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SOME (A, b)-TYPE MAPPINGS IN TOPOLOGICAL SPACES
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Abstract. In this paper, the authors introduce and study (A, b)-continuous,
(A, b)-irresolute and quasi-(A, b)-irresolute mappings. Some characterizations
and several properties concerning aforesaid mappings are obtained. The au-
thors also introduce (A, b)-compactness and (A, b)-connectedness. It is proved
that (A,b)-compactness (resp. (A,b)-connectedness) is preserved under (A,b)-
irresolute mappings. The paper also touches the topics frontier points, Dirichlet’s
function, filter and algebraic structure of some functions.
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1. INTRODUCTION

Maki [12] introduced the notion of A-sets and Andrijevié¢ [1] introduced the
b-open sets in topological spaces. In [4], Caldas et al. defined and investi-
gated Ap-sets using b-open sets. Via Ay-sets and b-closed sets, Boonpok [2]
introduced (A, b)-closed sets and investigated several properties in topologi-
cal spaces. In this paper, we introduce concepts of (A, b)-continuous, (A, b)-
irresolute, quasi-(A, b)-irresolute mappings and study several behaviours and
characterizations. We also introduce (A,b)-compactness and (A, b)-connec-
tedness and relate them with (A, b)-continuous, (A, b)-irresolute mappings. We
show that (A, b)-irresolute image of (A, b)-compact (resp. (A,b)-connected)
space is (A, b)-compact (resp. (A, b)-connected).

2. PRELIMINARIES

Throughout this paper, by (X,7), (Y,0) and (Z,n) (or simply X, Y and
Z) we mean topological spaces in which, unless explicitly mentioned, any kind
of separation axioms are not considered. From now, by space we understood
topological space. For A C X, Int(A), Cl(A) and X \ A are used to denote
interior, closure and complement of A respectively. For x € X, 7(x) stands
for the collection of all open sets containing z.

A subset A of a space X is called b-open [1] or y-open [9] if A C Cl(Int(A))U
Int(Cl(A)). Complement of a b-open set is called b-closed. The b-closure (resp.
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b-interior) of A, denoted by bCI(A) [1] or Cly(A) [3] (resp. bInt(A) [1] or Int,(A)
[3]), is the smallest (resp. largest) b-closed (resp. b-open) set containing (resp.
contained in) A. The family of all b-open (resp. b-closed) sets in X is denoted
as BO(X,7) (resp. BC(X,7)). In [4], the subset A% (resp. A") is defined
as the intersection (resp. union) of all b-open (resp. b-closed) subsets of X
containing (resp. contained in) A. It is noticeable that A% is denoted as
bKer(A) in [3] and y-Ker(A) in [6]. A is called a Ap-set (resp. Vj-set) [4] if
AN = A (resp. AV = A). Furthermore, the authors Caldas et al. in [4] have
shown that for subsets A and B of a space X, (i) A C B implies A" C B";
(ii) (X \ A)M = X\ A%; (i) for A € BO(X,7); A is a Ay-set and (iv) A is a
Ap-set if and only if X \ A is a Vj-set.

In this paragraph we discuss some notations and terminologies of [2]. A
subset A of a space X is called (A,b)-closed if A = T N C, where T is a
Ap-set and C'is b-closed set. Complement of a (A, b)-closed set is called (A, b)-
open. The family of (A,b)-closed (resp. (A,b)-open) subsets of X is denoted
as AyC(X,7) (resp. AyO(X,7)). The (A,b)-closure (resp. (A,b)-interior) of
A, denoted by AN (resp. A(ap)) is defined in analogous manner of CI(A)
(resp. Int(A)). The symbol AyC(X,z) (resp. AyO(X,x)) denotes the family
of all (A, b)-closed (resp. (A,b)-open) sets containing x. The subset A, 5)(A)
is defined as Ay 3)(A4) = (U € AyO(X,7) : A C U} Again, we learnt from
[2] that every Ap-set (resp. b-closed set) is (A, b)-closed; and for subsets A and
B of a space X, (i) A C B implies A € B, (ij) [AAD]AL) — g(AD),
(iil) A is (A, b)-closed if and only if A = AP (iv) A is (A, b)-open if and only
if A= Ap); and (v) AN (resp. Aap) is (A, b)-closed (resp. (A, b)-open).

