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UNIQUENESS AND EXISTENCE OF SOLUTIONS FOR
NONLINEAR FRACTIONAL DIFFERENTIAL EQUATIONS WITH

TWO FRACTIONAL ORDERS

MOHAMED HOUAS, ZOUBIR DAHMANI, and ERHAN SET

Abstract. In this work, we study the existence and uniqueness of solutions
for integro-differential equations involving two fractional orders. By using the
Banach’s fixed point theorem, Leray-Schauder’s nonlinear alternative and Leray-
Schauder’s degree theory, the existence and uniqueness of solutions are obtained.
Some illustrative examples are also presented.
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1. INTRODUCTION AND PRELIMINARIES

The class of fractional differential equations arise in many scientific disci-
plines,such as physics, chemistry, control theory, signal processing and bio-
physics. For more details, we refer the reader to [1], [4]-[8], [17]. Recently, by
applying different techniques of nonlinear analysis such as fixed-point theo-
rems, Leray-Schauder theory, the upper and lower solution method etc., many
authors have obtained results of the existence and multiplicity of solutions or
positive solutions for various classes of fractional differential equations, for ex-
ample, we refer the reader to [2, 3] [9]-[15], [18]-[21] and the references therein.
In this work, we discuss the existence and uniqueness of solutions for the
following integro-differential equations involving two fractional orders:

(1)

{
Dβ (Dα + λ)x (t) = θf (t, x (t)) +AJδh (t, x (t)) , t ∈ [0, T ] ,

J1−α (x (0)) = 0, J2−α−β (x (T ))−BJα+β−1 (x (η)) = 0, 0 < η < T,

where Dq, q = α, β denote the Riemann-Liouville fractional derivative, with
0 < α, β ≤ 1, 1 < α + β ≤ 2, 0 < δ ≤ 1, λ, θ, A,B are real constant and

B ̸= Γ(2α+2β−1)T
η2α+2β−2 , f, h : [0, T ] × R → R, are continuous functions on [0, T ].

The operator Jϑ, ϑ ∈ {δ, 1− α, α+ β − 1} is The Riemann-Liouville fractional
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integral, defined by

Jϑf (t) =
1

Γ (ϑ)

∫ t

0
(t− τ)ϑ−1 f (τ) dτ, ϑ > 0,

where Γ (ϑ) :=
∫∞
0 e−uuϑ−1du. The operator Dq is the fractional derivative in

the sense of Riemann-Liouville, defined by

Dqy (t) =
1

Γ (n− α)

(
d

dt

)n ∫ t

0
(t− τ)n−q−1 y (τ) dτ, n− 1 < q < n.

Lemma 1.1 ([16]). For q > 0, the general solution of the fractional differ-
ential equation Dqx (t) = 0 is given by

x (t) = c1t
q−1 + c2t

q−2 + ...+ cnt
q−n,

where ci ∈ R, i = 1, 2, ..., n, n− 1 < α ≤ n.

Lemma 1.2 ([16]). Let q > 0. Then for x ∈ L1 (0, T ) and Dqx ∈ L1 (0, T ) ,

JqDqx (t) = x (t) + c1t
q−1 + c2t

q−2 + ...+ cnt
q−n,

for some ci ∈ R, i = 1, 2, ..., n, n = [α] + 1.

In order to define the solution for the problem (1), we need the following
lemma:

Lemma 1.3. For any g ∈ C [0, T ]∩L (0, T ) , the unique solution of boundary
value problem

(2)

{
Dβ (Dα + λ)x (t) = g (t) , t ∈ [0, T ] , 0 < β,α < 1,

J1−α (x (0)) = 0, J2−α−β (x (T ))−BJα+β−1 (x (η)) = 0, 0 < η < T,

is given by:

x (t) =

∫ t

0

(t− s)α+β−1

Γ (α+ β)
g (s) ds− λ

∫ t

0

(t− s)α−1

Γ (α)
x (s) ds

− tα+β−1

(T − Λ)Γ (α+ β)

[∫ T

0
(T − s) g (s) ds

+ λ

∫ T

0

(T − s)1−β

Γ (2− β)
x (s) ds

]
+

Btα+β−1

(T − Λ)Γ (α+ β)

×

[∫ η

0

(η − s)2α+2β−2

Γ (2α+ 2β − 1)
g (s) ds− λ

∫ η

0

(η − s)2α+β−2

Γ (2α+ β − 1)
x (s) ds

]
.

(3)

where Λ := Bη2α+2β−2

Γ(2α+2β−1) and T ̸= Λ.

