(Λ,b); (iv) A is (Λ, b)-open if and only

if A = A(Λ,b); and (v) A(Λ,b) (resp. A(Λ,b)) is (Λ, b)-closed (resp. (Λ, b)-open).

Proposition 2.1. The following statements are valid for a space X:

(1) Every b-open set is (Λ, b)-open.
(2) Every b-closed set is (Λ, b)-open.
(3) Every Vb-set is (Λ, b)-open.

Theorem 2.2. For a subset A of a space X, the following are equivalent:

(1) A is (Λ, b)-open;
(2) A = P ∪Q, where P is a Vb-set and Q is a b-open set;
(3) A = P ∪ Intb(A);
(4) A = AVb ∪ Intb(A);
(5) A = AVb ∪A(Λ,b).

Proposition 2.3. Let A be a subset of a space X and x ∈ X. Then
x ∈ Λ(Λ,b)(A) if and only if A ∩ F ̸= ∅ for every F ∈ ΛbC(X,x).

Corollary 2.4. For a subset A of a space X, Λ(Λ,b)(A) = {x ∈ X :

{x}(Λ,b) ∩A ̸= ∅}.

Proposition 2.5. Let X be a space and x ∈ X. Then y ∈ Λ(Λ,b)({x}) if

and only if x ∈ {y}(Λ,b).
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Proposition 2.6. Let X be a space. Then for every x ∈ X, Λ(Λ,b)({x}) ̸=
X if and only if

⋂
{{x}(Λ,b) : x ∈ X} = ∅.

We close our this short section with the following theorem:

Theorem 2.7. For any two points x and y of a space X, the following are
equivalent:

(1) Λ(Λ,b)({x}) ̸= Λ(Λ,b)({y});
(2) {x}(Λ,b) ̸= {y}(Λ,b).

Proof. Let Λ(Λ,b)({x}) ̸= Λ(Λ,b)({y}). Then we can find p ∈ X such that p ∈
Λ(Λ,b)({x}) but p /∈ Λ(Λ,b)({y}). Using Proposition 2.5 from p ∈ Λ(Λ,b)({x}),
we get x ∈ {p}(Λ,b) and hence {x}(Λ,b) ⊆ {p}(Λ,b). Again using Proposition

2.5 from p /∈ Λ(Λ,b)({y}), we get y /∈ {p}(Λ,b) and hence y /∈ {x}(Λ,b). Hence

{x}(Λ,b) ̸= {y}(Λ,b). Conversely, let {x}(Λ,b) ̸= {y}(Λ,b). Then we can find t ∈ X

such that t ∈ {x}(Λ,b) but t /∈ {y}(Λ,b). From t ∈ {x}(Λ,b) and Proposition 2.5,
we have x ∈ Λ(Λ,b)({t}). Therefore {x} ⊆ Λ(Λ,b)({t}) implies Λ(Λ,b)({x}) ⊆
Λ(Λ,b)[Λ(Λ,b)({t})] = Λ(Λ,b)({t}), by Lemma 3.36 of [2]. Now using Proposition

2.5 from t /∈ {y}(Λ,b), we have y /∈ Λ(Λ,b)({t}). Clearly y /∈ Λ(Λ,b)({x}). Hence
Λ(Λ,b)({x}) ̸= Λ(Λ,b)({y}). □

3. (Λ, b)(Λ, b)(Λ, b)-CONTINUOUS, (Λ, b)(Λ, b)(Λ, b)-IRRESOLUTE AND QUASI-(Λ, b)(Λ, b)(Λ, b)-IRRESOLUTE

FUNCTIONS

In this section we introduce (Λ, b)-continuous, (Λ, b)-irresolute and quasi-
(Λ, b)-irresolute mappings and study some properties and characterizations.

Definition 3.1. Let X and Y be two spaces. A function f : X → Y is
said to be

(1) (Λ, b)-continuous (resp. b-continuous or γ-continuous [9]) if for every
open subset V of Y , f−1(V ) is (Λ, b)-open (resp. b-open) in X.

(2) (Λ, b)-irresolute (resp. b-irresolute or γ-irresolute [5, 8]) if for every
(Λ, b)-open (resp. b-open) subset V of Y , f−1(V ) is (Λ, b)-open (resp.
b-open) in X.

(3) quasi-(Λ, b)-irresolute if for every b-open subset V of Y , f−1(V ) is
(Λ, b)-open in X.

The following examples illustrate the existence of (Λ, b)-continuous, (Λ, b)-
irresolute and quasi-(Λ, b)-irresolute functions.

