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ON CONNECTED SPACES VIA m-STRUCTURES

AHMAD AL-OMARI and TAKASHI NOIRI

Abstract. In this paper, we introduce and investigate m-separated sets and
m-connected sets in a topological space (X, τ) with a minimal structure mX . As
a special case, by setting mX = τ∗, we obtain properties of ∗-separated sets and
∗s-connected sets.
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1. INTRODUCTION

Ekici and Noiri [11] introduced and studied ∗-separated sets and ∗s-con-
nected sets in an ideal topological space (X, τ, I) [13]. Sathiyasundari and
Renukadevi [19] obtained further properties of ∗-separated sets and ∗s-con-
nected sets. In this paper, we introduce and investigate the notions of m-
separated sets and m-connected sets in a topological space (X, τ) with a min-
imal structure mX . By setting mX = τ∗, we obtain properties of ∗- separated
sets and ∗s-connected sets established in [11] and [19] as a special case of re-
sults of this paper. Recently, papers [1–7] have introduced some new classes
of sets via m-structures.

2. MINIMAL STRUCTURES

Definition 2.1. Let X be a nonempty set and P(X) the power set of X.
A subfamily mX of P(X) is called a minimal structure (briefly m-structure)
on X [18] if ∅ ∈ mX and X ∈ mX . Each member of mX is said to be mX -open
and the complement of an mX -open set is said to be mX -closed.

Definition 2.2. Let (X, τ) be a topological space. A subset A of X is said
to be

(1) α-open [17] if A ⊆ Int(Cl(Int(A))),
(2) semi-open [14] if A ⊆ Cl(Int(A)),
(3) preopen [16] if A ⊆ Int(Cl(A)),
(4) b-open [10] if A ⊆ Int(Cl(A)) ∪ Cl(Int(A)),
(5) β-open [8] or semi-preopen [9] if A ⊆ Cl(Int(Cl(A))).
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The family of all α-open (resp. semi-open, preopen, b-open, semi-preopen)
sets in (X, τ) is denoted by α(X) (resp. SO(X), PO(X), BO(X), SPO(X)).

Definition 2.3. Let X be a nonempty set and mX an m-structure on X.
For a subset A of X, the mX -closure of A and the mX -interior of A are defined
in [15] as follows:

(1) mCl(A) = ∩{F ⊆ X : A ⊆ F,X \ F ∈ mX},
(2) mInt(A) = ∪{U ⊆ X : U ⊆ A,U ∈ mX}.

Remark 2.4. Let (X, τ) be a topological space and A a subset of X. If
mX = τ (resp. SO(X), PO(X), BO(X), SPO(X) ), then we have

(1) mCl(A) = Cl(A) (resp. sCl(A), pCl(A), bCl(A), spCl(A)),
(2) mInt(A) = Int(A) (resp. sInt(A), pInt(A), bInt(A), spInt(A)).

Lemma 2.5 ([15]). Let X be a nonempty set and mX a minimal structure
on X. For subsets A and B of X, the following properties hold:

(1) mCl(X \A) = X \mInt(A) and mInt(X \A) = X \mCl(A),
(2) If (X\A) ∈ mX , then mCl(A) = A and if A ∈ mX , then mInt(A) = A,
(3) mCl(∅) = ∅, mCl(X) = X, mInt(∅) = ∅ and mInt(X) = X,
(4) If A ⊆ B, then mCl(A) ⊆ mCl(B) and mInt(A) ⊆ mInt(B),
(5) A ⊆ mCl(A) and mInt(A) ⊆ A,
(6) mCl(mCl(A)) = mCl(A) and mInt(mInt(A)) = mInt(A).

Lemma 2.6 ([18]). Let X be a nonempty set with an m-structure mX and A
a subset of X. Then x ∈ mCl(A) if and only if U ∩A ̸= ∅. for every U ∈ mX

containing x.

Definition 2.7. An m-structure mX on a nonempty set X is said to have
property B [15] if the union of any family of subsets belong to mX belongs to
mX .

Remark 2.8. Let (X, τ) be a topological space. Then the families α(X),
SO(X), PO(X), BO(X) and SPO(X) are m-structures on X with property
B.

Lemma 2.9 ([18]). Let X be a nonempty set and mX an m-structure on X
satisfying property B. For a subset A of X, the following properties hold:

(1) A ∈ mX if and only if mInt(A) = A,
(2) A is mX-closed if and only if mCl(A) = A,
(3) mInt(A) ∈ mX and mCl(A) is mX-closed.

