DIFFERENTIAL IDENTITIES IN PRIME RINGS

ABDELKARIM BOUA and AHMED Y. ABDELWANIS

Abstract. Let \mathcal{R} be a prime ring with center $Z(\mathcal{R})$ and $\alpha, \beta: \mathcal{R} \to \mathcal{R}$ be automorphisms. This paper is divided into two parts. The first tackles the notions of (generalized) skew derivations on \mathcal{R} , as the subject of the present study, several characterization theorems concerning commutativity of prime rings are obtained and an example proving the necessity of the primeness hypothesis of \mathcal{R} is given. The second part of the paper tackles the notions of symmetric Jordan bi (α, β) -derivations. In addition, the researchers illustrated that for a prime ring with $\operatorname{char}(\mathcal{R}) \neq 2$, every symmetric Jordan bi (α, α) -derivation D of \mathcal{R} is a symmetric bi (α, α) -derivation.

MSC 2010. 16W25, 16U80.

Key words. Prime rings, skew derivations, symmetric Jordan bi (α, β) -derivation

1. INTRODUCTION

It is worth mentioning that the notion of derivation was extended to the notion of skew derivation as follows: an additive map $D: \mathcal{R} \to \mathcal{R}$ is called skew derivation (or skew derivation associated with α) if $D(xy) = D(x)y + \alpha(x)D(y)$ for all $x, y \in \mathcal{R}$ where $\alpha: \mathcal{R} \to \mathcal{R}$ is an automorphism. Also, the concepts of derivation, generalized derivation and skew derivation were extended to the concept of a generalized skew derivation (or generalized skew derivation associated with D and α) if $F(xy) = F(x)y + \alpha(x)D(y)$ for all $x, y \in \mathcal{R}$, where D is a skew derivation and $\alpha: \mathcal{R} \to \mathcal{R}$ is an automorphism. There has been a continuous enthusiasm concerning the connection between the commutativity of a prime ring \mathcal{R} and the behavior of a derivation or generalized derivation on \mathcal{R} (see [1], [2], where further references can be found).

Herstein, as in [7], defined the Jordan derivation on associative rings and proved that for prime rings of characteristic different from 2, a Jordan derivation is an ordinary derivation. Also, 1988, Bresar and Vukman gave an alternative proof of the result in [1]. As in [5], Bresar and Vukman defined left derivation from a ring to a left \mathcal{R} module Y and they showed the existence of a nonzero Jordan left derivation of \mathcal{R} into Y implies \mathcal{R} is commutative. The

DOI: 10.24193/mathcluj.2021.2.06

The authors thank the referee for his helpful comments and suggestions.

concept of a symmetric bi-derivation was presented and studied by Maksa as in [8].

In the following, \mathcal{R} denotes an associative ring with center $Z(\mathcal{R})$. Additionally, we will write for all $x, y \in \mathcal{R}$, the symbol [x, y] sign to the commutator xy - yx and the symbol $x \circ y$ sign to the anti-commutator xy + yx. Our objective in this paper is to extend the result [3, Theorem 2.6] to generalized skew derivation, and also to generalize some results which exist in [6] in the case where D is a symmetric Jordan bi- (α, β) -derivation.

2. GENERALIZED SKEW DERIVATIONS IN PRIME RINGS

Let $\alpha : \mathcal{R} \to \mathcal{R}$ be an automorphism of \mathcal{R} . In this section, we suppose that d is a nonzero skew derivation associated with α and G is a generalized skew derivation associated with d and α . By abbreviation, we note that d is a nonzero skew derivation and G is a generalized skew derivation. Also we shall make use of the following identities without any specific mention:

- (i) [xy, t] = x[y, t] + [x, t]y for all $x, y, t \in \mathcal{R}$.
- (ii) [x, yt] = y[x, t] + [x, y]t for all $x, y, t \in \mathcal{R}$.

The following lemma is a generalization of a result of E. Posner for more details see [9, Lemma 3].