Example 3.2. Consider the real line R endowed with the usual topology
τu. The well known Dirichlet’s function f : (R, τu) → (R, τu) defined by

(1) f(x) =

{
1 if x is rational

0 if x is irrational

is (Λ, b)-continuous on R.
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Example 3.3. Let X = Y = R, τu and τd be respectively the usual and
discrete topology on R. The function f : (X, τu) → (Y, τd) defined in (1) is
(Λ, b)-irresolute as well as quasi-(Λ, b)-irresolute.

Theorem 3.4. For a function f : X → Y , the following are equivalent:

(1) f is (Λ, b)-continuous;
(2) for every closed subset F of Y , f−1(F ) ∈ ΛbC(X, τ);
(3) for each x ∈ X and for every V ∈ σ(f(x)), there is a U ∈ ΛbO(X,x)

such that f(U) ⊆ V ;

(4) for every A ⊆ X, f [A(Λ,b)] ⊆ Cl(f(A));

(5) for every B ⊆ Y , [f−1(B)](Λ,b) ⊆ f−1(Cl(B));
(6) for every B ⊆ Y , f−1(Int(B)) ⊆ [f−1(B)](Λ,b).

Proof. (1) ⇐⇒ (2): Since Y \ F is open and f is (Λ, b)-continuous, X \
f−1(F ) = f−1(Y \ F ) is (Λ, b)-open, witnessing that f−1(F ) ∈ ΛbC(X, τ).
Conversely, let V be any open subset of Y . Then Y \ V is closed in Y . By
hypothesis, X \ f−1(V ) = f−1(Y \ V ) is (Λ, b)-closed and hence f−1(V ) is
(Λ, b)-open in X. Hence f is (Λ, b)-continuous.

(1) ⇐⇒ (3): Let V be an open subset of Y and f(x) ∈ V . Then x ∈ f−1(V ).
Consider U = f−1(V ). Since f is (Λ, b)-continuous, U is a (Λ, b)-open subset
of X such that x ∈ U and f(U) ⊆ V . Conversely, let V be any open subset of
Y and x ∈ f−1(V ). Then f(x) ∈ V . By assumption, there exists a (Λ, b)-open
subset Ux of X such that x ∈ Ux and f(Ux) ⊆ V . Hence f−1(V ) =

⋃
{Ux :

x ∈ f−1(V )}. Therefore f−1(V ) is (Λ, b)-open in X, by Theorem 3.5 of [2].
Hence f is (Λ, b)-continuous.

(2) ⇐⇒ (4): Since Cl(f(A)) is closed in Y , f−1(Cl(f(A))) is (Λ, b)-closed

in X, by (2). Now A ⊆ f−1(f(A)) ⊆ f−1(Cl(f(A))) implies that A(Λ,b)

⊆ f−1(Cl(f(A))). Hence f [A(Λ,b)] ⊆ Cl(f(A)). Conversely, let F be a closed

subset of Y . By hypothesis, f([f−1(F )](Λ,b)) ⊆ Cl(f(f−1(F ))) ⊆ Cl(F ) = F .

Therefore [f−1(F )](Λ,b) ⊆ f−1(F ). Moreover, f−1(F ) ⊆ [f−1(F )](Λ,b). Thus

f−1(F ) = [f−1(F )](Λ,b) and hence f−1(F ) is (Λ, b)-closed in X.

(4) ⇐⇒ (5): Let B be a subset of Y . By assumption, f [(f−1(B))(Λ,b)] ⊆
Cl(f(f−1(B))) ⊆ Cl(B). Hence [f−1(B)](Λ,b) ⊆ f−1(Cl(B)). Conversely, let

A be a subset of X. Then by assumption, [f−1(f(A))](Λ,b) ⊆ f−1(Cl(f(A))).

Since A ⊆ f−1(f(A)), A(Λ,b) ⊆ [f−1(f(A))](Λ,b). Thus A(Λ,b) ⊆ f−1(Cl(f(A)))

and hence f [A(Λ,b)] ⊆ Cl(f(A)).
(1) ⇐⇒ (6): For any B ⊆ Y , Int(B) is open in Y and hence by (1),

f−1(Int(B)) is (Λ, b)-open in X and is contained in f−1(B). So f−1(Int(B))
⊆ [f−1(B)](Λ,b). Conversely, let V be open in Y . Then V = Int(V ) implies

f−1(V ) = f−1(Int(V )) ⊆ [f−1(V )](Λ,b), by (6). Also [f−1(V )](Λ,b) ⊆ f−1(V ).