Proof. By applying Lemma 1.1 and Lemma 1.2, the solution of (2) is written
as

(4) x (t) = Jα+βg (t)− λJαx (t)− c1
Γ (β)

Γ (α+ β)
tα+β−1 − c2t

α−1,
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where c0 and c1 are arbitrary constants. By the boundary condition J1−αx (0)
= 0, we conclude that c2 = 0.

Now, by taking the Riemann-Liouville fractional integral of order 2−α−β
and α+ β − 1 for (4), we get

J2−α−βx (t) = J2g (t)− λJ2−βx (t)− c1Γ (β) t.

and

Jα+β−1x (t) = J2α+2β−1g (t)− λJ2α+β−1x (t)− c1
Γ (β)

Γ (2α+ 2β − 1)
t2α+2β−2,

Using the boundary condition J2−α−βx (T ) − BJα+β−1x (η) = 0, we obtain
that

c1 =
1

Γ (β) (T − Λ)

[
J2g (T )− λJ2−βx (T )−BJ2α+2β−1g (η)

+λBJ2α+β−1x (η)
]
,

Substituting the value of c0 and c1 in (4), we obtain the solution (3). □

2. MAIN RESULT

We denote byX = C ([0, T ] ,R) the Banach space of all continuous functions
from [0, T ] to R endowed with a topology of uniform convergence with the norm
defined by ∥x∥ = supt∈[0,T ] |x (t)| .

In view of Lemma 1.3, we can transform the problem (1) into an equivalent
fixed point problem ϕx = x, where the operator ϕ : X → X is defined by:

ϕx (t) = θ

∫ t

0

(t− s)α+β−1

Γ (α+ β)
f (s, x (s)) ds

+A

∫ t

0

(t− s)α+β+δ−1

Γ (α+ β + δ)
h (s, x (s)) ds− λ

∫ t

0

(t− s)α−1

Γ (α)
x (s) ds

− tα+β−1

Γ (α+ β) (T − Λ)

[
θ

∫ T

0
(T − s) f (s, x (s)) ds

+ A

∫ T

0

(T − s)δ+1

Γ (δ + 2)
h (s, x (s)) ds+ λ

∫ T

0

(T − s)1−β

Γ (2− β)
x (s) ds

]

+
Btα+β−1

Γ (α+ β) (T − Λ)

[
θ

∫ η

0

(η − s)2α+2β−2

Γ (2α+ 2β − 1)
f (s, x (s)) ds

+A

∫ η

0

(η − s)2α+2β+δ−2

Γ (2α+ 2β + δ − 1)
h (s, x (s)) ds

+ λ

∫ η

0

(η − s)2α+β−2

Γ (2α+ β − 1)
x (s) ds

]
.

(5)
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Observe that the existence of a fixed point for the operator ϕ implies the
existence of a solution for the problem (1).

For convenience we introduce the notations:

∇1 : =
|θ|Tα+β

Γ (α+ β + 1)
+

|A|Tα+β+δ

Γ (α+ β + δ + 1)
+

Tα+β−1

Γ (α+ β) |T − Λ|
(6)

×
[
|θ|T 2

2
+

|A|T δ+2

Γ (δ + 3)
+

|θB| η2α+2β−1

Γ (2α+ 2β)
+

|AB| η2α+2β+δ−1

Γ (2α+ 2β + δ)

]
,

and

(7) ∇2 := |λ|
[

Tα

Γ (α+ 1)
+

Tα+β−1

Γ (α+ β) |T − Λ|

(
T 2−β

Γ (3− β)
+

|B| η2α+β−1

Γ (2α+ β)

)]
.

2.1. EXISTENCE AND UNIQUENESS SOLUTIONS VIA BANACH’S FIXED POINT

THEOREM

The first results are based on Banach’s fixed point theorem. We prove the
following theorem:

Theorem 2.1. Let f, h : [0, T ]×R → R be continuous functions satisfying
the hypothesis

(H1) there exist nonnegative constants ωi, i = 1, 2, such that for all t ∈ [0, T ]
and all x, y ∈ R, we have

|f (t, x)− f (t, y)| ≤ ω1 |x− y| , |h (t, x)− h (t, y)| ≤ ω2 |x− y| .
Then the boundary value problem (1) has a unique solution provided by ω∇1 <
1−∇2, where ω = max {ωi : i = 1, 2}, ∇1 and ∇2 are defined by (6)and (7),
respectively.