PROPOSITION 2.1. The following statements are valid for a space X :
(1) Ewvery b-open set is (A, b)-open.
(2) Ewvery b-closed set is (A, b)-open.
(3) Every Vy-set is (A, b)-open.

THEOREM 2.2. For a subset A of a space X, the following are equivalent:
(1) A is (A,b)-open;
(2) A=PUQ, where P is a Vj-set and Q is a b-open set;
(3) A= PUInty(A);
(4) A= A% Ulnty(A);
(5) A= AV U A(A,b)'

PrOPOSITION 2.3. Let A be a subset of a space X and x € X. Then
x € Ay (A) if and only if ANE # 0 for every F € ApC(X, 2).

COROLLARY 2.4. For a subset A of a space X, Ay (A) = {z € X :
{z3A0) A £ 9},

PROPOSITION 2.5. Let X be a space and v € X. Then y € Ay p)({x}) if
and only if x € {y}MD),
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PROPOSITION 2.6. Let X be a space. Then for every x € X, Ay py({z}) #
X if and only if N{{z}M) 1 2 € X} = 0.

We close our this short section with the following theorem:

THEOREM 2.7. For any two points x and y of a space X, the following are
equivalent:

(1) Apapx}) # Aap{y});
(2) {x}0) 2 {y}Ao).

Proof. Let App)({7}) # Aap)({y}). Then we can find p € X such that p €
A(A’b)({x}) but p ¢ A(A’b)({y}). Using Proposition 2.5 from p € A(A,b)({a:}),
we get & € {p}™ and hence {z}(*) C {p}(MY). Again using Proposition
2.5 from p ¢ Ay ({y}), we get y ¢ {p}M and hence y ¢ {x}M). Hence
{2} (A0) £ L33 (AD) - Conversely, let {z}(A) £ {3}(A9) . Then we can find t € X
such that t € {z}M but t ¢ {y}AD). From t € {x}("b) and Proposition 2.5,
we have z € Ay p)({t}). Therefore {x} C Ay ({t}) implies Ay ({z}) C
Aapy[Aap ({t1)] = A ({t}), by Lemma 3.36 of [2]. Now using Proposition
2.5 from t ¢ {y}(*?) we have y ¢ Aapy({t}). Clearly y ¢ A p)({7}). Hence
Ay ({z}) # Aan) ({w})- O

3. (A, b)-CONTINUOUS, (A, b)-IRRESOLUTE AND QUASI-(A, b)-IRRESOLUTE
FUNCTIONS

In this section we introduce (A,b)-continuous, (A, b)-irresolute and quasi-
(A, b)-irresolute mappings and study some properties and characterizations.

DEFINITION 3.1. Let X and Y be two spaces. A function f : X — Y is
said to be

(1) (A,b)-continuous (resp. b-continuous or 7-continuous [9]) if for every
open subset V of Y, f~1(V) is (A, b)-open (resp. b-open) in X.

(2) (A, b)-irresolute (resp b-irresolute or 4-irresolute [5, 8]) if for every
(A, b)-open (resp. b-open) subset V of Y, f~1(V) is (A, b)-open (resp.
b-open) in X.

(3) quasi-(A, b)-irresolute if for every b-open subset V of Y, f~1(V) is
(A,b)-open in X.

The following examples illustrate the existence of (A, b)-continuous, (A, b)-
irresolute and quasi-(A, b)-irresolute functions.

ExXAMPLE 3.2. Consider the real line R endowed with the usual topology
Tu- The well known Dirichlet’s function f : (R, 7,) — (R, 7,) defined by

(1) o) = {1 %f T ?s T“atio.nal

0 if z is irrational

is (A, b)-continuous on R.
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ExAMPLE 3.3. Let X =Y = R, 7, and 74 be respectively the usual and
discrete topology on R. The function f : (X,7,) — (Y,74) defined in (1) is
(A, b)-irresolute as well as quasi-(A, b)-irresolute.