Thus f−1(V ) = [f−1(V )](Λ,b) and hence f−1(V ) is (Λ, b)-open in X. Therefore
f is (Λ, b)-continuous. □
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Recall that kernel of a subset A [13] of a space X is the set Ker(A) =
⋂
{U ∈

τ : A ⊆ U}. In [12], Ker(A) is denoted by AΛ.

Lemma 3.5 ([10]). Let A be a subset of a space X. Then x ∈ Ker(A) if and
only if A ∩ F ̸= ∅ for every closed set F containing x.

Theorem 3.6. Let f : X → Y be a (Λ, b)-continuous function. Then for
every A ⊆ X, f [Λ(Λ,b)(A)] ⊆ Ker(f(A)).

Proof. Suppose y /∈ Ker(f(A)). By Lemma 3.5, there exists a closed set F in
Y such that y ∈ F and f(A)∩F = ∅. Now A∩f−1(F ) ⊆ f−1(f(A))∩f−1(F ) =
f−1(f(A)∩F ) = ∅ implies A∩ f−1(F ) = ∅. Since f is (Λ, b)-continuous func-
tion, f−1(F ) is (Λ, b)-closed in X. Moreover, f−1(y) ⊆ f−1(F ). Therefore,
by Proposition 2.3, x /∈ Λ(Λ,b)(A) for all x ∈ f−1(y). Hence y /∈ f [Λ(Λ,b)(A)].
Therefore f [Λ(Λ,b)(A)] ⊆ Ker(f(A)). □

Definition 3.7 ([2]). A subset N of a space X is said to be (Λ, b)-neighbor-
hood of a point x ∈ X if there exists a (Λ, b)-open set U such that x ∈ U ⊆ N .

We denote the collection of all (Λ, b)-neighbourhoods of x as N(Λ,b)(x).
Recall that a filter F on a set S is a non-empty collection of non-empty

subsets of S with the properties: (a) if F1, F2 ∈ F , then F1 ∩F2 ∈ F , and (b)
if F ∈ F and F ⊆ G, then G ∈ F .

Definition 3.8 ([11]). Let f : X → Y be a function and F be a filter on
X. Then the filter on Y having f(F) = {f(A) : A ∈ F} as a base is called the
image filter of F under f and is denoted by f♯(F).

Definition 3.9. A filter F on a spaceX is said to (Λ, b)-converge to xo ∈ X
if every (Λ, b)-neighbourhood of xo belongs to F .

The following theorem characterizes (Λ, b)-continuous functions in terms of
filter convergent.

Theorem 3.10. A function f : X → Y is (Λ, b)-continuous at xo ∈ X if
and only if whenever a filter F , (Λ, b)-converges to xo in X, then the image
filter f♯(F) converges to f(xo) in Y .

Proof. Assume that f is (Λ, b)-continuous at xo and F is a filter (Λ, b)-
converging to xo. Let N ∈ Nf(xo), the collection of all neighbourhoods of
f(xo). Then there exists an open set V in Y such that f(xo) ∈ V ⊆ N .
Since f is (Λ, b)-continuous at xo, there exists a (Λ, b)-open set U in X such
that xo ∈ U and f(U) ⊆ V . By (Λ, b)-convergence of F to xo in X, U ∈ F .
So f(U) ∈ f(F). But f(U) ⊆ N and so N ∈ f♯(F). It follows that f♯(F)
converges to f(xo). Converse part: If possible, suppose that f is not (Λ, b)-
continuous at xo. Then there exists an open set V in Y containing f(xo) such
that f(U) ∩ (Y \ V ) ̸= ∅, for all U ∈ ΛbO(X,xo). Now U ∩ (X \ f−1(V )) ⊆
f−1(f(U))∩f−1(Y \V ) = f−1(f(U)∩(Y \V )) ̸= ∅ impliesN∩(X\f−1(V )) ̸= ∅
for all N ∈ N(Λ,b)(xo). Therefore S = N(Λ,b)(xo)∪{X \ f−1(V )} has the finite
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intersection property and hence generates a filter, say F on X. Clearly F ,
(Λ, b)-converges to xo in X. Now X \ f−1(V ) ∈ F implies f(X \ f−1(V )) ∈
f(F). Since f(X \ f−1(V )) ⊆ Y \ V , Y \ V ∈ f♯(F). Since f♯(F) is a filter,
V /∈ f♯(F), where V is an open neighbourhood of f(xo). Thus f♯(F) does not
converge to f(xo) in Y . This contradiction proves that f is (Λ, b)-continuous
at xo. □

The following theorem represents an important characterization of (Λ, b)-
irresolute function.