Proof. Assume that N = max {Ni : i = 1, 2}, where Ni are finite num-
bers given by N1 = supt∈[0,T ] |f (t, 0)|, N2 = supt∈[0,T ] |h (t, 0)|. Setting r ≥

N∇1
1−(∇1ω+∇2)

, we show that ϕBr ⊂ Br, where Br = {x ∈ X : ∥x∥ ≤ r}. For

x ∈ Br we find the following estimates based on the hypothesis (H1):

|f (s, x (s))| ≤ |f (s, x (s))− f (s, 0)|+ |f (s, 0)| ≤ ω1r +N1,

and
|h (s, x (s))| ≤ |h (s, x (s))− h (s, 0)|+ |h (s, 0)| ≤ ω2r +N2.

Using these estimates, we can write

∥ϕx∥ ≤ sup
t∈[0,T ]

{
|θ|
∫ t

0

(t− s)α+β−1

Γ (α+ β)
|f (s, x (s))| ds

+ |A|
∫ t

0

(t− s)α+β+δ−1

Γ (α+ β + δ)
|h (s, x (s))| ds+ |λ|

∫ t

0

(t− s)α−1

Γ (α)
|x (s)|ds

+
tα+β−1

Γ (α+ β) |T − Λ|

[
|θ|
∫ T

0
(T − s) |f (s, x (s))|ds
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+ |A|
∫ T

0

(T − s)δ+1

Γ (δ + 2)
|h (s, x (s))| ds+ |λ|

∫ T

0

(T − s)1−β

Γ (2− β)
|x (s)| ds

]

+
|B| tα+β−1

Γ (α+ β) |T − Λ|

[
|θ|
∫ η

0

(η − s)2α+2β−2

Γ (2α+ 2β − 1)
|f (s, x (s))|ds

+ |A|
∫ η

0

(η − s)2α+2β+δ−2

Γ (2α+ 2β + δ − 1)
|h (s, x (s))|ds

+ |λ|
∫ η

0

(η − s)2α+β−2

Γ (2α+ β − 1)
|x (s)|ds

]}

≤ (ωr +N)

{
|θ|Tα+β

Γ (α+ β + 1)
+

|A|Tα+β+δ

Γ (α+ β + δ + 1)
+

Tα+β−1

Γ (α+ β) |T − Λ|

×
[
|θ|T 2

2
+

|A|T δ+2

Γ (δ + 3)
+

|θB| η2α+2β−1

Γ (2α+ 2β)
+

|AB| η2α+2β+δ−1

Γ (2α+ 2β + δ)

]}
+ |λ|

[
Tα

Γ (α+ 1)
+

Tα+β−1

Γ (α+ β) |T − Λ|

(
T 2−β

Γ (3− β)
+

|B| η2α+β−1

Γ (2α+ β)

)]
r

= (ωr +N)∇1 +∇2r ≤ r,

which implies that ϕBr ⊂ Br. Now for x, y ∈ Br and for all t ∈ [0, T ], we
obtain:

∥ϕx− ϕy∥ ≤ sup
t∈[0,T ]

{
|θ|
∫ t

0

(t− s)α+β−1

Γ (α+ β)
|f (s, x (s))− f (s, y (s))|ds

+ |A|
∫ t

0

(t− s)α+β+δ−1

Γ (α+ β + δ)
|h (s, x (x))− h (s, y (x))|ds

+ |λ|
∫ t

0

(t− s)α−1

Γ (α)
|x (s)− y (s)| ds+ tα+β−1

Γ (α+ β) |T − Λ|

×

[
|θ|
∫ T

0
(T − s) |f (s, x (s))− f (s, y (s))| ds

+ |A|
∫ T

0

(T − s)δ+1

Γ (δ + 2)
|h (s, x (x))− h (s, y (x))|ds

+ |λ|
∫ T

0

(T − s)1−β

Γ (2− β)
|x (s)− y (s)|ds

]

+
|B| tα+β−1

Γ (α+ β) |T − Λ|

[
|θ|
∫ η

0

(η − s)2α+2β−2

Γ (2α+ 2β − 1)
|f (s, x (s))− f (s, y (s))|ds

+ |A|
∫ η

0

(η − s)2α+2β+δ−2

Γ (2α+ 2β + δ − 1)
|h (s, x (x))− h (s, y (x))| ds
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+ |λ|
∫ η

0

(η − s)2α+β−2

Γ (2α+ β − 1)
|x (s)− y (s)|ds

]}

≤ ω

{
|θ|Tα+β

Γ (α+ β + 1)
+

|A|Tα+β+δ

Γ (α+ β + δ+)
+

Tα+β−1

|T − Λ|Γ (α+ β)

