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A COMMON PROPERTY TO GENERALIZED CONTRACTIONS
AND EXISTENCE OF FIXED POINTS

SFYA BENAHMED

Abstract. The definitions of several types of generalized contractions for an
application T from a complete metric space (X, d) in itself given in [14] are
recalled and reviewed. A common property to all these concepts is put in light,
namely: there exists α > 0 such that, for all x ∈ X, x ̸= T (x), there exists
u ∈ X \ {x} satisfying:

[H] d(u, T (u)) + αd(x, u) ≤ d(x, T (x)).

We observe that assumption [H] is fulfilled in most cases treated in [14] and
we prove that assumption [H] and lower semi-continuity of the function x 7−→
d(x, T (x)) ensure existence of a fixed point along with a sharp estimate for the
distance to the fixed-points set.
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1. INTRODUCTION

In his nice survey [14] on generalized contractions, Rhoades reviewed 25 gen-
eralizations of the notion of contraction mapping and precised relationships
between these various generalizations. In the present work, we focus in some
of them which we consider most representative. We show that these assump-
tions imply a simple assumption which guarantees existence of a fixed point
and provides an estimate for the distance to fixed-points set (or to the fixed
point if it is unique). For the sake of brevity, we restrict to 10 of these assump-
tions, but many of the others also enter within our framework. Furthermore,
we improve some of these results by weakening some assumptions of the orig-
inal articles. Our generalized assumption is the following: there exists α > 0
such that, for all x ∈ X, x ̸= T (x), there exists u ∈ X \ {x} satisfying:

[H] d(u, T (u)) + αd(x, u) ≤ d(x, T (x)).

Observe that assumption [H] also makes sense for multivalued maps with
closed values by replacing x ̸= T (x) by x /∈ T (x). We show in Lemma 3.2

The author would like to express her sincere thanks to the anonymous referee for having
contributed to improve the present paper.

DOI: 10.24193/mathcluj.2022.1.06



40 S. Benahmed 2

that assumptions used in [3, 4, 6, 7, 13, 14, 15] fulfil assumption [H]. The
paper is organized as follows. In section 2 we give our basic lemma based
on the Ekeland variational principle. In section 3 we list some definitions on
generalized contractions and we show that our assumption [H] is satisfied in
all cases. At last, section 4 is devoted to fixed point results, some of them
improving the quoted one and giving an estimate for the distance to the fixed-
points set. The main references in this work are [1, 4, 6, 7, 13, 14, 15].

2. A BASIC LEMMA

Definition 2.1. Let (X, d) be a metric space, and let f : X → R ∪ {+∞}
be a function. A point x ∈ X is said to be a d-point of f if

f(x) < f(z) + d(z, x) for all z ∈ X \ {x}.

Here is the well-known Ekeland’s variational principle under its simpler form
(see [8, 9, 12, 17]).

Theorem 2.2. The following are equivalent:
(a) The metric space (X, d) is complete.
(b) Every proper (not identically equal to +∞), lower semicontinuous, and

bounded from below function f : X → R ∪ {+∞} has a d-point.

Now, given x ∈ X, let us set M(x) = {z ∈ X : f(z) + d(x, z) ≤ f(x)}. It
is an immediate consequence of the triangle inequality that a d-point of the
restriction of f to the subset M(x) is a d-point of f on the whole X. Thus we
have,

Corollary 2.3. Let (X, d) be a complete metric space. Assume that the
function f : X → R∪{+∞} is proper lower semicontinuous and bounded from
below. Then, for all x ∈ X there exists a d-point of f belonging to M(x).

For λ ∈ R, we further denote by [f≤λ] the sublevel set f−1((−∞, λ]) and
we define analogously [f<λ], [f>λ] etc. The following simple lemma in the
lines of [1, 2, 16, 10] is our basic tool in the sequel.

Lemma 2.4. Let f : X → [0,+∞] be a proper lower semicontinuous function
defined on a complete metric space (X, d), and let 0 ≤ λ < µ ≤ +∞ be such
that [f<µ] ̸= ∅. Assume that:

for all x ∈ [λ<f<µ] there exists y ̸= x such that f(y) + d(x, y) ≤ f(x).

Then, [f≤λ] ̸= ∅, and, for all x ∈ [f<µ], we can find y ∈ [f≤λ] such that
d(x, y) ≤ f(x).