Theorem 3.11. The following are equivalent for a function f :X→Y :

(1) f is (Λ, b)-irresolute;
(2) for every (Λ, b)-closed subset F of Y , f−1(F ) is (Λ, b)-closed in X;
(3) for each x ∈ X and for every V ∈ ΛbO(Y, f(x)), there is a U ∈

ΛbO(X,x) such that f(U) ⊆ V ;

(4) for every A ⊆ X, f [A(Λ,b)] ⊆ [f(A)](Λ,b);

(5) for every B ⊆ Y , [f−1(B)](Λ,b) ⊆ f−1[B(Λ,b)];
(6) for every B ⊆ Y , f−1[B(Λ,b)] ⊆ [f−1(B)](Λ,b).

Proof. (1) ⇐⇒ (2): Sine Y \ F ∈ ΛbO(Y, σ) and f is (Λ, b)-irresolute,
X \ f−1(F ) = f−1(Y \ F ) ∈ ΛbO(X, τ). Hence f−1(F ) ∈ ΛbC(X, τ). For
converse, let V ∈ ΛbO(Y, σ). Then Y \ V is (Λ, b)-closed in Y . By hypothesis,
X \ f−1(V ) = f−1(Y \ V ) is (Λ, b)-closed and hence f−1(V ) is (Λ, b)-open in
X. Hence f is (Λ, b)-irresolute.

(1) ⇐⇒ (3): Let V ∈ ΛbO(Y, f(x)). Then x ∈ f−1(V ). Consider U =
f−1(V ). Since f is (Λ, b)-irresolute, U ∈ ΛbO(X,x) and f(U) ⊆ V . Con-
versely, suppose that V ∈ ΛbO(Y, σ) and x ∈ f−1(V ). Then f(x) ∈ V .
By assumption, there exists Ux ∈ ΛbO(X,x) such that f(Ux) ⊆ V . Hence
f−1(V ) =

⋃
{Ux : x ∈ f−1(V )}. Therefore f−1(V ) is (Λ, b)-open in X. Hence

f is (Λ, b)-irresolute.

(2) ⇐⇒ (4): Let A be a subset of X. Then [f(A)](Λ,b) is (Λ, b)-closed in Y

and hence f−1([f(A)](Λ,b)) is (Λ, b)-closed in X, by (2). Now A ⊆ f−1(f(A)) ⊆
f−1([f(A)](Λ,b)) implies A(Λ,b) ⊆ f−1([f(A)](Λ,b)). So f [A(Λ,b)] ⊆ [f(A)](Λ,b).
For converse, let F be any (Λ, b)-closed subset of Y . By assumption, we

have f([f−1(F )](Λ,b)) ⊆ [f(f−1(F ))](Λ,b) ⊆ F (Λ,b) = F . Then [f−1(F )](Λ,b) ⊆
f−1(F ). Moreover, f−1(F ) ⊆ [f−1(F )](Λ,b). Thus f−1(F ) = [f−1(F )](Λ,b).
Hence f−1(F ) is (Λ, b)-closed in X.

(4) ⇐⇒ (5): Let B be a subset of Y . By assumption, f([f−1(B)](Λ,b)) ⊆
[f(f−1(B))](Λ,b) ⊆ B(Λ,b). Hence [f−1(B)](Λ,b) ⊆ f−1[B(Λ,b)]. For converse, let

A be a subset of X. By assumption, [f−1(f(A))](Λ,b) ⊆ f−1([f(A)](Λ,b)). Since

A ⊆ f−1(f(A)), A(Λ,b) ⊆ [f−1(f(A))](Λ,b). Thus A(Λ,b) ⊆ f−1([f(A)](Λ,b)) and

hence f [A(Λ,b)] ⊆ [f(A)](Λ,b).
(1) ⇐⇒ (6): For any B ⊆ Y , B(Λ,b) is (Λ, b)-open in Y and hence by

(1), f−1[B(Λ,b)] is (Λ, b)-open in X and is contained in f−1(B). Therefore
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f−1[B(Λ,b)] ⊆ [f−1(B)](Λ,b). For converse, let V be (Λ, b)-open in Y . Then V =

V(Λ,b) implies f−1(V ) = f−1[V(Λ,b)] ⊆ [f−1(V )](Λ,b), by (6). Also [f−1(V )](Λ,b)
⊆ f−1(V ). Thus f−1(V ) = [f−1(V )](Λ,b) and hence f−1(V ) is (Λ, b)-open in
X. Therefore f is (Λ, b)-irresolute. □

Theorem 3.12. Let f : X → Y be a (Λ, b)-irresolute function. Then for
any A ⊆ X, f [Λ(Λ,b)(A)] ⊆ Λ(Λ,b)(f(A)).