×
[
|θ|T 2

2
+

|A|T δ+2

Γ (δ + 3)
+

|θB| η2α+2β−1

Γ (2α+ 2β)
+

|AB| η2α+2β+δ−1

Γ (2α+ 2β + δ)

]}
∥x− y∥

+ |λ|
[

Tα

Γ (α+ 1)
+

Tα+β−1

Γ (α+ β) |T − Λ|

(
T 2−β

Γ (3− β)
+

|B| η2α+β−1

Γ (2α+ β)

)]
∥x− y∥

= (ω∇1 +∇2) ∥x− y∥ ,

which leads to ∥ϕx− ϕy∥ ≤ (ω∇1 +∇2) ∥x− y∥. Since ω∇1 < 1−∇2, ϕ is a
contraction mapping. □

Now we give another existence and uniqueness result for problem (1) by
using Banach’s fixed point theorem and Hölder’s inequality.

Theorem 2.2. Suppose that the continuous functions f, h : [0, T ]×R → R.
Assume that:

(H2) |f (t, x)− f (t, y)| ≤ a (t) |x− y| , |h (t, x)− h (t, y)| ≤ b (t) |x− y| , for
each t ∈ [0, T ] , x, y ∈ R, where a, b ∈ L

1
σ ([0, T ] ,R+) , and σ ∈ (0, 1) .

Denote ∥ϑ∥σ =
(∫ T

0 |ϑ (s)|
1
σ ds

)σ
.

If

(8) |θ| ∥a∥σ Λ1 + |A| ∥b∥σ Λ2 < 1−∇2,

where

Λ1 :=
Tα+β−σ

Γ (α+ β)

(
1− σ

α+ β − σ

)1−σ

+
Tα+β−1

Γ (α+ β) |T − Λ|

×

(
T 2−σ

(
1− σ

2− σ

)1−σ

+
|B| η2α+2β−σ−1

Γ (2α+ 2β − 1)

(
1− σ

2α+ 2β − σ − 1

)1−σ
)
,

Λ2 :=
Tα+β+δ−σ

Γ (α+ β + δ)

(
1− σ

α+ β + δ − σ

)1−σ

+
Tα+β−1

Γ (α+ β) |T − Λ|

(
T δ+2−σ

Γ (δ + 2)

(
1− σ

δ + 2− σ

)1−σ

+
|B| η2α+2β+δ−σ−1

Γ (2α+ 2β + δ − 1)

(
1− σ

2α+ 2β + δ − σ − 1

)1−σ
)
.

(9)

and ∇2 is given by (7). Then the boundary value problem (1) has a unique
solution.
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Proof. For x, y ∈ X and t ∈ [0, T ] , by Hölder inequality and using (H2), we
have:

∥ϕx− ϕy∥ ≤ sup
t∈[0,T ]

{
|θ|

Γ (α+ β)

∫ t

0

(
(t− s)

α+β−1
1−σ ds

)1−σ
(∫ 1

0
a (s)

1
σ ds

)σ

+
|A|

Γ (α+ β + δ)

∫ t

0

(
(t− s)

α+β+δ−1
1−σ ds

)1−σ
(∫ 1

0
b (s)

1
σ ds

)σ

+
tα+β−1

Γ (α+ β) |T − Λ|

[
|θ|
∫ T

0

(
(T − s)

1
1−σ ds

)1−σ
(∫ 1

0
a (s)

1
σ ds

)σ

+
|A|

Γ (δ + 2)

∫ T

0

(
(T − s)

δ+1
1−σ ds

)1−σ
(∫ 1

0
b (s)

1
σ ds

)σ
]
+

|B| tα+β−1

Γ (α+ β) |T − Λ|

×

[
|θ|

Γ (2α+ 2β − 1)

∫ η

0

(
(η − s)

2α+2β−2
1−σ ds

)1−σ
×
(∫ 1

0
a (s)

1
σ

)σ

ds

+
|A|

Γ (2α+ 2β + δ − 1)

∫ η

0

(
(η − s)

2α+2β+δ−2
1−σ ds

)1−σ
(∫ 1

0
b (s)

1
σ ds

)σ
]

+ |λ|
[

tα

Γ (α+ 1)
+

tα+β−1

Γ (α+ β) |T − Λ|

(
T 2−β

Γ (3− β)
+

|B| η2α+β−1

Γ (2α+ β)

)]}
∥x− y∥

≤ |θ| ∥a∥σ

{[
Tα+β−σ

Γ (α+ β)

(
1− σ

α+ β − σ

)1−σ

+
Tα+β−1

Γ (α+ β) |T − Λ|

×

(
T 2−σ

(
1− σ

2− σ

)1−σ

+
|B| η2α+2β−σ−1

Γ (2α+ 2β − 1)