Proof. Given x ∈ [f<µ], one has M(x) ⊂ [f<µ]. Then, a d-point y of f
which belongs to M(x), whose existence is guaranteed by Corollary 2.3, is in
[f≤λ] since, from our assumption, an element of [λ<f<µ] is not a d-point,
and y satisfies d(x, y) ≤ f(y) + d(x, y) ≤ f(x). □
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3. GENERALIZED CONTRACTIONS

Let (X,d) be a metric space and T be a function from a set X into itself .
We shall denote by FT = {x ∈ X : T (x) = x} the set of fixed point of T .

We now give a list of properties mainly taken from [14].

(1) [H1] (Clarke [7]). Clarke’s directional contraction: there exists 0 ≤
k < 1 such that, for all x ∈ X, x ̸= T (x), there exists u ̸= x such that{

d(x, u) + d(u, T (x)) = d(x, T (x))

d(T (u), T (x)) ≤ kd(x, u);

(2) [H2] (Song [15]). Song’s directional contraction: T : D → X, where D
is a closed subset of X, is a mapping such that there exists 0 ≤ k <
γ ≤ 1 such that, for all x ∈ X, x ̸= T (x), there exists u ∈ D \{x} such
that {

γd(x, u) + d(u, T (x)) ≤ d(x, T (x))

d(T (u), T (x)) ≤ kd(x, u);

(3) [H3] ([H1] with u = T (x)). There exists 0 ≤ k < 1 such that, for all
x ∈ X, x ̸= T (x), we have

d(T (x), T (T (x))) ≤ kd(x, T (x));

(4) [H4] There exist nonnegative constants a, b satisfying a + b < 1 such
that, for all x, u ∈ X

d(T (x), T (u)) ≤ ad(x, T (x)) + bd(u, T (u));

(5) [H5] (Reich [13]). There exist nonnegative constants a, b, c satisfying
a+ b+ c < 1 such that, for all x, u ∈ X

d(T (x), T (u)) ≤ ad(x, T (x)) + bd(u, T (u)) + cd(x, u);

(6) [H6] (Bianchini [4]). There exists real number 0 ≤ k < 1 such that, for
all x, u ∈ X

d(T (x), T (u)) ≤ kmax (d(x, T (x)), d(u, T (u))) ;

(7) [H7] (Chatterjea [5]). There exists real number 0 ≤ k < 1
2 such that,

for all x, u ∈ X

d(T (x), T (u)) ≤ k (d(u, T (x)) + d(x, T (u))) ;

(8) [H8] (Ciric [6]). There exist nonnegative functions q, r, s, t and λ ∈
[0, 1) satisfying

sup
x,u∈X

(q(x, u) + r(x, u) + s(x, u) + 2t(x, u)) ≤ λ < 1

such that, for all x, u ∈ X:

d(T (x), T (u)) ≤ q(x, u)d(x, u) + r(x, u)d(x, T (x))

+ s(x, u)d(u, T (u)) + t(x, u)[d(x, T (u)) + d(u, T (x))];
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(9) [H9] (Zamfirescu [18]). There exist real numbers a, b, c, 0 ≤ a < 1,
0 ≤ b, c < 1

2 , such that, for all x, u ∈ X, at least one of the following
is true:
(i) d(T (x), T (u)) ≤ ad(x, u),
(ii) d(T (x), T (u)) ≤ b[d(x, T (x)) + d(u, T (u))],
(iii) d(T (x), T (u)) ≤ c[d(x, T (u)) + d(u, T (x))],

(10) [H10] There exist nonnegative functions a, b, c satisfying

lim sup
t↘s

(a(t) + b(t) + c(t)) < 1 for all s > 0,

such that, for all x, u ∈ X,

d(T (x), T (u)) ≤ a(d(x, u))d(x, T (x))+b(d(x, u))d(u, T (u))+c(d(x, u))d(x, u).

Remark 3.1.

(1) Property [H4] coincides with the assumption of [11], in which 0 < a =
b < 1

2 , because by symmetry, we get a = b < 1
2 .

(2) In [H10] we can take a = b and it is a weakening of the assumption of
[13] in which a, b and c are positive decreasing functions satisfying:

a(t) + b(t) + c(t) < 1 for all t > 0.