Proof. Assume y /∈ Λ(Λ,b)(f(A)). By Preposition 2.3, there exists a (Λ, b)-

closed set V in Y such that y ∈ V and f(A) ∩ V = ∅. Then A ∩ f−1(V ) ⊆
f−1(f(A)) ∩ f−1(V ) = f−1(f(A) ∩ V ) = ∅ implies A ∩ f−1(V ) = ∅. Since f
is (Λ, b)-irresolute function, f−1(V ) is (Λ, b)-closed in X. Moreover, f−1(y) ⊆
f−1(V ). Therefore, by Proposition 2.3, x /∈ Λ(Λ,b)(A) for all x ∈ f−1(y).
Hence y /∈ f [Λ(Λ,b)(A)]. Therefore f [Λ(Λ,b)(A)] ⊆ Λ(Λ,b)(f(A)). □

The next theorem characterizes (Λ, b)-irresoluteness of functions in terms
of filter convergent.

Theorem 3.13. A function f : X → Y is (Λ, b)-irresolute at xo ∈ X if and
only if whenever a filter F , (Λ, b)-converges to xo in X, then the image filter
f♯(F), (Λ, b)-converges to f(xo) in Y .

Proof. Proof is similar to Theorem 3.10. □

Theorem 3.14. For a function f : X → Y , the following are equivalent:

(1) f is quasi-(Λ, b)-irresolute;
(2) for every b-closed subset F of Y , f−1(F ) is (Λ, b)-closed in X;

(3) for every A ⊆ X, f [A(Λ,b)] ⊆ Clb(f(A));

(4) for every B ⊆ Y , [f−1(B)](Λ,b) ⊆ f−1[Clb(B)];
(5) for every B ⊆ Y , f−1[Intb(B)] ⊆ [f−1(B)](Λ,b).

Proof. (1) ⇐⇒ (2): Since Y \ V is b-open in Y and f is quasi-(Λ, b)-
irresolute, X \ f−1(V ) = f−1(Y \ V ) is (Λ, b)-open. Hence f−1(V ) is (Λ, b)-
closed in X. Conversely, let V be any b-open subset of Y . Then Y \ V is
b-closed in Y . By hypothesis, X \ f−1(V ) = f−1(Y \ V ) is (Λ, b)-closed and
hence f−1(V ) ∈ ΛbO(X, τ). Hence f is quasi-(Λ, b)-irresolute.

(2) ⇐⇒ (3): Let A be a subset of X. Then Clb(f(A)) is b-closed in Y
and hence f−1[Clb(f(A))]) ∈ ΛbC(X, τ), by (2). Now A ⊆ f−1(f(A)) ⊆
f−1[Clb(f(A))] implies A(Λ,b) ⊆ f−1[Clb(f(A))]. Hence f [A(Λ,b)] ⊆ Clb(f(A)).

Conversely, let F be a b-closed subset of Y . Now , we have f([f−1(F )](Λ,b))

⊆ Clb([f(f
−1(F ))]) ⊆ Clb(F ) = F . Then [f−1(F )](Λ,b) ⊆ f−1(F ). Moreover,

f−1(F ) ⊆ [f−1(F )](Λ,b). Thus f−1(F ) = [f−1(F )](Λ,b). Hence f−1(V ) is
(Λ, b)-closed in X.

(3) ⇐⇒ (4): Let B be a subset of Y . By (3), we have f([f−1(B)](Λ,b)) ⊆
Clb([f(f

−1(B))]) ⊆ Clb(B). Hence [f−1(B)](Λ,b) ⊆ f−1[Clb(B)]. Conversely,

let A be a subset of X. By (4), [f−1(f(A))](Λ,b) ⊆ f−1[Clb(f(A))]. Since
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A ⊆ f−1(f(A)), A(Λ,b) ⊆ [f−1(f(A))](Λ,b). Thus A(Λ,b) ⊆ f−1[Clb(f(A))] and

hence f [A(Λ,b)] ⊆ Clb(f(A)).
(1) ⇐⇒ (5): For any B ⊆ Y , Intb(B) is b-open in Y and hence by

(1), f−1(Intb(B)) is (Λ, b)-open in X and is contained in f−1(B). Hence
f−1(Intb(B)) ⊆ [f−1(B)](Λ,b). Conversely, let V ∈ BO(Y, σ). Then V =

Intb(V ) implies f−1(V ) = f−1(Intb(V )) ⊆ [f−1(V )](Λ,b), by (5). Also we have

[f−1(V )](Λ,b) ⊆ f−1(V ). Thus f−1(V ) = [f−1(V )](Λ,b) and hence f−1(V ) is
(Λ, b)-open in X. Therefore f is quasi-(Λ, b)-irresolute. □

The following is an immediate consequence of Lemma 3.2 of [3]:

Lemma 3.15. Let A be a subset of a space X and x ∈ X. Then x ∈ bKer(A)
if and only if A ∩ F ̸= ∅ for every b-closed set F containing x.