LEMMA 2.1. Let \mathcal{R} be a prime ring. If $d: \mathcal{R} \to \mathcal{R}$ is a nonzero skew derivation of \mathcal{R} such that [d(x), x] = 0 for all $x \in \mathcal{R}$, then \mathcal{R} is commutative.

Proof. Suppose that

(1)
$$[d(x), x] = 0 \text{ for all } x \in \mathcal{R}.$$

Linearizing (1), we obtain

(2)
$$[d(x), y] + [d(y), x] = 0 \text{ for all } x, y \in \mathcal{R}.$$

Taking yx instead of y in (2), we get

(3)
$$[d(x), yx] + [d(y)x + \alpha(y)d(x), x] = 0 \text{ for all } x, y \in \mathcal{R}.$$

This can be rewritten as

$$[d(x), y]x + [d(y), x]x + [\alpha(y)d(x), x] = 0 \text{ for all } x, y \in \mathcal{R}.$$

Using (2), (4) becomes $[\alpha(y)d(x), x] = 0$ for all $x, y \in \mathcal{R}$ which implies that $\alpha(y)d(x)x = x\alpha(y)d(x)$ for all $x, y \in \mathcal{R}$. Replacing y by $\alpha^{-1}(t)y$ where $t \in \mathcal{R}$ in the last relation and use it to get $tx\alpha(y)d(x) = xt\alpha(y)d(x)$ for all $x, y, t \in \mathcal{R}$. So $[x,t]\alpha(y)d(x) = 0$ for all $x,y,t \in \mathcal{R}$. Since α is an automorphism of \mathcal{R} , we obtain $[x,t]\mathcal{R}d(x) = \{0\}$ for all $x,t \in \mathcal{R}$ and the primeness of \mathcal{R} yields that $x \in Z(\mathcal{R})$ or d(x) = 0 for all $x \in \mathcal{R}$. Therefore, \mathcal{R} is the union of its additive subgroups $Z(\mathcal{R})$ and $H = \{x \in \mathcal{R} \mid d(x) = 0\}$. But a group cannot be the union of two of its proper subgroups. Hence, either $R = Z(\mathcal{R})$ or $\mathcal{R} = H$. Since $d \neq 0$, we conclude that \mathcal{R} is commutative. Hence the proof is complete.

THEOREM 2.2. Let \mathcal{R} be a prime ring with char $(\mathcal{R}) \neq 2$. If G is a generalized skew derivation on \mathcal{R} , then the following assertions are equivalent:

- (i) $G(x \circ y) \in Z(\mathcal{R})$ for all $x, y \in \mathcal{R}$,
- (ii) \mathcal{R} is commutative.

Proof. It is obvious that (ii) \Rightarrow (i). Now we prove

(i) \Rightarrow (ii) Suppose that \mathcal{R} satisfies the following property

(5)
$$G(x \circ y) \in Z(\mathcal{R}) \text{ for all } x, y \in \mathcal{R}.$$

First if $Z(\mathcal{R}) = \{0\}$, so we get $G(x \circ y) = 0$ for all $x, y \in \mathcal{R}$. Replacing y by yx and using the fact that $(x \circ yx) = (x \circ y)x$ we get $0 = \alpha(x \circ y)d(x)$ for all $x, y \in \mathcal{R}$. But α is an automorphism of \mathcal{R} , so we have $-xy\alpha^{-1}(d(x)) = yx\alpha^{-1}(d(x))$ for all $x, y \in \mathcal{R}$. Again substituting y with ty in the last expression and use it to obtain $[x,t]y\alpha^{-1}(d(x)) = 0$ for all $x, y, t \in \mathcal{R}$ i.e. $[x,t]\mathcal{R}\alpha^{-1}(d(x)) = \{0\}$ for all $x, t \in \mathcal{R}$. Since \mathcal{R} is prime, we can easily arrive at $x \in Z(\mathcal{R})$ or d(x) = 0 for all $x \in \mathcal{R}$. From the above we find that \mathcal{R} is commutative.