A subfamily I of the power set P(X) of a nonempty set X is called an ideal
if the following properties are satisfied: (1) A ∈ I and B ⊆ A imply B ∈ I;
(2) A ∈ I and B ∈ I imply A ∪ B ∈ I. A topological space (X, τ) with an
ideal I on X is called an ideal topological space and is denoted by (X, τ, I).
For an ideal topological space and a subset A of X, A∗(I) is defined as follows:
A∗(I) = {x ∈ X : U ∩ A /∈ I for every open set U containing x}. In [13],
A∗(I) (briefly A∗) is called the local function of A with respect to I and τ
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and Cl∗(A) = A∗∪A defines a Kuratowski closure operator for a topology τ∗ .
which is finer than τ . A subset A is ∗-closed if and only if A∗ ⊆ A. Naturally,
the complement of a ∗-closed set is said to be ∗-open.

Definition 2.10 ([12]). An ideal topological space (X, τ, I) is said to be
∗- connected if X cannot be written as the disjoint union of a nonempty open
set and a nonempty ∗-open set.

Definition 2.11 ([11]). Nonempty subsets A, B of an ideal topological
space (X, τ, I) are said to be ∗-separated if Cl∗(A) ∩B = A ∩ Cl(B) = ∅.

Definition 2.12 ([11]). A subset A of an ideal topological space (X, τ, I)
is said to be ∗s-connected if A is not the union of two ∗-separated sets in
(X, τ, I).

3. mmm-SEPARATED SETS

A topological space (X, τ) with an m-structure mX on X is called briefly a
mixed space and is denoted by (X, τ,mX).

Definition 3.1. Let (X, τ,mX) be a mixed space. Nonempty subsets A,B
of X are said to be m-separated if Cl(A) ∩B = ∅ = A ∩mCl(B).

If τ ⊆ mX , then every separated sets are m-separated but the converse is
not true as shown in the following example.

Example 3.2. Let X = {a, b, c, d}, τ = {X, ∅, {a}, {c}, {a, b}, {a, c}, {a, b,
c}, {a, c, d}} and mX = P(X). Let A = {a} and B = {b}. Then A and B are
m-separated sets but they are not separated.

Proposition 3.3. Let (X, τ,mX) be a mixed space. If A and B are non-
empty disjoint subsets of X such that A is mX-open and B is open, then A
and B are m-separated.

Proof. Since A ∩ B = ∅, A ⊆ X \ B and so Cl(A) ⊆ Cl(X \ B) = X \ B.
Then, Cl(A)∩B = ∅. Again B ⊆ X \A and so mCl(B) ⊆ mCl(X \A) = X \A.
Thus, mCl(B) ∩A = ∅. Therefore, A and B are m-separated. □

Corollary 3.4. Let (X, τ,mX) be a mixed space and τ ⊆ mX . Then the
disjoint nonempty open sets of X are m-separated.

Proposition 3.5. Let A and B be two m-separated sets in a mixed space
(X, τ,mX). If C and D are nonempty subsets such that C ⊆ A and D ⊆ B,
then C and D are also m-separated.

Proof. Since A and B are m-separated, Cl(A)∩B = ∅ = A∩mCl(B). Now,
C ∩ mCl(D) ⊆ A ∩ mCl(B) = ∅ and so C ∩ mCl(D) = ∅. Similarly, we can
prove that Cl(C) ∩D = ∅. Hence C and D are m-separated. □

Theorem 3.6. Let (X, τ,mX) be a mixed space, mX have property B and
τ ⊆ mX . If the union of two m-separated sets is a closed set, then one set is
an mX-closed and the other is closed.
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Proof. Let A and B be two m-separated sets such that A∪B is closed. Then
A ∩mCl(B) = ∅ = Cl(A) ∩B. Since A ∪B is closed, A ∪B = Cl(A) ∪Cl(B).
Now, Cl(A) = Cl(A) ∩ [Cl(A) ∪ Cl(B)] = Cl(A) ∩ [A ∪ B] = [Cl(A) ∩ A] ∪
[Cl(A) ∩ B] = A ∪ ∅ = A and so A is closed. Also, B ⊆ A ∪ B implies that
mCl(B) ⊆ mCl[A∪B] ⊆ Cl[A∪B] = A∪B and so mCl(B) = mCl(B)∩ [A∪
B] = [mCl(B) ∩ A] ∪ [Cl(B) ∩ B] = ∅ ∪ B = B. Hence by Lemma 2.9, B is
mX -closed. □

Theorem 3.7. Let (X, τ,mX) be a mixed space and τ and mX satisfy the
conditions:

(1) mX has property B.
(2) the intersection of an open set and an mX-open set is mX-open.