Theorem 3.16. Let f : X → Y be a quasi-(Λ, b)-irresolute function. Then
for every A ⊆ X, f [Λ(Λ,b)(A)] ⊆ bKer(f(A)).

Proof. Assume y /∈ bKer(f(A)). Then there exists a b-closed set F in Y such
that y ∈ V and f(A) ∩ V = ∅. Now, A ∩ f−1(V ) ⊆ f−1(f(A)) ∩ f−1(V ) =
f−1(f(A) ∩ V ) = ∅ and its imply A ∩ f−1(V ) = ∅. Since f is quasi-(Λ, b)-
irresolute function, f−1(V ) is (Λ, b)-closed in X. Moreover, f−1(y) ⊆ f−1(V ).
Therefore, by Proposition 2.3, x /∈ Λ(Λ,b)(A) for all x ∈ f−1(y). Hence y /∈
f [Λ(Λ,b)(A)]. Therefore f [Λ(Λ,b)(A)] ⊆ bKer(f(A)). □

Theorem 3.17. Let f : X → Y be a function. Then

(1) f is b-continuous implies f is (Λ, b)-continuous.
(2) f is b-irresolute implies f is quasi-(Λ, b)-irresolute.
(3) f is (Λ, b)-irresolute implies f is quasi-(Λ, b)-irresolute.
(4) f is (Λ, b)-irresolute implies f is (Λ, b)-continuous.

To show that converses of the results (1) and (2) of Theorem 3.17 are not
true, we consider the following example.

Example 3.18. Consider X = Y = {a, b, c}, τ = {∅, {a, b}, X} and σ =
{∅, {a}, Y }. Then BO(X, τ) = {∅, {a}, {b}, {a, b}, {a, c}, {b, c}, X}, ΛbO(X, τ)
= ℘(X), the power set of X; BO(Y, σ) = {∅, {a, }, {a, b}, {a, c}, X}. Define
f : (X, τ) → (Y, σ) by f(a) = c, f(b) = b and f(c) = a. Then f is both
(Λ, b)-continuous and quasi-(Λ, b)-irresolute but neither b-continuous nor b-
irresolute. Because V = {a} is open and hence b-open but f−1(V ) = {c} is
not b-open.

Theorem 3.19. Let f : X → Y and g : Y → Z be two functions. Then:

(1) If f is (Λ, b)-continuous and g is continuous, then g ◦ f : X → Z is
(Λ, b)-continuous.

(2) If f is quasi-(Λ, b)-irresolute and g is b-continuous, then g◦f : X → Z
is (Λ, b)-continuous.

(3) If f is (Λ, b)-irresolute and g is (Λ, b)-continuous, then g ◦ f : X → Z
is (Λ, b)-continuous.



9 Some (Λ, b)-type mappings in topological spaces 91

(4) If f is (Λ, b)-irresolute and g is (Λ, b)-irresolute, then g ◦ f : X → Z
is (Λ, b)-irresolute.

(5) If f is quasi-(Λ, b)-irresolute and g is b-irresolute, then g ◦ f : X → Z
is quasi-(Λ, b)-irresolute.

(6) If f is (Λ, b)-irresolute and g is quasi-(Λ, b)-irresolute, then g◦f : X →
Z is quasi-(Λ, b)-irresolute.

Lemma 3.20. Let A be a subset of a space X. Then

(1) X \A(Λ,b) = [X \A](Λ,b).
(2) X \A(Λ,b) = [X \A](Λ,b).

Proof. (1) Let x ∈ X \ A(Λ,b). Then x /∈ A(Λ,b) and by Lemma 3.8 of [2],
A ∩ U = ∅ for some U ∈ ΛbO(X,x). Thus U is a (Λ, b)-open set contained in
X \A and hence U ⊆ [X \A](Λ,b). Therefore x ∈ [X \A](Λ,b). Conversely, let

y ∈ [X \A](Λ,b). If possible, let y /∈ X \A(Λ,b). Then y ∈ A(Λ,b) and A∩U ̸= ∅
for all U ∈ ΛbO(X, y). Since [X \ A](Λ,b) is a (Λ, b)-open set containing y,
A ∩ [X \A](Λ,b) ̸= ∅, a contradiction.

(2) Follows from (1). □

Definition 3.21 ([2]). Let A be a subset of a space X. The (Λ, b)-frontier

of A is denoted as ΛbFr(A) and defined as: ΛbFr(A) = A(Λ,b) ∩ (X \A)(Λ,b).