(
1− σ

2α+ 2β − σ − 1

)1−σ
)]

+ |A| ∥b∥σ

[
Tα+β+δ−σ

Γ (α+ β + δ)

(
1− σ

α+ β + δ − σ

)1−σ

+
Tα+β−1

Γ (α+ β) |T − Λ|

×

(
T δ+2−σ

Γ (δ + 2)

(
1− σ

δ + 2− σ

)1−σ

+
|B| η2α+2β+δ−σ−1

Γ (2α+ 2β + δ − 1)

(
1− σ

2α+ 2β + δ − σ − 1

)1−σ
)]

+ |λ|
[

Tα

Γ (α+ 1)
+

Tα+β−1

Γ (α+ β) |T − Λ|

(
T 2−β

Γ (3− β)
+

|B| η2α+β−1

Γ (2α+ β)

)]}
∥x− y∥

= (|θ| ∥a∥σ Λ1 + |A| ∥b∥σ Λ2 +∇2) ∥x− y∥ .

Therefore,

∥ϕx− ϕy∥ ≤ (|θ| ∥a∥σ Λ1 + |A| ∥b∥σ Λ2 +∇2) ∥x− y∥ .
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By the condition (8), it follows that ϕ is a contraction mapping. Hence, by the
Banach’s fixed point theorem ϕ has a unique fixed point which is the unique
solution of the boundary value problem (1). Then, the proof is complete. □

2.2. EXISTENCE SOLUTIONS VIA LERAY-SCHAUDER’S NONLINEAR

ALTERNATIVE AND LERAY-SCHAUDER DEGREE

Now, we prove the existence of solutions of problem (1) by applying Leray-
Schauder nonlinear alternative [21].

Theorem 2.3 (Nonlinear alternative for single valued maps). Let E be a
Banach space, C a closed, convex subset of E, Ω an open subset of C and
0 ∈ Ω. Suppose that ϕ : Ω → C is a continuous, compact (that is, ϕ(Ω) is a
relatively compact subset of C) map. Then either

(i) ϕ has a fixed point in Ω, or
(ii) there is a x ∈ ∂Ω (the boundary of Ω in C) and ρ ∈ (0, 1) with x = ρϕx.

Theorem 2.4. Assume that f, h : [0, T ]×R → R, are continuous functions.
Suppose that:

(H3) there exists nondecreasing functions ψ1, ψ2 : R+ → R+, and functions
p, q ∈ C ([0, T ] ,R+) , such that

|f (t, x)| ≤ p (t)ψ1 (∥x∥) , |h (t, x)| ≤ q (t)ψ2 (∥x∥) , for all (t, x) ∈ [0, T ]×R.

(H4) there exists a constant L > 0 such that

L

|θ| ∥p∥L1 ψ1 (L)∆1 + |A| ∥q∥L1 ψ2 (L)∆2 +∇2L
> 1,

where

∆1 :=
Tα+β

Γ (α+ β + 1)

+
Tα+β−1

Γ (α+ β) |T − Λ|

(
T 2

2
+

|B| η2α+2β−1

Γ (2α+ 2β)

)
,

∆2 :=
Tα+β+δ

Γ (α+ β + δ + 1)

+
Tα+β−1

Γ (α+ β) |T − Λ|

(
T δ+2

Γ (δ + 3)
+

|B| η2α+2β+δ−1

Γ (2α+ 2β + δ)

)
,

(10)

and ∇2 is given by (7). Then the problem (1) has at least one solution on
[0, T ] .

Proof. Let the operator ϕ : X → X be defined by (5). Firstly, we will show
that ϕ maps bounded sets (balls) into bounded sets in X. For a number r > 0,
let Br = {x ∈ X : ∥x∥ ≤ r} be a bounded ball in X. Then, for t ∈ [0, T ], we
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have

|ϕx (t)| ≤ |θ|
∫ t

0

(t− s)α+β−1

Γ (α+ β)
p (s)ψ1 (∥x∥) ds

+ |A|
∫ t

0

(t− s)α+β+δ−1

Γ (α+ β + δ)
q (s)ψ2 (∥x∥) ds+ |λ|

∫ t

0

(t− s)α−1

Γ (α)
|x (s)| ds

+
tα+β−1

Γ (α+ β) |T − Λ|

[
|θ|
∫ T

0
(T − s) p (s)ψ1 (∥x∥) ds

+ |A|
∫ T

0

(T − s)δ+1

Γ (δ + 2)
q (s)ψ2 (∥x∥) ds+ |λ|

∫ T

0

(T − s)1−β

Γ (2− β)
|x (s)| ds

]