If A and B are m-separated sets of X and A ∪ B ∈ τ , then A and B are
mX-open and open respectively.

Proof. Since A and B are m-separated in X, then B = [A∪B]∩ [X \Cl(A)].
Since A∪B ∈ τ and Cl(A) is closed in X, then B is open. Since A and B are
m-separated in X, then A = [A ∪ B] ∩ [X \ mCl(B)]. Since A ∪ B ∈ τ and
mCl(B) is mX -closed in X, then A is mX -open. □

Lemma 3.8. Let (X, τ) be topological space. A ⊆ Y ⊆ X and Y ∈ τ . Then
the following are equivalent:

(1) A is open in Y ;
(2) A is open in X.

Lemma 3.9. Let (X, τ,mX) be a mixed space and B ⊆ Y ⊆ X. Then
mClY (B) = mCl(B) ∩ Y .

Lemma 3.10. Let (X, τ) be topological space and A,B ⊆ Y ⊆ X. The
following are equivalent:

(1) A, B are m-separated in Y ;
(2) A, B are m-separated in X.

Proof. It follows form Lemma 3.9 that mClY (A) ∩B = ∅ = A ∩ ClY (B) if
and only if mCl(A) ∩B = ∅ = A ∩ Cl(B). □

4. mmm-CONNECTED SPACES

In this section, we give the properties of m-separated sets and m-connected
sets.

Definition 4.1. A subset A of a mixed space (X, τ,mX) is said to be
m-connected if A is not the union of two m-separated sets in (X, τ,mX).

If τ ⊆ mX , then every m-connected mixed space is connected but the
converse is not true as shown in the following example.

Example 4.2. Let X = Q be the set of all rational numbers with left
ray topology τL and mX = P(X). Then the mixed space (X, τL,mX) is a
connected space but it is not m-connected.
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Definition 4.3. A mixed space (X, τ,mX) is said to be m∗-connected if
X cannot be written as the disjoint union of a nonempty mX -open set and a
nonempty open set.

Theorem 4.4. Let Y be an open subset of a mixed space (X, τ,mX). If
mX has property B and the intersection of an open set and an mX-open set
is mX-open, then the following properties are equivalent:

(1) The subset Y is m-connected in X;
(2) The subspace (Y, τY , (mX)Y ) is m-connected in X.

Proof. (1) ⇒ (2): Suppose that Y is not m∗-connected. There exist non-
empty disjoint an mY -open set A and an open set B in Y such that Y = A∪B.
Since Y is open in X, A is mX -open and by Lemma 3.8, B open in X. Since
A and B are disjoint, then Cl(A) ∩ B = ∅ = A ∩mCl(B). This implies that
A, B are m-separated sets in X. Thus, Y is not m-connected in X. This is a
contradiction.

(2) ⇒ (1): Suppose that Y is not m-connected in X. There exist m-
separated sets A, B such that Y = A ∪ B. By Theorem 3.7, A and B are
mX -open and open in X, respectively. Since Y is open in X, A is mY -open
and B is open in Y. Since A and B are m-separated in X, then A and B are
nonempty disjoint. Thus, Y is not m∗-connected. This is a contradiction. □

Corollary 4.5 ([11]). Let Y be an open subset of an ideal topological space
(X, τ, I). The following are equivalent:

(1) Y is ∗s-connected in (X, τ, I),
(2) Y is ∗-connected in (X, τ, I).

Corollary 4.6. Let (X, τ,mX) be a mixed space such that mX has property
B and the intersection of an open set and an mX-open set is mX-open. Then
X is m-connected if and only if X is m∗-connected.

Proof. The proof follows from Theorem 4.4. □

Theorem 4.7. Let (X, τ,mX) be a mixed space, X not m-connected and A
be a subset of X such that (i) A ̸= ∅, X and (ii) A is open in X and mX-closed
in X. If Y is a nonempty m-connected subset of X, then either Y ⊆ A or
Y ⊆ X \A.