In the following theorem we use the notation D(Λ,b)(f) to stand the set of
points x of X at which f : X → Y is not (Λ, b)-continuous.

Theorem 3.22. D(Λ,b)(f) is the union of the (Λ, b)-frontiers of the inverse
images of open sets containing f(x).

Proof. Let x ∈ X. Then the proof follows from the following two facts:
(i). Let f be not (Λ, b)-continuous at x. By Theorem 3.4, there exists

an open set V of Y containing f(x) such that f(U) ∩ (Y \ V ) ̸= ∅ for all
U ∈ ΛbO(X,x). Obviously U ∩ (X \ f−1(V )) ̸= ∅. By Theorem 3.8 of [2], x ∈
[X \A](Λ,b). Also x ∈ f−1(V ) ⊆ [f−1(V )](Λ,b). Therefore x ∈ ΛbFr(f−1(V )).

(ii). Let f be (Λ, b)-continuous at x. Let V be any open set of Y containing
f(x). Then x ∈ f−1(V ), a (Λ, b)-open set of X. Then f−1(V ) = [f−1(V )](Λ,b),

and by Lemma 3.20, x /∈ [X \ f−1(V )](Λ,b). Hence x /∈ ΛbFr(f−1(V )). □

In Topology, homeomorphism plays an important role. We now define two
important homeomorphisms via (Λ, b)-continuous and (Λ, b)-irresolute func-
tions as weak form of homeomorphism.

Definition 3.23. A bijective function f : (X, τ) → (Y, σ) is said to be
Λb-homeomorphism (resp. Λbr- homeomorphism) if f and f−1 are (Λ, b)-
continuous (resp. (Λ, b)-irresolute).

For a space (X, τ), we consider the following two important collections:
Λb-h(X, τ) = {f | f : (X, τ) → (X, τ) is Λb-homeomorphism};
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Λbr-h(X, τ) = {f | f : (X, τ) → (X, τ) is Λbr-homeomorphism}.
From 3.17(4), it is follows that Λbr-h(X, τ) ⊆ Λb-h(X, τ).

Theorem 3.24. The collection Λbr-h(X, τ) forms a group under composi-
tion of functions.

Proof. Obvious from Theorem 3.19. □

4. (Λ, b)(Λ, b)(Λ, b)-COMPACTNESS AND (Λ, b)(Λ, b)(Λ, b)-CONNECTEDNESS

In this section, we study properties of (Λ, b)-compactness and (Λ, b)-connec-
tedness. We start by defining the notion of (Λ, b)-open cover in a space.

Definition 4.1. A collection A of subsets of a space (X, τ) is said to be
a (Λ, b)-open covering of X if the union of the elements of A is X and the
elements of A are (Λ, b)-open in X.

Definition 4.2. A space X is said to be (Λ, b)-compact (resp. b-compact
[9]) if every (Λ, b)-open (resp. b-open) cover of X has a finite cover.

Lemma 4.3. Every (Λ, b)-compact space is b-compact.

Proof. Suppose X is a (Λ, b)-compact space, and let A = {Aα : α ∈ ∆} is a
b-open cover of X. By Proposition 2.1(1), A is a (Λ, b)-open cover of X. Since
X is (Λ, b)-compact, there is a finite subset ∆o of ∆ such that {Aα : α ∈ ∆o}
covers X and consequently, X is b-compact. □

Corollary 4.4. Every (Λ, b)-compact space is compact.

Theorem 4.5. If f : X → Y is an onto (Λ, b)-continuous function and X
is (Λ, b)-compact, then Y is compact.

Proof. Let {Uα : α ∈ ∆} be an open cover of Y . Since f is (Λ, b)-continuous,
{f−1(Uα) : α ∈ ∆} is a (Λ, b)-open cover of X. Since X is (Λ, b)-compact,
there exists a finite subset ∆o of ∆ such that X =

⋃
{f−1(Uα) : α ∈ ∆o}.

Since f is onto, Y = f(X) =
⋃
{f(f−1(Uα)) : α ∈ ∆o} =

⋃
{Uα : α ∈ ∆o}.

Hence Y is compact. □

Theorem 4.6. If f : X → Y is an onto (Λ, b)-irresolute function and X is
(Λ, b)-compact, then so is Y .