+
|B| tα+β−1

Γ (α+ β) |T − Λ|

[
|θ|
∫ η

0

(η − s)2α+2β−2

Γ (2α+ 2β − 1)
p (s)ψ1 (∥x∥) ds

+ |A|
∫ η

0

(η − s)2α+2β+δ−2

Γ (2α+ 2β + δ − 1)
q (s)ψ2 (∥x∥) ds+ |λ|

∫ η

0

(η − s)2α+β−2

Γ (2α+ β − 1)
|x (s)|ds

]

≤ |θ| ∥p∥L1 ψ1 (r)

[
Tα+β

Γ (α+ β + 1)
+

Tα+β−1

Γ (α+ β) |T − Λ|

(
T 2

2
+

|B| η2α+2β−1

Γ (2α+ 2β)

)]
+ |A| ∥q∥L1 ψ2 (r)

[
Tα+β+δ

Γ (α+ β + δ + 1)
+

Tα+β−1

Γ (α+ β) |T − Λ|

×
(

T δ+2

Γ (δ + 3)
+

|B| η2α+2β+δ−1

Γ (2α+ 2β + δ)

)]
+ |λ|

[
Tα

Γ (α+ 1)
+

Tα+β−1

Γ (α+ β) |T − Λ|

(
T 2−β

Γ (3− β)
+

|B| η2α+β−1

Γ (2α+ β)

)]
r.

Consequently,

∥ϕx∥ ≤ |θ| ∥p∥L1 ψ1 (r)∆1 + |A| ∥q∥L1 ψ2 (r)∆2 +∇2r.

Next, we show that ϕ maps bounded sets into equicontinuous sets of X. Let
t1, t2 ∈ [0, T ] with t1 < t2 and x ∈ Br. Then, we have

|ϕx (t2)− ϕx (t1)| ≤
|θ| ∥p∥L1 ψ1 (r)

Γ (α+ β + 1)

(
tα+β
2 − tα+β

1

)
+

|A| ∥q∥L1 ψ2 (r)

Γ (α+ β + δ + 1)

(
tα+β+δ
2 − tα+β+δ

1

)
+

|λ|
Γ (α+ 1)

(tα2 − tα1 )

+

[
|θ| ∥p∥L1 ψ1 (r)

(
T 2

2
+

|B| η2α+2β−1

Γ (2α+ 2β)

)
+

+ |A| ∥q∥L1 ψ2 (r)

(
T δ+1

Γ (δ + 3)
+

|B| η2α+2β+δ−1

Γ (2α+ 2β + δ)

)
+ |λ|

(
T 2−β

Γ (3− β)
+

|B| η2α+β−1

Γ (2α+ β)

)
r

](
tα+β−1
2 − tα+β−1

1

)
.
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Obviously, the right-hand side of the above inequality tends to zero indepen-
dently of x ∈ Br as t2−t1 → 0. Therefore, ϕ : X → X is completely continuous
by application of the Arzela-Ascoli theorem.

Now, we can conclude the result by using the Leray-Schauder’s nonlinear
alternative theorem. Consider the equation x = ρϕx for 0 < ρ < 1 and
assume that x be a solution. Then, using the computations in proving that ϕ
is bounded, we have

∥x∥ = ∥ρϕx∥ ≤ |θ| ∥p∥L1 ψ1 (∥x∥)

×
[
Tα+β−1

Γ (α+ β)
+

Tα+β−1

Γ (α+ β) |T − Λ|

(
T +

|B| η2α+2β−2

Γ (2α+ 2β − 1)

)]
+ |A| ∥q∥L1 ψ2 (∥x∥)

[
Tα+β+δ−1

Γ (α+ β + δ)
+

Tα+β−1

Γ (α+ β) |T − Λ|

×
(

T δ+2

Γ (δ + 3)
+

|B| η2α+2β+δ−2

Γ (2α+ 2β + δ − 1)

)]
+ |λ|

[
Tα

Γ (α+ 1)
+

Tα+β−1

Γ (α+ β) |T − Λ|

(
T 2−β

Γ (3− β)
+

|B| η2α+β−1

Γ (2α+ β)

)]
∥x∥

= |θ| ∥p∥L1 ψ1 (∥x∥)∆1 + |A| ∥q∥L1 ψ2 (∥x∥)∆2 +∇2 ∥x∥ .
Therefore,

∥x∥
|θ| ∥p∥L1 ψ1 (∥x∥)∆1 + |A| ∥q∥L1 ψ2 (∥x∥)∆2 +∇2 ∥x∥

≤ 1.