THEOREM 3.4. For a function f : X =Y, the following are equivalent:

(1) f is (A, b)-continuous;

(2) for every closed subset F of Y, f~1(F) € AyC(X,7T);

(3) for each x € X and for every V € o(f(z)), there is a U € AyO(X, x)
such that f(U) CV;

(4) for every A C X, fIAND) C CI(f(A));

(5) for every BC Y, [f~1(B)|M) C f=1(CU(BY));

(6) for every BCY, f~H(Int(B)) C [f~H(B)l(as)-

Proof. (1) <= (2): Since Y \ F is open and f is (A,b)-continuous, X \
fYF) = f7YY \ F) is (A,b)-open, witnessing that f~1(F) € AC(X, 7).
Conversely, let V' be any open subset of Y. Then Y \ V is closed in Y. By
hypothesis, X \ f~}(V) = f~4Y \ V) is (A,b)-closed and hence f~1(V) is
(A,b)-open in X. Hence f is (A, b)-continuous.

(1) <= (3): Let V be an open subset of Y and f(z) € V. Thenz € f~1(V).
Consider U = f~1(V). Since f is (A, b)-continuous, U is a (A, b)-open subset
of X such that x € U and f(U) C V. Conversely, let V' be any open subset of
Y and z € f~1(V). Then f(x) € V. By assumption, there exists a (A, b)-open
subset U, of X such that z € U, and f(U,) C V. Hence f~1(V) = (J{U, :
x € f~1(V)}. Therefore f~1(V) is (A,b)-open in X, by Theorem 3.5 of [2].
Hence f is (A, b)-continuous.

(2) <= (4): Since Cl(f(A)) is closed in Y, f71(CI(f(A))) is (A,b)-closed
in X, by (2). Now A C f (f( ) € fY(CI(f(A))) implies that ANP)
C f~YCI(f(A))). Hence f[AMD] C CI(f(A)). Conversely, let F be a closed
subset of Y. By hypothesis, f([f~*(F)]Y)) C CI(f(f~1(F))) € CI(F) = F.
Therefore [f~1(F)]M) C f~1(F). Moreover, f~'(F) C [f~'(F)]*). Thus
FUF) = [f~1(F))MP and hence f~1(F) is (A, b)-closed in X.

(4) <= (5): Let B be a subset of Y. By assumption, f[(f~'(B))®b)] C
CI(f(f~Y(B))) € CI(B). Hence [f~1(B)]M) C f~1(CI(B)). Conversely, let
A be a subset of X. Then by assumption, [f~1(f(A))]MY C f=1(CI(f(A))).
Since A C f1(f(A)), A C [f-L(F(4)]MH. Thus AMD C f~1(CI(f(A)))
and hence f[AMY)] C CI(f(A)).

(1) <= (6): For any B C Y, Int(B) is open in Y and hence by (1),
f- (Int( )) is (A,b)-open in X and is contained in f~(B). So f~!(Int(B))
C [f_ (B)](ap 7 p)- Conversely, let V' be open in Y. Then V = Int(V) implies
F7HV) = It (V) € [F7H (V)]s by (6). Also [f~H(V)]ap S f7H(V)
Thus f~H(V) = [f~*(V)](a) and hence f~1(V) is (A, b)-open in X. Therefore
f is (A, b)-continuous. O
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Recall that kernel of a subset A [13] of a space X is the set Ker(A) = ({U €
7:ACU}. In [12], Ker(A) is denoted by A%,

LEMMA 3.5 ([10]). Let A be a subset of a space X. Then x € Ker(A) if and
only if ANF # 0 for every closed set F' containing x.

THEOREM 3.6. Let f : X — Y be a (A,b)-continuous function. Then for
every A C X, f[Anp)(A)] € Ker(f(A)).

Proof. Suppose y ¢ Ker(f(A)). By Lemma 3.5, there exists a closed set F in
Y such that y € F and f(A)NF = 0. Now ANf~1(F) C f~1(f(A)NfHF) =
FHf(A)NF) =0 implies AN f~1(F) = . Since f is (A, b)-continuous func-
tion, f~1(F) is (A,b)-closed in X. Moreover, f~!(y) € f~1(F). Therefore,
by Proposition 2.3, x & A ) (A) for all 2 € f~1(y). Hence y ¢ f[A(a4)(A4)].
Therefore f[A(4 ) (A)] € Ker(f(A)). O

DEFINITION 3.7 ([2]). A subset N of a space X is said to be (A, b)-neighbor-
hood of a point = € X if there exists a (A, b)-open set U such that x € U C N.

We denote the collection of all (A, b)-neighbourhoods of = as Ny 4) ().