Second if $Z(\mathcal{R}) \neq \{0\}$, then there exists an element $z \in Z(\mathcal{R}) - \{0\}$. Now from our hypotheses, we get $G(z^2 \circ x) \in Z(\mathcal{R})$, and by using with char $(\mathcal{R}) \neq 2$, we have

(6)
$$G(z^2)x + \alpha(z^2)d(x) \in Z(\mathcal{R}) \text{ for all } x \in \mathcal{R}.$$

Thus $[G(z^2)x + \alpha(z^2)d(x), x] = 0$ for all $x \in \mathcal{R}$, but $G(z^2) \in Z(\mathcal{R})$ from (5), so

(7)
$$G(z^2)[x,x] + \alpha(z^2)[d(x),x] = 0 \text{ for all } x \in \mathcal{R}.$$

Since $\alpha(z^2) \in Z(\mathcal{R})$, (7) becomes

(8)
$$\alpha(z^2)\mathcal{R}[d(x), x] = \{0\} \text{ for all } x \in \mathcal{R}.$$

The fact that α is an automorphism of \mathcal{R} forces that [d(x), x] = 0 for all $x \in \mathcal{R}$, and \mathcal{R} is commutative by Lemma 2.1.

It is clear that if G is a generalized skew derivation on \mathcal{R} associated with a nonzero skew derivation d, then $G \pm id_R$ is also a generalized skew derivation on \mathcal{R} associated with d and α . In this case, when G is replaced by $G \pm id_R$, we obtain the following result:

THEOREM 2.3. Let \mathcal{R} be a prime ring with char $(\mathcal{R}) \neq 2$. If G is a generalized skew derivation on \mathcal{R} , then the following assertions are equivalent:

- (i) $G(x \circ y) (x \circ y) \in Z(\mathcal{R})$ for all $x, y \in \mathcal{R}$.
- (ii) $G(x \circ y) + (x \circ y) \in Z(\mathcal{R})$ for all $x, y \in \mathcal{R}$.
- (iii) \mathcal{R} is commutative.

Notice that if we put $\alpha = id_{\mathcal{R}}$ in the previous theorem we obtain:

COROLLARY 2.4 ([3, Theorem 2.6]). Let \mathcal{R} be a prime ring with char(\mathcal{R}) $\neq 2$ and F is a generalized derivation on \mathcal{R} associated with a nonzero derivation d. Then the following assertions are equivalent:

- (i) $F(x \circ y) (x \circ y) \in Z(\mathcal{R})$ for all $x, y \in \mathcal{R}$.
- (ii) $F(x \circ y) + (x \circ y) \in Z(\mathcal{R})$ for all $x, y \in \mathcal{R}$.
- (iii) \mathcal{R} is commutative.

In the next example, we show that the condition " \mathcal{R} is prime" is necessary in Theorem 2.2 and Theorem 2.3.

EXAMPLE 2.5. Let us defined \mathcal{R} and $G, d, \alpha : \mathcal{R} \to \mathcal{R}$ as follows:

$$\mathcal{R} = \left\{ \begin{pmatrix} 0 & x & y \\ 0 & 0 & z \\ 0 & 0 & 0 \end{pmatrix} \mid x, y, z \in \mathbb{Z} \right\}, \ G \begin{pmatrix} 0 & x & y \\ 0 & 0 & z \\ 0 & 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & x & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$
$$d \begin{pmatrix} 0 & x & y \\ 0 & 0 & z \\ 0 & 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & x & 0 \\ 0 & 0 & z \\ 0 & 0 & 0 \end{pmatrix} \text{ and } \alpha = -id_{\mathcal{R}}.$$

It is clear that \mathcal{R} is not prime with $\operatorname{char}(\mathcal{R}) \neq 2$. Moreover, d is a nonzero skew derivation of \mathcal{R} and G is a generalized skew derivation of \mathcal{R} associated with d and α such that

- (i) $G(x \circ y) \in Z(\mathcal{R})$ for all $x, y \in \mathcal{R}$,
- (ii) $G(x \circ y) x \circ y \in Z(\mathcal{R})$ for all $x, y \in \mathcal{R}$,
- (iii) $G(x \circ y) + x \circ y \in Z(\mathcal{R})$ for all $x, y \in \mathcal{R}$,

but \mathcal{R} is not commutative.