Proof. Let {Vα : α ∈ ∆} be a (Λ, b)-open cover of Y . Since f is (Λ, b)-
irresolute, {f−1(Vα) : α ∈ ∆} is a (Λ, b)-open cover of X. Since X is (Λ, b)-
compact, there exists a finite subset ∆o of ∆ such that X =

⋃
{f−1(Vα) :

α ∈ ∆o}. Since f is onto, Y = f(X) =
⋃
{Vα : α ∈ ∆o}. Hence Y is

(Λ, b)-compact. □

Theorem 4.7. If f : X → Y is an onto quasi-(Λ, b)-irresolute function and
X is (Λ, b)-compact, then Y is b-compact.
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Proof. Let {Wα : α ∈ ∆} be a b-open cover of Y . Since f is quasi-(Λ, b)-
irresolute, {f−1(Wα) : α ∈ ∆} is a (Λ, b)-open cover of X. Since X is (Λ, b)-
compact, there exists a finite subset ∆o of ∆ such that X =

⋃
{f−1(Wα) :

α ∈ ∆o}. Since f is onto, Y = f(X) =
⋃
{Wα : α ∈ ∆o}. Hence Y is

b-compact. □

Definition 4.8. A spaceX is said to be (Λ, b)-connected (resp. b-connected
[7]) if X cannot be expressed as the union of two non-empty disjoint (Λ, b)-
open (resp. b-open) sets of X.

Lemma 4.9. Every (Λ, b)-connected space is b-connected.

Proof. Suppose X is a (Λ, b)-connected space. If possible, let X is not b-
connected. Then there exists a pair A, B of disjoint non-empty b-open subsets
of X such that X = A ∪ B. By Proposition 2.1(1), A and B are (Λ, b)-open.
Therefore X is not (Λ, b)-connected, a contradiction. □

Reverse implication is considered in the following examples.

Example 4.10. Consider the real line R endowed with the usual topology
Ru. Then R is connected but not (Λ, b)-connected because Q, the set of
rationals and R\Q together form a pair of non-empty disjoint (Λ, b)-open sets
of R with Q ∪ (R \Q) = R.

Example 4.11. Suppose F is an ultrafilter on an infinite set X and τ =
F ∪ {∅}. Then X is b-connected but not (Λ, b)-connected.

It is noticeable that there is no Hausdorff (Λ, b)-connected space.

Theorem 4.12. A space X is (Λ, b)-connected if and only if A(Λ,b) = X for
every non-empty (Λ, b)-open subset A.

Proof. Let X is (Λ, b)-connected. If possible, suppose A is a non-empty

(Λ, b)-open subset of X such that A(Λ,b) ̸= X. Set X \ A(Λ,b) = B. Then
B is a non-empty (Λ, b)-open subset of X. Moreover, A ∩ B = ∅. This is
a contradiction. Converse part: If possible, suppose A, B is a pair of non-
empty (Λ, b)-open sets of X such that X = A ∪ B and A ∩ B = ∅. Then

A(Λ,b) = (X \ B)(Λ,b) = X \ B, since X \ B is (Λ, b)-closed. By assumption,
B = ∅ which is a contradiction. □

Theorem 4.13. A space X is (Λ, b)-connected if and only if there is no
non-empty proper subset of X which is both (Λ, b)-open and (Λ, b)-closed.

Proof. If possible, suppose A is a non-empty proper (Λ, b)-open as well
as (Λ, b)-closed subset of X. Take B = X \ A. Then B ̸= ∅, B is (Λ, b)-
open, A ∩ B = ∅ and A ∪ B = X. This implies X is not (Λ, b)-connected,
a contradiction. Converse part: If possible, suppose X = A ∪ B, where A
and B are non-empty disjoint (Λ, b)-open subsets of X. Then A = X \ B is
(Λ, b)-closed and A ̸= X. Thus A is a non-empty proper (Λ, b)-open as well as
(Λ, b)-closed set in X. This is a contradiction. □
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Theorem 4.14. If f : X → Y is an onto (Λ, b)-continuous function and X
is (Λ, b)-connected, then Y is connected.

Proof. If possible, suppose Y is not connected. Then there exists a pair
A, B of non-empty disjoint open subsets of Y such that Y = A ∪ B. Then
X = f−1(Y ) = f−1(A∪B) = f−1(A)∪f−1(B) and f−1(A)∩f−1(B) = ∅. Since
f is a (Λ, b)-continuous and onto, f−1(A) and f−1(B) are non-empty (Λ, b)-
open subsets ofX. ThusX is not (Λ, b)-connected. This is a contradiction. □

Theorem 4.15. If f : X → Y is an onto (Λ, b)-irresolute function and X
is (Λ, b)-connected, then so is Y .

Theorem 4.16. If f : X → Y is an onto quasi-(Λ, b)-irresolute function
and X is (Λ, b)-connected, then Y is b-connected.
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