Recall that a filter F on a set S is a non-empty collection of non-empty
subsets of S with the properties: (a) if Fy, Fy € F, then Fy N Fy € F, and (b)
if Fe Fand F C G, then G € F.

DEFINITION 3.8 ([11]). Let f : X — Y be a function and F be a filter on
X. Then the filter on Y having f(F) = {f(A) : A € F} as a base is called the
image filter of 7 under f and is denoted by f;(F).

DEFINITION 3.9. A filter F on a space X is said to (A, b)-converge to x, € X
if every (A, b)-neighbourhood of z, belongs to F.

The following theorem characterizes (A, b)-continuous functions in terms of
filter convergent.

THEOREM 3.10. A function f : X — Y is (A,b)-continuous at x, € X if
and only if whenever a filter F, (A,b)-converges to x, in X, then the image
filter fy(F) converges to f(xz,) inY.

Proof. Assume that f is (A,b)-continuous at z, and F is a filter (A,b)-
converging to z,. Let N € N, f(z0)» the collection of all neighbourhoods of
f(z5). Then there exists an open set V in Y such that f(z,) € V C N.
Since f is (A, b)-continuous at x,, there exists a (A, b)-open set U in X such
that x, € U and f(U) C V. By (A,b)-convergence of F to x, in X, U € F.
So f(U) € f(F). But f(U) C N and so N € fy(F). It follows that fy(F)
converges to f(x,). Converse part: If possible, suppose that f is not (A,b)-
continuous at z,. Then there exists an open set V in Y containing f(z,) such
that f(U)N (Y \V) # 0, for all U € AyO(X,z,). Now UN (X \ f~1(V)) C
PN ) = FUFOINI\Y)) £ 6 implies NO(X\ f71(V)) # 0
for all N € NV(ap)(xo). Therefore S = Ny p)(20) U{X \ f~1(V)} has the finite
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intersection property and hence generates a filter, say F on X. Clearly F,
(A, b)-converges to z, in X. Now X \ f~1(V) € F implies f(X \ f~1(V)) €
f(F). Since f(X\ f~HV)) CY\V,Y\V € fy(F). Since f3(F) is a filter,
V' & fi(F), where V is an open neighbourhood of f(x,). Thus f;(F) does not
converge to f(x,) in Y. This contradiction proves that f is (A, b)-continuous
at x,. ]

The following theorem represents an important characterization of (A, b)-
irresolute function.

THEOREM 3.11. The following are equivalent for a function f:X—Y:
(1) f is (A, b)-irresolute;
(2) for every (A,b)-closed subset F of Y, f~1(F) is (A,b)-closed in X;
(3) for each x € X and for every V.€ MO(Y, f(x)), there is a U €
AO(X, z) such that f(U) CV;
(4) for every A C X, fIAND] C [f(A))AD);
(5) for every BCY, [f~1(B)|M) C f-1[BAD)];
(6) for every BCY, f Byl € [fHB)awn-

Proof. (1) <= (2): Sine Y \ F € AO(Y,0) and f is (A,b)-irresolute,
X\ fYF) = fY(Y \ F) € AL,O(X, 7). Hence f~Y(F) € AyC(X, 7). For
converse, let V € AyO(Y,0). Then Y\ V is (A, b)-closed in Y. By hypothesis,
X\ f7Y V)= 1Y\ V) is (A,b)-closed and hence f~1(V) is (A,b)-open in
X. Hence f is (A, b)-irresolute.

(1) <= (3): Let V € AO(Y, f(z)). Then x € f~1(V). Consider U =
f7H(V). Since f is (A,b)-irresolute, U € AyO(X,z) and f(U) C V. Con-
versely, suppose that V € A,O(Y,0) and z € f~1(V). Then f(z) € V.
By assumption, there exists U, € A,O(X,x) such that f(U,) C V. Hence
fY(V)=U{U, : = € f~1(V)}. Therefore f~1(V) is (A, b)-open in X. Hence
fis (A, b)-irresolute.

(2) <= (4): Let A be a subset of X. Then [f(A)]*?) is (A, b)-closed in Y
and hence £~ ([f(A4)]A) is (A, b)-closed in X, by (2). Now A C f~1(f(A)) C
U CAAD) tmplies AGD C FL([F(A)JAD). So FANGH] C [F(A)AH).
For converse, let F' be any (A,b)-closed subset of Y. By assumption, we
have ([~ (F)|M) C [f(f~1(F)]AD C FAD = F. Then [f~1(F)] 4D C
f7HF). Moreover, f~1(F) C [f71(F))™Y. Thus f~1(F) = [f~1(F)]M0.
Hence f~1(F) is (A,b)-closed in X.