Proof. Let X = A ∪ B, where B = X \ A. Then Y = X ∩ Y = [A ∪
B] ∩ Y = (A ∩ Y ) ∪ (B ∩ Y ). Also [A ∩ Y ] ∩ Cl[B ∩ Y ] ⊆ A ∩ Cl(B) = ∅,
since A ∩ B = ∅ and A is open. This implies that [A ∩ Y ] ∩ Cl[B ∩ Y ] = ∅.
Similarly, mCl[A ∩ Y ] ∩ [B ∩ Y ] ⊆ mCl(A) ∩ B = A ∩ B = ∅ implies that
mCl[A ∩ Y ] ∩ [B ∩ Y ] = ∅. It is given that Y is m-connected subspace of X.
Hence it cannot happen that A ∩ Y ̸= ∅ and B ∩ Y ̸= ∅, Since Y is an m-
connected subspace of X, Y cannot admit any m-separation. Hence A∩Y = ∅
or B ∩ Y = ϕ implies that Y ⊆ A or Y ⊆ X −A. □
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Theorem 4.8. Let (X, τ,mX) be a mixed space. If A is an m-connected
set of X and H, G are m-separated sets of X with A ⊆ H ∪ G, then either
A ⊆ H or A ⊆ G.

Proof. Let A ⊆ H ∪G. Since A = [A∩H]∪ [A∩G], then [A∩H]∩mCl[A∩
G] ⊆ H ∩ mCl(G) = ∅. By similar way, we have [A ∩ G] ∩ Cl[A ∩ H] ⊆
G ∩ Cl(H) = ∅. Then A ∩H and A ∩ G are m-separated sets. Suppose that
A ∩ H and A ∩ G are nonempty. Then A is not m-connected. This is a
contradiction. Thus, either A∩H = ∅ or A∩G = ∅. This implies that A ⊆ H
or A ⊆ G. □

Corollary 4.9 ([11]). Let (X, τ, I) be an ideal topological space. If A is a
∗s-connected set of X and H, G are ∗-separated sets of X with A ⊆ H ∪ G,
then either A ⊆ H or A ⊆ G.

Theorem 4.10. Let A be an m-connected set of a a mixed space (X, τ,mX).
If A ⊆ B ⊆ mCl(A), then B is m-connected.

Proof. Suppose that B is not m-connected. There exist m-separated sets
H and G such that B = H ∪G. This implies that H and G are nonempty and
G ∩ Cl(H) = ∅ = H ∩ mCl(G). By Theorem 4.8, we have either A ⊆ H or
A ⊆ G. Suppose that A ⊆ G. Then mCl(A) ⊆ mCl(G) and H ∩mCl(A) = ∅.
This implies that H ⊆ B ⊆ mCl(A) and H = mCl(A)∩H = ∅. Thus H is an
empty set. Since H is nonempty, this is a contradiction. Suppose that A ⊆ H.
By similar way, it follows that G is empty. This is a contradiction. Hence, B
is m-connected. □

Corollary 4.11 ([11]). If A is a ∗s-connected set of an ideal topological
space (X, τ, I) and A ⊆ B ⊆ Cl∗(A), then B is ∗s-connected.

Corollary 4.12. Let (X, τ,mX) be a mixed space. If A is an m-connected
set, then mCl(A) is m-connected.

Theorem 4.13. Let {Ni : i ∈ I} is a nonempty family of m-connected sets
of a mixed space (X, τ,mX). If ∩i∈INi ̸= ∅, then ∪i∈INi is m-connected.

Proof. Suppose that ∪i∈INi is not m-connected. Then we have ∪i∈INi =
H ∪G, where H and G are m-separated sets in X. Since ∩i∈INi ̸= ∅, we have
a point x ∈ ∩i∈INi. Since x ∈ ∪i∈INi, either x ∈ H or x ∈ G. Suppose that
x ∈ H. Since x ∈ Ni for each i ∈ I, then Ni and H intersect for each i ∈ I.
By Theorem 4.8 Ni ⊆ H or Ni ⊆ G. Since H and G are disjoint, Ni ⊆ H
for all i ∈ I and hence ∪i∈INi ⊆ H. This implies that G is empty. This is
a contradiction. Suppose x ∈ G. By similar way, we have that H is empty.
This is a contradiction. Thus ∪i∈INi is m-connected. □

Corollary 4.14. Let (X, τ,mX) be a mixed space and {Aα : α ∈ ∆} be a
family of m-connected subsets of X, and A be an m-connected subset of X. If
A ∩Aα ̸= ∅ for every α ∈ ∆, then A ∪ (∪Aα) is m-connected.
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Proof. By Theorem 4.13, A∪Aα is m-connected for each α ∈ ∆ and ∩(A∪
Aα) ⊇ A ̸= ∅. Therefore, by Theorem 4.13 ∪(A ∪ Aα) = A ∪ (∪Aα) is m-
connected. □

Corollary 4.15 ([11]). If {Mi : i ∈ I} is a nonempty family of ∗s-
connected sets of an ideal topological space (X, τ, I) with ∩i∈IMi ̸= ∅, then
∪i∈IMi is ∗s-connected.