3. SOME RESULTS INVOLVING SYMMETRIC JORDAN BI- (α, β) -DERIVATION

In this section, we investigated some properties of symmetric bi (α, β) -derivation and symmetric Jordan bi (α, β) -derivation for associative rings. We showed that for an associative prime ring with $\operatorname{char}(\mathcal{R}) \neq 2$ if D is a symmetric Jordan bi (α, α) -derivation, then D is symmetric bi (α, α) -derivation.

DEFINITION 3.1. Let \mathcal{R} be an associative ring, $\alpha, \beta : \mathcal{R} \to \mathcal{R}$ are automorphisms and $D : \mathcal{R} \times \mathcal{R} \to \mathcal{R}$ be a symmetric bi-additive mapping. If

$$D(xy, z) = \alpha(x)D(y, z) + D(x, z)\beta(y)$$
 for all $x, y, z \in \mathcal{R}$,

then D is called a symmetric bi- (α, β) -derivation.

DEFINITION 3.2. Let \mathcal{R} be an associative ring, $\alpha, \beta : \mathcal{R} \to \mathcal{R}$ are automorphisms and $D : \mathcal{R} \times \mathcal{R} \to \mathcal{R}$ be a symmetric bi-additive mapping. If

$$D(x^2, z) = \alpha(x)D(x, z) + D(x, z)\beta(x)$$
 for all $x, z \in \mathcal{R}$,

then D is called a symmetric Jordan bi- (α, β) -derivation.

Clearly, every symmetric bi- (α, β) -derivation is a symmetric Jordan bi- (α, β) -derivation. But the converse is not true in general, see the following example:

EXAMPLE 3.3. Let S be a zero-square ring, a ring which verifies $a^2 = 0$ for all $a \in S$. It is obvious that every zero-square ring is anti-commutative, that is, xy + yx = 0 for all $x, y \in S$.

$$\mathcal{R} = \left\{ \left(\begin{array}{ccc} 0 & a & b \\ 0 & 0 & a \\ 0 & 0 & 0 \end{array} \right) \mid a, b \in S \right\}$$

and define the maps $D: \mathcal{R} \times \mathcal{R} \to \mathcal{R}$ and $\alpha: \mathcal{R} \to \mathcal{R}$ as follows:

$$D(\begin{pmatrix} 0 & a & b \\ 0 & 0 & a \\ 0 & 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & x & y \\ 0 & 0 & x \\ 0 & 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & ax & ay + bx \\ 0 & 0 & ax \\ 0 & 0 & 0 \end{pmatrix}$$
$$\alpha \begin{pmatrix} 0 & a & b \\ 0 & 0 & a \\ 0 & 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & -a & b \\ 0 & 0 & -a \\ 0 & 0 & 0 \end{pmatrix}, \beta = \alpha.$$

It is easy to see that D is a symmetric Jordan bi- (α, β) -derivation which is not a symmetric bi- (α, β) -derivation.

THEOREM 3.4. Let \mathcal{R} be a ring with $\operatorname{char}(\mathcal{R}) \neq 2$, $\alpha, \beta : \mathcal{R} \to \mathcal{R}$ are automorphisms and $D : \mathcal{R} \times \mathcal{R} \to \mathcal{R}$ be a symmetric Jordan bi- (α, β) -derivation. Then the following statements are hold for all $a, x, y, z \in \mathcal{R}$

- (i) $D(xy+yx,z) = \alpha(x)D(y,z) + \alpha(y)D(x,z) + D(x,z)\beta(y) + D(y,z)\beta(x)$,
- (ii) $D(xyx, z) = \alpha(xy)D(x, z) + \alpha(x)D(y, z)\beta(x) + D(x, z)\beta(yx)$,
- (iii) $D(xay + yax, z) = \alpha(xa)D(y, z) + \alpha(ya)D(x, z) + \alpha(x)D(a, z)\beta(y) + \alpha(y)D(a, z)\beta(x) + D(y, z)\beta(ax) + D(x, z)\beta(ay)$
- (iv) $(D(ay, z) \alpha(a)D(y, z) D(a, z)\beta(y))(\beta(ay ya)) = 0$