(4) <= (5): Let B be a subset of Y. By assumption, f([f~1(B)]"?) C
F(F~1(B)]A) € BAY Hence [f~1(B)|MY C f~1BWY)]. For converse, let
A be a subset of X. By assumption, [f~1(f(A))]M0 € f=1([f(A)]AY). Since
AC A, AN C [F1(F(AN]OD, Thus AMD C F1([£(4)D) and
hence f[AMD] C [£(A)]M).

(1) <= (6): For any B C Y, B,y is (A,b)-open in Y and hence by
(1), 7By is (A,b)-open in X and is contained in f~!(B). Therefore
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S HUBw] C [ (B)](ap)- For converse, let V be (A, b)-openin Y. Then V =

Viap) implies f~1(V ) = f"HViapl C [f_l(V)](A,bp by (6). Also [f~1(V)](ap)
C f7YV). Thus f~4V) = [f~ ( )(ap) and hence f~1(V) is (A,b)-open in
X. Therefore f is (A, b)-irresolute. O

THEOREM 3.12. Let f : X — Y be a (A, b)-irresolute function. Then for
any A C X, f[Aap(A)] C Ay (f(A)).

Proof. Assume y ¢ A p)(f(A)). By Preposition 2.3, there exists a (A, b
closed set V in Y such that y € V and f(A)NV = 0. Then AN f~HV )
FHAA) N fFY(V) = FHf(A) NV) = 0 implies AN f~1(V) = (). Since
is (A, b)-irresolute function, f~1(V) is (A, b)-closed in X. Moreover, f~ ( ) C
f~Y(V). Therefore, by Proposition 2.3, = ¢ Ay (A) for all z € f~ L(y).
Hence y ¢ f[A(rp)(A)]. Therefore f[Ap)(A)] S Aap)(f(A)) O

ﬂkhlﬁ\-’

~

The next theorem characterizes (A, b)-irresoluteness of functions in terms
of filter convergent.

THEOREM 3.13. A function f : X — Y is (A, b)-irresolute at z, € X if and
only if whenever a filter F, (A,b)-converges to x, in X, then the image filter
J2(F), (A, b)-converges to f(x,) inY.

Proof. Proof is similar to Theorem 3.10. 0

THEOREM 3.14. For a function f: X — 'Y, the following are equivalent:

(1) f is quasi-(A,b)-irresolute;

(2) for every b-closed subset F of Y, f~Y(F) is (A,b)-closed in X ;
(3) for cvery A€ X, fIAYY)] C C(f(4);

(4) for every BCY, [f~1(B)]MY C =1 [Cly(B)];

(5) for every B CY, f~!Inty(B)] C [f*I(B)](AJ)).

Proof. (1) <= (2): Since Y \ V is b-open in Y and f is quasi-(A,b)-
irresolute, X \ f~1(V) = f~1Y' \ V) is (A, b)-open. Hence f~1(V) is (A, b)-
closed in X. Conversely, let V' be any b-open subset of Y. Then Y \ V is
b-closed in Y. By hypothesis, X \ f~1(V) = f~1(Y \ V) is (A, b)-closed and
hence f~1(V) € AyO(X, 7). Hence f is quasi-(A, b)-irresolute.

(2) < (3): Let A be a subset of X. Then Cly(f(A)) is b-closed in Y
and hence f~1[Cl,(f(A))]) € AMC(X,7), by (2). Now A C FHf(A) C
£ CL(F(A))] fmplies A € §1[Cy(7(4))). Heme fAMD] € Cly(f(A)
Conversely, let F be a b-closed subset of Y. Now , we have f([f~(F)](M)
C Cl([f(f " (F))]) C Cly(F) = F. Then [f~Y(F)|™ C f~1(F). Moreover,
FUF) € [N ENAD. Thus f1(F) = [f1(F)AD." Hence f1(V) is
(A, b)-closed in X.