(3) It is easy to verify that all assumptions [Hi], with i ∈ {1, . . . , 7}, do
imply Ciric’s contractive assumption [H8].

In order to prove the existence of fixed points for applications, we establish
a relationship between the hypotheses [Hi] such that i ∈ {1, . . . , 10} and the
following main hypothesis: there exists α > 0 such that, for all x ∈ X ,
x ̸= T (x), there exists u ∈ X \ {x} satisfying:

[H] d(u, T (u)) + αd(x, u) ≤ d(x, T (x)).

These relationships are summarized in the following:

Lemma 3.2. Let (X,d) be a metric space and T : X −→ X be a mapping
satisfying one of the hypotheses [Hi], i ∈ {1, . . . , 9} . Then [H] is satisfied.

Proof. Let x ∈ X be such that d(x, T (x)) > 0.
1) If [H1] is satisfied, then we can find u ̸= x such that

d(x, u) + d(u, T (x)) = d(x, T (x))

from which

d(x, u) + d(u, T (u))− d(T (u), T (x)) ≤ d(x, T (x)),

and as d(T (x), T (u)) ≤ kd(x, u), we have:

d(x, u) + d(u, T (u))− kd(x, u) ≤ d(x, T (x)),

and therefore

d(u, T (u)) + (1− k)d(x, u)) ≤ d(x, T (x)),
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thus [H] is satisfied with α = 1− k > 0.
2) If [H2] is satisfied, then in the same way, we can prove that [H] is satisfied

with α = γ − k > 0.
3) Note that applications that check [H1], are a special case of Clarke’s

directional contractions ie they satisfy [H1], indeed, putting u = T (x) in [H3],
we obtain, for all x ̸= T (x), there exists u = T (x) such that{

d(x, u) + d(u, T (x)) = d(x, T (x))

d(T (u), T (x)) ≤ kd(x, u).

Thus, if [H3] is satisfied then [H1] is also and therefore [H] is also with α =
1− k.

4) If [H4] is satisfied then by writing for u = T (x), we obtain:

d(u, T (u)) ≤ ad(x, u) + bd(u, T (u))

and then

d(u, T (u)) ≤ a(1− b)−1d(x, u)

and therefore:

d(u, T (u))− d(x, T (x)) ≤ a(1− b)−1d(x, u)− d(x, u)

≤ (a+ b− 1)(1− b)−1d(x, u).

Thus we obtain:

d(u, T (u)) + (1− (a+ b))(1− b)−1d(x, u) ≤ d(x, T (x)).

Then, there exists α = (1− (a+ b))(1− b)−1 > 0, such that [H] is satisfied.
5) In the same way, if [H5] is satisfied then, [H] holds with

α = (1− (a+ b+ c))(1− b)−1 > 0.

6) Writing [H6] for u = T (x), we obtain:

d(u, T (u)) ≤ kmax(d(u, T (u)), d(x, u))

as k < 1, obviously, we have d(u, T (u)) ≤ kd(x, u), and therefore

d(u, T (u))− d(x, T (x)) ≤ kd(x, u)− d(x, u),

hence

d(u, T (u)) + (1− k)d(x, u) ≤ d(x, T (x)).

Then [H] is fulfilled with α = 1− k > 0.
7) For [H7], we get

d(u, T (u)) ≤ k(d(x, T (u)) + d(u, u)) = kd(x, T (u)) ≤ k(d(x, u) + d(u, T (u))

then

d(u, T (u)) ≤ k(1− k)−1d(u, T (u))

and then

d(u, T (u))− d(x, T (x)) ≤ k(1− k)−1d(x, u)− d(x, u),
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hence
d(u, T (u)) + (1− 2k)(1− k)−1d(x, u) ≤ d(x, T (x)).

Then [H] is satisfied with α = (1− 2k)(1− k)−1 > 0.
8) For [H8], we obtain

d(u, T (u)) ≤ q(x, u)d(x, u)+r(x, u)d(x, u)+s(x, u)d(u, T (u))+t(x, u)d(x, T (u)),

then

d(u, T (u)) ≤ (q(x, u) + r(x, u))d(x, u) + s(x, u)d(u, T (u))+

t(x, u)(d(x, u) + d(u, T (u))),

and

d(u, T (u)) ≤ (1− (s(x, u) + t(x, u))−1(q(x, u) + r(x, u) + t(x, u))d(x, u),

and

d(u, T (u))−d(x, T (x)) ≤ (1−(s(x, u)+t(x, u))−1(q+r+t)(x, u)d(x, u)−d(x, u).