Theorem 4.16. Let (X, τ,mX) be a mixed space and τ ⊆ mX . Every
continuous image of an m-connected space is a connected space.

Proof. Let f : (X, τ,mX) → (Y, σ) be a continuous function and X is m-
connected space. If possible suppose that f(X) is not a connected subset of Y .
Then, there exists nonempty separated sets A and B such that f(X) = A∪B.
Since f is continuous and A∩Cl(B) = ∅ = Cl(A)∩B, Cl(f−1(A))∩f−1(B) ⊆
f−1(Cl(A))∩f−1(B) = f−1[Cl(A)∩B] = ∅, f−1(A)∩mCl(f−1(B)) ⊆ f−1(A)∩
Cl(f−1(B)) ⊆ f−1(A)∩f−1(Cl(B)) = f−1[A∩Cl(B)] = ∅. Since A and B are
nonempty, f−1(A) and f−1(B) are nonempty. Therefore, f−1(A) and f−1(B)
arem-separated andX = f−1(A)∪f−1(B). This is contrary to the assumption
that X is m-connected. Therefore, f(X) is connected. □

Theorem 4.17. Let (X, τ,mX) be a mixed space and H a subset of X. If
every pair of distinct points of H are elements of some m-connected subset of
H, then H is an m-connected subset of X..

Proof. Suppose H is not m-connected. Then there exist nonempty subsets
A and B of X such that Cl(A) ∩ B = ∅ = A ∩ mCl(B) and H = A ∪ B.
Since A and B are nonempty, there exists a point a ∈ A and a point b ∈ B.
By hypothesis, a and b must be elements of an m-connected subset C of H.
Since C ⊆ A ∪ B, by Theorem 4.8, either C ⊆ A or C ⊆ B. Consequently,
either a and b are both in A or both in B. Let a, b ∈ A. Then A ∩ B ̸=
∅. This is contrary to the fact that A and B are disjoint. Similarly, if we
suppose that a, b ∈ B, then we have a contradiction. Therefore, H must be
m-connected. □

Theorem 4.18. Let (X, τ,mX) be a mixed space and X is m-connected.
If A is an m-connected subset of X such that X \ A is the union of two m-
separated sets B and C, then A ∪B and A ∪ C are m-connected.

Proof. Suppose A∪B is not m-connected. Then there exist two nonempty
m-separated sets G and H such that A∪B = G∪H. Since A is m-connected,
A ⊆ A ∪ B = G ∪ H, by Theorem 4.8, either A ⊆ G or A ⊆ H. Suppose
A ⊆ G. Since A ∪ B = G ∪ H, A ⊆ G implies that A ∪ B ⊆ G ∪ B and so
G ∪ H ⊆ G ∪ B. Hence H ⊆ B. Since B and C are m-separated, H and
C are also m-separated. Thus, H is m-separated from G as well as C. Now,
mCl(H)∩[G∪C] = [mCl(H)∩G]∪[mCl(H)∩C] = ∅ and H∩Cl[G∪C] = H∩
[Cl(G)∪Cl(C)] = [H ∩Cl(G)]∪ [H ∩Cl(C)] = ∅. Therefore, H is m-separated
from G∪C. Since X \A = B∪C, X = A∪ [B∪C] = [A∪B]∪C = [G∪H]∪C,
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since A∪B = G∪H and soX = [G∪C]∪H. Thus, X is union of two nonempty
m-separated sets G∪C and H, which is a contradiction. Similar contradiction
will arise if A ⊆ H. Hence, A ∪ B is m-connected. Similarly, we can prove
that A ∪ C is m-connected. □

The following example shows that the union of two m-connected sets is not
an m-connected set.

Example 4.19. Consider the mixed space (X, τ,mX) whereX = {a, b, c, d},
τ = {∅, {b}, {b, c}, {a, b, d}, X} and mX = {∅, {b}, {b, c}, {c}, {a, d}, {a, c, d},
X}. If A = {b} and B = {a, d}, then A and B are m-connected. But A∪B =
{a, b, d}. Here mCl({b}) ∩ {a, d} = {b} ∩ {a, d} = ∅ and {b} ∩ Cl({a, d}) =
{b} ∩ {a, d} = ∅ and so {b} and {a, d} are m-separated sets. Hence, A ∪ B is
not m-connected.