(3) <= (4): Let B be a subset of Y. By (3), we have f([f~'(B)]®b)) C
Cly([f(f~1(B))]) € Cly(B). Hence [f~1(B)]M) C f-! [Clo(B)]. Conversely,
let A be a subset of X. By (4), [f~ (f(A)]AY C fHCl,(f(A))]. Since
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A C fHf(A)), AN C [F71(F(A))] M) Thus AR C f7H[CL(f(A4))] and
hence f[A A’f’)]cmb( F(A)).

(1 ) (5): For any B C Y, Inty(B) is b-open in Y and hence by
(1), f~'(Inty(B)) is (A,b)-open in X and is contained in f~'(B). Hence
f~H(Inty(B)) C [f_l(B)](AJ,). Conversely, let V€ BO(Y,0). Then V =

ntb(V) implies f~ ( )= Ity (V) C [F71(V)](ap), by (5). Also we have

I
L W)agy € f7H(V). Thus f~H(V) = [f~1(V)](ap) and hence f~(V) is
(A,b)-open in X. Therefore f is quasi-(A, b)-irresolute. O

The following is an immediate consequence of Lemma 3.2 of [3]:

LEMMA 3.15. Let A be a subset of a space X and x € X. Then x € bKer(A)
if and only if ANF # ) for every b-closed set F' containing x.

THEOREM 3.16. Let f: X =Y be a quasi-(A,b)-irresolute function. Then
for every A C X, f[Ap(A)] C bKer(f(A)).

Proof. Assume y ¢ bKer(f(A)). Then there exists a b-closed set F'in Y such
that y € V and f(A)NV = 0. Now, AN f~Y(V) C f~Hf(A)) N fYV) =
FHfA)NV) =0 and its imply AN f~5(V) = 0. Since f is quasi-(A, b)-
irresolute function, f=(V) is (A, b)-closed in X. Moreover, f~1(y) C f~1(V)
Therefore, by Proposition 2.3, x ¢ A p)(A) for all z € f~1(y). Hence y ¢
f[Aap)(A)]. Therefore f[A(45)(A)] C bKer(f(A)). O

THEOREM 3.17. Let f: X — Y be a function. Then

(1) f is b-continuous implies f is (A, b)-continuous.

(2) f is b-irresolute implies f is quasi-(A,b)-irresolute.

(3) f is (A, b)-irresolute implies f is quasi-(A,b)-irresolute.
(4) f is (A, b)-irresolute implies f is (A, b)-continuous.

To show that converses of the results (1) and (2) of Theorem 3.17 are not
true, we consider the following example.

ExaMPLE 3.18. Consider X =Y = {a,b,c}, 7 = {0,{a,b}, X} and o =
{0, {a},Y'}. Then BO(X,7) = {0, {a}, {b}, {a, b}, {a,c}, {b,c}, X}, MO(X, 7)
= p(X), the power set of X; BO(Y,0) = {0,{qa, },{a,b},{a,c}, X}. Define
f:(X,7) = (Y,0) by f(a) = ¢, f(b) = b and f(¢) = a. Then f is both
(A, b)-continuous and quasi-(A, b)-irresolute but neither b-continuous nor b-
irresolute. Because V = {a} is open and hence b-open but f~1(V) = {c} is
not b-open.

THEOREM 3.19. Let f: X =Y and g: Y — Z be two functions. Then:
(1) If f is (A,b)-continuous and g is continuous, then go f : X — Z is
(A, b)-continuous.
(2) If f is quasi-(A, b)-irresolute and g is b-continuous, then gof : X — Z
is (A, b)-continuous.
(3) If f is (A, b)-irresolute and g is (A, b)-continuous, then go f : X — Z
is (A, b)-continuous.
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(4) If f is (A, b)-irresolute and g is (A,b)-irresolute, then go f : X — Z
is (A, b)-irresolute.

(5) If f is quasi-(A,b)-irresolute and g is b-irresolute, then go f : X — Z
is quasi-(A, b)-irresolute.

(6) If f is (A,b)-irresolute and g is quasi-(A\, b)-irresolute, then gof : X —
Z is quasi-(A\, b)-irresolute.

LEMMA 3.20. Let A be a subset of a space X. Then
(1) X\ AWY = [X\ Alp -
(2) X\ Ay = [X\ A,

Proof. (1) Let z € X \ AMY, Then z ¢ AXY) and by Lemma 3.8 of [2],
ANU = for some U € AyO(X,x). Thus U is a (A, b)-open set contained in
X\ A and hence U C [X \ A](pp)- Therefore x € [X \ A] ). Conversely, let
y € [X \ A](ap)- If possible, let y ¢ X\ AWML Then y € AMY) and ANU # 0
for all U € AyO(X,y). Since [X \ AJap) is a (A, b)-open set containing y,
AN[X\ A]ap # 0, a contradiction.