Then

d(u, T (u))−d(x, T (x)) ≤ ((q+r+s+2t)(x, u)−1)(1−(s(x, u)+t(x, u))−1d(x, u),

that is to say

d(u, T (u))− d(x, T (x)) ≤ (λ− 1)(1− λ)−1d(x, u) = d(x, u),

and therefore [H] is satisfied with α = 1.
9) Finally, for [H9], we have for each x ∈ X and for u = T (x), at least one

of the following is true:

(i) d(u, T (u)) ≤ ad(x, u),
(ii) d(u, T (u)) ≤ b[d(x, u) + d(u, T (u))],
(iii) d(u, T (u)) ≤ c[d(x, T (u)) + d(u, u)] ≤ c[d(x, u) + d(u, T (u))],

Thus we obtain:

d(u, T (u)) ≤ max {ad(x, u), β[d(x, u) + d(u, T (u))]} ,
with 0 ≤ β = max(b, c) < 1

2 .
If we have d(u, T (u)) ≤ ad(x, u), therefore

d(u, T (u))− d(x, T (x)) ≤ ad(x, u)− d(x, u)

hence

(1) d(u, T (u)) + (1− a)d(x, u) ≤ d(x, T (x)),

or if we have
d(u, T (u)) ≤ β[d(x, u) + d(u, T (u))],

then
d(u, T (u)) ≤ β(1− β)−1d(x, u),

therefore

d(u, T (u))− d(x, T (x)) ≤ β(1− β)−1d(x, u)− d(x, u),
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hence

(2) d(u, T (u)) + (1− 2β)(1− β)−1d(x, u) ≤ d(x, T (x)).

Then, from (1) and (2), [H] is fulfilled with

α = min(1− a, (1− 2β)(1− β)−1) > 0.

□

4. FIXED POINTS RESULTS

Proposition 4.1. Let (X,d) be a complete metric space and T : X −→ X
be a mapping satisfying the hypothesis [H10], then,

inf
x∈X

d(x, T (x)) = 0.

Proof. Let x0 ∈ X. We may assume that d(x0, T (x0)) > 0 (otherwise there
is nothing to prove). Assume that are known x0, . . . , xn ∈ X such that, for
all k ∈ {0, . . . , n}, one has d(xk, T (xk)) > 0 and for all k ∈ {0, . . . , n − 1},
xk = T (xk−1) and thus, one has, setting dk = d(xk, T (xk)):

dk+1 = d(T (xk), T (xk+1))

≤ a(dk)d(xk, T (xk)) + b(dk)d(xk+1, T (xk+1)) + c(dk)d(xk+1, T (xk+1))

≤ a(dk)d(xk, xk+1) + b(dk)d(xk+1, xk+2) + c(dk)d(xk+1, (xk+2),(3)

and, as

dk+1 = d(xk+1, xk+2) = d(xk+1, T (xk+1)),

we derive from (3) that

(4) dk+1 ≤
a(dk)

1− (b(dk) + c(dk))
dk < dk.

By induction, either the process ends if d(xk, T (xk)) = 0 for some k ∈ N,
either we obtain a sequence (xn)n∈N ⊂ X such that the sequence

(d(xn, T (xn)))n∈N ⊂ R
is decreasing. Denoting by d ≥ 0 the limit of the decreasing sequence

(d(xn, xn+1))n∈N,

and assuming that d > 0, we then get using (4), the contradiction

d ≤ lim sup
t↓s

a(t)

1− (b(t) + c(t))
d < d.

It follows that limn→∞ d(xn, T (xn)) = limn→∞ d(xn, xn+1) = 0 thus

inf
x∈X

d(x, T (x)) = 0.

□
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Lemma 4.2. Let (X,d) be a complete metric space and T : X −→ X be a
mapping satisfying the hypothesis [H10], then we can find δ > 0 and λ ∈ (0, 1)
such that for each x ∈ X with 0 < d(x, T (x)) < δ, there exists u ̸= x such that

d(u, T (u)) + d(x, u) ≤ d(x, T (x)).