Corollary 4.20 ([19]). If A is a ∗s-connected subset of a ∗s-connected
ideal topological space (X, τ, I) such that X \A is the union of two ∗-separated
sets B and C, then A ∪B and A ∪ C are ∗s-connected.

Theorem 4.21. Let (X, τ,mX) be a mixed space If A and B are m-connected
sets of X such that none of them is m-separated, then A ∪B is m-connected.

Proof. Let A and B be m-connected in X. Suppose A ∪ B is not m-
connected. Then, there exist two nonempty m-separated sets G and H such
that A∪B = G∪H. Since A and B are m-connected, by Theorem 4.8, either
A ⊆ G and B ⊆ H or B ⊆ G and A ⊆ H. Let A ⊆ G and B ⊆ H. Then,
since G and H are m-separated, by Proposition 3.5 A and B are m-separated.
This is a contradiction. Similarly, let B ⊆ G and A ⊆ H. Then B and A are
m-separated. This is a contradiction. Hence A ∪B is m-connected. □

Definition 4.22. Let (X, τ,mX) be a mixed space and x ∈ X. The union
of all m-connected subsets of X containing x is called the m-component of X
containing x.

Lemma 4.23. The m-component of each point x of a mixed space (X, τ,mX)
is the maximal m-connected set of X that contains x.

Lemma 4.24. The set of all distinct m-components of a mixed space (X, τ ,
mX) forms a partition of X.

Proof. Let A and B be two distinct m-components of X. Suppose A and
B intersect. Then, by Theorem 4.13, A ∪ B is m-connected in X. Since
A ⊆ A ∪B, then A is not maximal. Thus, A and B are disjoint. □

Lemma 4.25. Each m-component of a mixed space (X, τ,mX), where mX

has property B, is an mX-closed in X.

Proof. Let A be an m-component of X. By Corollary 4.12, mCl(A) is m-
connected and A = mCl(A). Thus, by Lemma 2.9 A is mX -closed in X. □
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Theorem 4.26. Let (X, τ,mX) be a mixed space. Then each m-connected
subset of X which both open and mX-closed is m-component of X.

Proof. Let A be an m-connected subset of X which both open and mX -
closed. Let x ∈ A. Since A is an m-connected subset of X containing x, if C
is the m-component containing x, then A ⊆ C. Let A be a proper subset of C.
Then C is nonempty and C∩(X\A) ̸= ∅. Since A is open andmX -closed, X\A
is closed and mX -open and [A∩C]∩ [(X \A)∩C] = ∅. Also [A∩C]∪ [(X \A)∩
C] = [A∪(X\A)]∩C = C. Again A and X\A are two nonempty disjoint open
and mX -open set respectively, such that A∩Cl(X\A) = ∅ = mCl(A)∩(X\A).
This implies (A∩C)∩Cl[(X \A)∩C] = ∅ = mCl(A∩C)∩ [(X \A)∩C]. This
shows that A and C \A are m-separated sets. This is a contradiction. Hence,
A is not a proper subset of C and A = C. Therefore, A is an m-component
of X. □

Corollary 4.27 ([19]). Let (X, τ, I) be an ideal topological space. Then,
each ∗s-connected subset of X which is both open and ∗-closed is a ∗-component
of X.

Theorem 4.28. Let (X, τ,mX) be a mixed space such that τ ⊆ mX and
A ⊆ X. If C is an m-connected subset of X that intersects both A and X \A,
then C intersects Bd(A), the boundary of A.

Proof. Suppose C ∩ Bd(A) = ∅. Then C ∩ Cl(A) ∩ Cl(X \ A) = ∅. Now,
C = C ∩X = C ∩ (A∪ (X \A)) = (C ∩A)∪ (C ∩ (X \A)). Also, mCl(C ∩A)∩
(C∩(X\A)) ⊆ mCl(C)∩mCl(A)∩C∩(X\A) = C∩mCl(A)∩(X\A) = ∅. and
(C ∩A)∩Cl(C ∩ (X \A)) ⊆ C ∩A∩Cl(C)∩Cl(X \A) = C ∩Cl(X \A)∩A =
∅. Thus, C ∩ A and C ∩ (X \ A) form an m-separation for C, which is a
contradiction. Hence, C ∩Bd(A) ̸= ∅. □
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