By (H4) there exists L such that L ̸= ∥x∥ . Let us set
Ω := {x ∈ X : ∥x∥ < L} .

We see that the operator ϕ : Ω → X is continuous and completely continuous.
From the choice of Ω, there is no x ∈ ∂Ω such that x = ρϕx for some 0 <
ρ < 1. Consequently, by the nonlinear alternative of Leray-Schauder’s type,
we deduce that ϕ has a fixed point x ∈ Ω which is a solution of the problem
(1). This completes the proof. □

Theorem 2.5. Let f, h : [0, T ]× R → R be continuous functions. Suppose
that

(H5) there exist constants 0 ≤ m < 1−∇2
|θ|∆1+|A|∆2

and Mi > 0, i = 1, 2 such

that

|f (t, x)| ≤ m1 (|x|) +M1, |h (t, x)| ≤ m2 (|x|) +M2, (t, x) ∈ [0, T ]× R,
where m = max {mi : i = 1, 2} , M = max {Mi : i = 1, 2} . Then the problem
(1) has at least one solution on [0, T ] .

Proof. We define an operator ϕ : X → X as in (5) and consider the fixed
point equation x = ϕx. We shall prove that there exists a fixed point x ∈ X
satisfying (1). It is sufficient to show that ϕ : Br → X satisfies

(11) x ̸= µϕx, ∀ (x, µ) ∈ ∂Br × [0, 1] ,
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where

Br :=

{
x ∈ X : max

t∈[0,T ]
|x (t)| < r, r > 0

}
.

We define W (µ, x) = µϕx, (x, µ) ∈ X × [0, 1]. As shown in Theorem 2.4,
the operator ϕ is continuous, uniformly bounded, and equicontinuous. Then,
by the Arzela- Ascoli theorem, a continuous map wµ defined by wµ = x −
W (µ, x) = x−µϕx is completely continuous. If (11) holds, then the following
Leray-Schauder degrees are well defined and by the homotopy invariance of
topological degree, it follows that

deg (wµ, Br, 0) = deg (I − µϕ,Br, 0) = deg (w1, Br, 0) = deg (w0, Br, 0)

= deg (I,Br, 0) = 1 ̸= 0, 0 ∈ Br,

where I denotes the identity operator. By the nonzero property of Leray-
Schauder’s degree, w1(x) = x − ϕx = 0 for at least one x ∈ Br. In order to
prove (11), we assume that x = µϕx for some µ ∈ [0, 1] and for all t ∈ [0, T ] .
Then

ϕx (t) = |µϕx (t)| ≤ (m |x (t)|+M) |θ|

×
[

Tα+β

Γ (α+ β + 1)
+

Tα+β−1

Γ (α+ β) |T − Λ|

(
T 2

2
+

|B| η2α+2β−1

Γ (2α+ 2β)

)]
+ (m |x (t)|+M) |A|

[
Tα+β+δ

Γ (α+ β + δ + 1)
+

Tα+β−1

Γ (α+ β) |T − Λ|

×
(

T δ+2

Γ (δ + 3)
+

|B| η2α+2β+δ−1

Γ (2α+ 2β + δ)

)]
+ |λ|

[
Tα

Γ (α+ 1)
+

Tα+β−1

Γ (α+ β) |T − Λ|

(
T 2−β

Γ (3− β)
+

|B| η2α+β−1

Γ (2α+ β)

)]
|x (t)|

= (m |x (t)|+M) [|θ|∆1 + |A|∆2] +∇2 |x (t)| .

Taking norm supt∈[0,T ] |x (t)| = ∥x∥ , we get

∥x∥ ≤ (m ∥x∥+M) [|θ|∆1 + |A|∆2] + ∥x∥∇2,

which implies that

∥x∥ ≤ L [|θ|∆1 + |A|∆2]

1−m [|θ|∆1 + |A|∆2]−∇2
.

If r = L[|θ|∆1+|A|∆2]
1−m[|θ|∆1+|A|∆2]−∇2

+ 1, then inequality (11) holds. This completes the

proof. □

Remark 2.6. If p (t) = q (t) = 1 and ψ1 (x) = m1 (|x|) + M1, ψ2 (x) =
m2 (|x|) +M2, then the theorem 2.4 can be reduced to theorem 2.5.
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3. EXAMPLES

To illustrate our main results, we treat the following examples.