Proof. Writing assumption [H10] with u = T (x), we have:

d(u, T (u)) ≤ a(d(x, u))d(x, u) + b(d(x, u))d(u, T (u)) + c(d(x, u))d(x, u)

≤ (a(d(x, u)) + c(d(x, u))d(x, u) + b(d(x, u))d(u, T (u)),

and then

d(u, T (u)) ≤ (a(d(x, u)) + c(d(x, u))(1− b(d(x, u)))−1d(x, u),

leading to

(5) d(u, T (u))−d(x, T (x)) ≤ ((a+b+c)(d(x, u))−1)(1−b(d(x, u)))−1d(x, u).

As lim supt↓s(a(t)+ b(t)+ c(t)) < 1 for all s ≥ 0, then there exist δ > 0, λ > 0
such that

sup
t∈(0,δ)

(a(t) + b(t) + c(t)) < 1− λ.

As a, b, c are nonegative functions, we also have

sup
t∈(0,δ)

b(t) < 1− λ,

then for the inequality (1), we obtain, as 0 < d(x, T (x)) = d(x, u) < δ,

d(u, T (u))− d(x, T (x)) ≤ ((a+ b+ c)(d(x, u))− 1)λ−1d(x, u),

yielding

d(u, T (u)) + (1− (a+ b+ c)(d(x, u)))λ)−1d(x, u) ≤ d(x, T (x))

and then

d(u, T (u)) + λλ−1d(x, u) ≤ d(x, T (x)),

Thus, for all x ∈ X such that 0 < d(x, T (x)) < δ, we have

d(u, T (u)) + d(x, u) ≤ d(x, T (x)).

□

Theorem 4.3. Let (X,d) be a complete metric space and T : X −→ X be
a mapping. Assume that:

(1) [H] is satisfied
(2) the function x 7−→ d(x, T (x)) is lower semicontinuous.

Then, FT ̸= ∅ and for all x ∈ X, and

d(x,FT ) ≤ α−1d(x, T (x)).
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Proof. Consider the lower semicontinuous function

f(x) = d(x, T (x)).

From [H] the assumptions of Lemma 2.4 are satisfied with µ = +∞ for the

distance d̃ = αd. It then suffices to apply Lemma 2.4 and we obtain the
conclusion of the theorem. □

Corollary 4.4. Let (X,d) be a complete metric space and T : X −→ X
be a mapping. If T is continuous and if one of the assumptions [H1] or [H2]
or [H3] is satisfied then FT ̸= ∅ and for all x ∈ X

d(x,FT ) ≤ α−1d(x, T (x))

with

α =

{
1− k in the case [H1] or [H3]

γ − k in the case [H2].

Proof. Let us define f : X −→ R by f(x) = d(x, T (x)), as T is continuous,
f is lower semicontinuous. From Lemma 3.2, if [H1] or [H2] or [H3] is satisfied
then [H] is also and demonstration ends by applying Theorem 4.3. □

Corollary 4.5. Let (X,d) be a complete metric space and T : X −→ X
be a mapping.
If T is continuous and if one of assumptions [Hi] with i ∈ {4, . . . , 9} is satisfied
then T has a unique fixed point x̄ and for all x ∈ X

d(x, x̄) ≤ α−1d(x, T (x))

with

α =



(1− (a+ b))(1− b)−1 in the case [H4]

(1− (a+ b+ c))(1− b)−1 in the case [H5]

1− k in the case [H6]

(1− 2k)(1− k)−1 in the case [H7]

1 in the case [H8]

min(1− a, (1− 2β)(1− β)−1) with β = max(b, c) in the case [H9] .

Proof. As in Theorem 4.4, existence of a fixed point is ensured by Lemma
3.2. Now, assume that there are two points x1 ̸= x2 such that T (x1) = x1 and
T (x2) = x2.