(2) Follows from (1). O

DEFINITION 3.21 ([2]). Let A be a subset of a space X. The (A, b)-frontier
of A is denoted as AyFr(A) and defined as: AyFr(A) = ALY 0 (X \ A)ADY),

In the following theorem we use the notation D4 3)(f) to stand the set of
points z of X at which f: X — Y is not (A, b)-continuous.

THEOREM 3.22. Dy )(f) is the union of the (A, b)-frontiers of the inverse
images of open sets containing f(x).

Proof. Let x € X. Then the proof follows from the following two facts:

(i). Let f be not (A,b)-continuous at . By Theorem 3.4, there exists
an open set V of Y containing f(x) such that f(U) N (Y \ V) # 0 for all
U € AyO(X, x). Obviously UN (X \ f71(V)) # 0. By Theorem 3.8 of [2], = €
(X \ AJAD . Also z € f~1(V) C [f~H(V)]AP). Therefore z € AyFr(f~H(V)).

(ii). Let f be (A, b)-continuous at z. Let V' be any open set of Y containing
f(x). Then z € f~1(V), a (A, b)-open set of X. Then f~1(V) = [f~1(V)](ap),
and by Lemma 3.20, z ¢ [X \ f~1(V)]AY), Hence = ¢ ApFr(f~H(V)). O

In Topology, homeomorphism plays an important role. We now define two
important homeomorphisms via (A, b)-continuous and (A, b)-irresolute func-
tions as weak form of homeomorphism.

DEFINITION 3.23. A bijective function f : (X,7) — (Y,0) is said to be
Ap-homeomorphism (resp. Apr- homeomorphism) if f and f~! are (A,b)-
continuous (resp. (A, b)-irresolute).

For a space (X, 7), we consider the following two important collections:
Ap-h(X,7)={f|f:(X,7) = (X,7) is Ap-homeomorphism};
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MAr-h(X, 1) ={f| f: (X,7) = (X, 7) is Apr-homeomorphism}.
From 3.17(4), it is follows that Ayr-h(X,7) C Ap-h(X, 7).

THEOREM 3.24. The collection Ayr-h(X,T) forms a group under composi-
tion of functions.

Proof. Obvious from Theorem 3.19. O

4. (A, b)-COMPACTNESS AND (A, b)-CONNECTEDNESS

In this section, we study properties of (A, b)-compactness and (A, b)-connec-
tedness. We start by defining the notion of (A, b)-open cover in a space.

DEFINITION 4.1. A collection A of subsets of a space (X, 7) is said to be
a (A,b)-open covering of X if the union of the elements of A is X and the
elements of A are (A, b)-open in X.

DEFINITION 4.2. A space X is said to be (A, b)-compact (resp. b-compact
[9]) if every (A, b)-open (resp. b-open) cover of X has a finite cover.

LEMMA 4.3. Every (A,b)-compact space is b-compact.

Proof. Suppose X is a (A, b)-compact space, and let 4 = {A,:a € A} isa
b-open cover of X. By Proposition 2.1(1), A is a (A, b)-open cover of X. Since
X is (A, b)-compact, there is a finite subset A, of A such that {4, : a € A,}
covers X and consequently, X is b-compact. O

COROLLARY 4.4. Every (A, b)-compact space is compact.

THEOREM 4.5. If f : X — Y is an onto (A, b)-continuous function and X
is (A, b)-compact, then'Y is compact.

Proof. Let {U, : « € A} be an open cover of Y. Since f is (A, b)-continuous,
{f~Y(U,) : @ € A} is a (A, b)-open cover of X. Since X is (A,b)-compact,
there exists a finite subset A, of A such that X = J{f~}(Us) : @ € A,}.
Since f is onto, Y = f(X) = U{f(f 1 (U)) : @ € Ay} = J{Ua : a € A,}.

Hence Y is compact. ]

THEOREM 4.6. If f: X — Y is an onto (A, b)-irresolute function and X is
(A, b)-compact, then so is Y .