Example 3.1. Let us consider the following fractional difference nonlocal
boundary value problem:

(12)

{
D

1
2

(
D

2
3 + 1

13

)
x (t) = θf (t, x (t)) +AJ

1
3h (t, x (t)) , t ∈ [0, 1] ,

J1−α (x (0)) = 0, J2−α−β (x (1))− 2Jα+β−1
(
x
(
3
5

))
= 0.

For this example, we have θ = A = 1 and f (t, x) = e−πt2x(t)

(32
√
π+e−πt)(1+x(t))

,

h (t, x) = sin(2πx(t))

16π(t+2)2
. Also for x, y ∈ R and t ∈ [0, 1] , we have

|f (t, x)− f (t, y)| ≤ 1

32
√
π + 1

|x− y| ,

|h (t, x)− h (t, y)| ≤ 1

32π
|x− y| .

Hence,

ω1 =
1

32
√
π + 1

, ω2 =
1

32π
, ∇1 = 2. 687 2,∇2 = 0.162 89,

and

ω = max {ωi, i = 1, 2} =
1

32
√
π + 1

.

Therefore, we haveω∇1 = 4. 655 7×10−2 < 1−∇2 = 1−0.162 89.Hence, all the
hypotheses of Theorem 2.1 are satisfied. Thus, by the conclusion of Theorem
2.1, problem (12) has a unique solution.

Example 3.2. As a second illustrative example, let us take

(13)

{
D

2
5

(
D

1
4 + 1

10

)
x (t) = 1

3f (t, x (t)) +
1
7J

1
5h (t, x (t)) , t ∈ [0, 1] ,

J1−α (x (0)) = 0, J2−α−β (x (1))−
√
3Jα+β−1

(
x
(
2
7

))
= 0.

Here,

f (t, x) =
sinx (t)

16π + cos2 x (t)
+

3 + sinh
(
et

2
)

2π
,

h (t, x) =
2 sin

(
x(t)
2

)
20
√
π + cos2 x (t)

+
2 + cosh (πt+ 1)√

π + 3
.

Then we can find that∆1 = 2. 058 1, ∆2 = 1. 813 7, ∇2 = 0.139 6. Clearly,

|f (t, x)| =

∣∣∣∣∣∣ sinx (t)

16π + cos2 x (t)
+

3 + sinh
(
et

2
)

2π

∣∣∣∣∣∣ ≤
3 + sinh

(
et

2
)

16π

 (|x|+ 8) ,
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|h (t, x)| =

∣∣∣∣∣∣
2 sin

(
x(t)
2

)
15
√
π + cos2 x (t)

+
2 + cosh (

√
πt+ 1)

3
√
π + 3

∣∣∣∣∣∣
≤
(
2 + cosh (

√
πt+ 1)

15
√
π

)
(|x|+ 5) .

Choosing p (t) =
3+sinh

(
et

2
)

16π , q (t) = 2+cosh(πt+1)
15

√
π

and ψ1 (|x|) = |x|+2
16π , ψ2 (|x|)

= |x| + 5, we can show that L
|θ|∥p∥L1 (L+5)∆1+|A|∥q∥L1 (L+5)∆2+∇2L

> 1, which

implies L > 12, 061. Hence, by Theorem 2.4, the problem (13) has at least one
solution on [0, 1] .

Example 3.3. Our third example is the following:

(14)

{
D

3
4

(
D

4
5 + 1

17

)
x (t) = 2

3f (t, x (t)) +
1
4J

5
6h (t, x (t)) , t ∈ [0, 1] ,

J1−α (x (0)) = 0, J2−α−β (x (1))− 5
3J

α+β−1
(
x
(
1
3

))
= 0,

where, f (t, x) = 3
8 sin

(
|x|
3

)
+ 2|x|

1+|x| , h (t, x) =
3

16π sin
(
2π
3 |x|

)
+ |x|

1+2|x| +
1
2 ,

f (t, x) =

∣∣∣∣38 sin

(
|x|
3

)
+

2 |x|
1 + |x|

∣∣∣∣ ≤ 1

8
|x|+ 2,

h (t, x) =

∣∣∣∣ 3

16π2
sin

(
2π

3
|x|
)
+

|x|
1 + 2 |x|

+
1

2

∣∣∣∣ ≤ 1

8π
|x|+ 1,

∆1 = 1. 960 6, ∆2 = 0.806 34, ∇2 = 0.214 22.

Clearly L = max {Li, i = 1, 2} = 2 and m = max {mi, i = 1, 2} = 1
8 <

1−∇2
|θ|∆1+|A|∆2

= 0.520 85. Thus, all the conditions of Theorem 2.5 are satisfied

and consequently the problem (14) has at least one solution.
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