1) If [H4] is satisfied, by writing [H4] for x1 and x2 we obtain

d(x1, x2) ≤ ad(x1, x1) + bd(x2, x2) = 0,

thus x1 = x2.
2) If [H5] is satisfied, by writing [H5] for x1 and x2 we obtain

d(x1, x2) ≤ ad(x1, x1) + bd(x2, x2) + cd(x1, x2) = cd(x1, x2)

leading to x1 = x2 since c < 1.
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3) Similarly for [H6], we obtain

d(x1, x2) ≤ kmax(d(x1, x1), d(x2, x2)) = 0,

and then x1 = x2.
4) Similarly for [H7], we obtain

d(x1, x2) ≤ k(d(x1, x2) + d(x1, x2)) = kd(x1, x2)),

yielding x1 = x2.
5) Similarly for [H8], we obtain

d(x1, x2) ≤ (q(x1, x2) + 2t(x1, x2))d(x1, x2) ≤ λd(x1, x2) < d(x1, x2),

yielding x1 = x2.
6) If [H9] is satisfied, by writing (i), (ii) and (iii) for x1 and x2 we obtain

(i) d(x1, x2) ≤ ad(x1, x2),
(ii) d(x1, x2)) ≤ 0,
(iii) d(x1, x2) ≤ 2cd(x1, x2),

leading to x1 = x2 since a < 1 and c < 1
2 . □

Corollary 4.6. Let (X,d) be a complete metric space and T : X −→ X be
a mapping. If T is continuous and if assumption [H10] is satisfied then T has
a unique fixed point x̄ and there exists δ > 0 such that for all x ∈ X satisfying
d(x, T (x)) < δ, we have

d(x, x̄) ≤ d(x, T (x)).

Proof. Let f(x) = d(x, T (x)), which is lower semicontinuous. Under the
assumption [H10], we get from Lemma 4.2, the existence of δ > 0 such that
for all x ∈ X, 0 < d(x, T (x)) < δ, there exists u ̸= x such that:

d(u, T (u)) + d(x, u) ≤ d(x, T (x))

and then [f < δ] ̸= ∅ and for all x ∈ [0 < f < δ] there exists u ̸= x such that
f(u) + d(x, u) ≤ f(x), and thus the assumptions of Lemma 2.4 are satisfied
with µ = δ, hence the existence of a fixed point x̄ satisfying

d(x, x̄) ≤ d(x, T (x)) for all x ∈ [f < δ].

Suppose now that there are two points x1 ̸= x2 such that T (x1) = x1 and
T (x2) = x2, by writing [H10] for x1 and x2, we obtain

d(x1, x2) ≤ a(d(x1, x2))d(x1, x1)+ b(d(x1, x2))d(x2, x2)+ c(d(x1, x2))d(x1, x2)

then
d(x1, x2) ≤ c(d(x1, x2))d(x1, x2),

so that x1 = x2. □

In order to prove the existence of fixed point, we used the lemma 2.4 and
this requires that the function x 7−→ d(x, T (x)) is lower semicontinuous. Now
we will see results removing this condition by assuming only that T has a
closed graph.
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Corollary 4.7. Let (X, d) be a complete metric space and let T : X → X
be a mapping with closed graph. Assume that one of the assumptions [Hi] with
i ∈ {4, . . . , 9} is satisfied then T has a unique fixed point x̄ and for all x ∈ X

d(x, x̄) ≤ α−1d(x, T (x))

with

α =



(1− (a+ b))(1− b)−1 in the case [H4]

(1− (a+ b+ c))(1− b)−1 in the case [H5]

1− k in the case [H6]

(1− 2k)(1− k)−1 in the case [H7]

1 in the case [H8]

min(1− a, (1− 2β)(1− β)−1) with β = max(b, c) in the case [H9] .

Proof. Under one of the assumptions [Hi], i ∈ {4, . . . , 9}, and for u = T (x),
assumption [H] is satisfied. Thus we can find α > 0 such that for all x ∈ X,
x ̸= T (x), we have

d(u, T (u)) + αd(x, u) ≤ d(x, T (x)),

with u = T (x). Let x0 ∈ X and let xk = T k(x0). If T (xk) = xk for one k, the
result is proved. Otherwise, we have

d(xk+1, xk+2) + αd(xk, xk+1) ≤ d(xk, xk+1) for all k ∈ N.
Summing p inequalities and using the triangle inequality, we obtain:

d(xk+p, xk+p+1) + αd(xk+p, xk) ≤ d(xk, xk+1).

The last inequality shows that the sequence (xn)n∈N is Cauchy. Indeed the
sequence (d(xk, xk+1))k∈N is convergent because it is decreasing, and

d(xk+p, xk) ≤ α−1(d(xk, xk+1)− d(xk+1, xk+2)) for all p ∈ N.
Let then x̄ its limit, as xk+1 = T (xk) we deduce that T (x̄) = x̄ due to the
closedness of the graph of T . □
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