Proof. Let {V,, : a € A} be a (A,b)-open cover of Y. Since f is (A,b)-
irresolute, {f~1(V,) : @ € A} is a (A,b)-open cover of X. Since X is (A,b)-
compact, there exists a finite subset A, of A such that X = (J{f1(Va) :
a € A,}. Since f is onto, Y = f(X) = [J{Va : @ € A,}. Hence Y is
(A, b)-compact. O

THEOREM 4.7. If f : X — Y is an onto quasi-(A,b)-irresolute function and
X is (A, b)-compact, then' Y is b-compact.
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Proof. Let {W,, : @« € A} be a b-open cover of Y. Since f is quasi-(A,b)-
irresolute, {f~1(W,) : a € A} is a (A, b)-open cover of X. Since X is (A, b)-
compact, there exists a finite subset A, of A such that X = (J{f~}(W,) :
a € Ay}, Since f is onto, Y = f(X) = U{Wa : @ € Ay}. Hence Y is
b-compact. O

DEFINITION 4.8. A space X is said to be (A, b)-connected (resp. b-connected
[7]) if X cannot be expressed as the union of two non-empty disjoint (A, b)-
open (resp. b-open) sets of X.

LEMMA 4.9. Every (A, b)-connected space is b-connected.

Proof. Suppose X is a (A, b)-connected space. If possible, let X is not b-
connected. Then there exists a pair A, B of disjoint non-empty b-open subsets
of X such that X = AU B. By Proposition 2.1(1), A and B are (A, b)-open.
Therefore X is not (A, b)-connected, a contradiction. O

Reverse implication is considered in the following examples.

ExaMPLE 4.10. Consider the real line R endowed with the usual topology
R,. Then R is connected but not (A,b)-connected because @, the set of
rationals and R\ Q together form a pair of non-empty disjoint (A, b)-open sets
of R with QU (R\ Q) =R.

EXAMPLE 4.11. Suppose F is an ultrafilter on an infinite set X and 7 =
FU{0}. Then X is b-connected but not (A, b)-connected.

It is noticeable that there is no Hausdorff (A, b)-connected space.

THEOREM 4.12. A space X is (A, b)-connected if and only if AM) = X for
every non-empty (A, b)-open subset A.

Proof. Let X is (A,b)-connected. If possible, suppose A is a non-empty
(A, b)-open subset of X such that AN = X. Set X \ AXY) = B. Then
B is a non-empty (A,b)-open subset of X. Moreover, AN B = (). This is
a contradiction. Converse part: If possible, suppose A, B is a pair of non-
empty (A,b)-open sets of X such that X = AU B and AN B = (). Then
AN — (X \ B)AY) = X\ B, since X \ B is (A, b)-closed. By assumption,
B = () which is a contradiction. O

THEOREM 4.13. A space X is (A,b)-connected if and only if there is no
non-empty proper subset of X which is both (A,b)-open and (A,b)-closed.

Proof. If possible, suppose A is a non-empty proper (A,b)-open as well
as (A, b)-closed subset of X. Take B = X \ A. Then B # (), B is (A,b)-
open, ANB = () and AU B = X. This implies X is not (A, b)-connected,
a contradiction. Converse part: If possible, suppose X = A U B, where A
and B are non-empty disjoint (A, b)-open subsets of X. Then A = X \ B is
(A,b)-closed and A # X. Thus A is a non-empty proper (A, b)-open as well as
(A, b)-closed set in X. This is a contradiction. O
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THEOREM 4.14. If f : X — Y is an onto (A, b)-continuous function and X
is (A, b)-connected, then'Y is connected.

Proof. If possible, suppose Y is not connected. Then there exists a pair
A, B of non-empty disjoint open subsets of Y such that Y = AU B. Then
X =fYY)=f"YAUB) = f1(A)Uf~Y(B) and f~1(A)Nf1(B) = 0. Since
f is a (A, b)-continuous and onto, f~1(A4) and f~1(B) are non-empty (A, b)-
open subsets of X. Thus X is not (A, b)-connected. This is a contradiction. [

THEOREM 4.15. If f : X — Y is an onto (A, b)-irresolute function and X
is (A, b)-connected, then so is Y.

THEOREM 4.16. If f : X — Y is an onto quasi-(A,b)-irresolute function
and X is (A, b)-connected, then'Y is b-connected.
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