Proof. (i) Since $D(x^2, z) = \alpha(x)D(x, z) + D(x, z)\beta(x)$, we have

$$D((x+y)^{2},z) = \alpha(x+y)D(x+y,z) + D(x+y,z)\beta(x+y)$$

$$= \alpha(x)D(x+y,z) + \alpha(y)D(x+y,z)$$

$$+ D(x+y,z)\beta(x) + D(x+y,z)\beta(y)$$

$$= \alpha(x)D(x,z) + \alpha(x)D(y,z) + \alpha(y)D(x,z) + \alpha(y)D(y,z)$$

$$+ D(x,z)\beta(x) + D(y,z)\beta(x) + D(x,z)\beta(y) + D(y,z)\beta(y).$$

On the other hand

$$\begin{split} D((x+y)^2,z) &= D(x^2 + xy + yx + y^2,z) \\ &= D(x^2,z) + D(xy + yx,z) + D(y^2,z) \\ &= \alpha(x)D(x,z) + D(x,z)\beta(x) + D(xy + yx,z) \\ &+ \alpha(y)D(y,z) + D(y,z)\beta(y). \end{split}$$

Comparing the above two expressions, we get the first equality.

(ii) Putting xy + yx instead of y in (i), we have

$$D((x(xy+yx)+(xy+yx)x),z) = \alpha(x)D(xy+yx,z) + \alpha(xy+yx)D(x,z)$$

$$+ D(x,z)\beta(xy+yx) + D(xy+yx,z)\beta(x)$$

$$= \alpha(x^2)D(y,z) + 2\alpha(xy)D(x,z)$$

$$+ \alpha(x)D(x,z)\beta(y) + 2\alpha(x)D(y,z)\beta(x)$$

$$+ \alpha(yx)D(x,z) + D(x,z)\beta(xy)$$

$$+ \alpha(y)D(x,z)\beta(x) + 2D(x,z)\beta(yx) + D(y,z)\beta(x^2).$$

On the other hand,

$$D((x(xy + yx) + (xy + yx)x), z) = D(x^{2}y + xyx + xyx + yx^{2}, z)$$

$$= D(x^{2}y + yx^{2}, z) + 2D(xyx, z)$$

$$= \alpha(x^{2})D(y, z) + \beta(y)D(x^{2}, z)$$

$$+ D(x^{2}, z)\beta(y) + D(y, z)\beta(x^{2})$$

$$= \alpha(x^{2})D(y, z) + \beta(y)\alpha(x)D(x, z)$$

$$+ \beta(y)D(x, z)\beta(x) + \alpha(x)D(x, z)\beta(y)$$

$$+ D(x, z)\beta(xy) + D(y, z)\beta(x^{2})$$

$$+ 2D(xyx, z).$$

So by comparing the previous two expressions and using the 2-torsion freeness of \mathcal{R} , we obtain the (ii).

(iii) Putting a + b instead of x in (ii), we get

$$D(((a + b)y(a + b), z) = \alpha((a + b)y)D(a + b, z) + \alpha(a + b)D(y, z)\beta(a + b) + D(a + b, z)\beta(y(a + b))$$

$$= \alpha(ay)D(a, z) + \alpha(by)D(a, z) + \alpha(ay)D(b, z) + \alpha(by)D(b, z) + \alpha(a)D(y, z)\beta(a) + \alpha(a)D(y, z)\beta(b) + \alpha(b)D(y, z)\beta(a) + \alpha(b)D(y, z)\beta(b) + D(a, z)\beta(ya) + D(a, z)\beta(yb) + D(b, z)\beta(ya) + D(y, z)\beta(yb).$$

In another way,

$$\begin{array}{lll} D(((a+b)y(a+b),z) & = & D(aya+ayb+bay+byb,z) \\ & = & D(aya,z)+D(ayb+bay,z)+D(byb,z) \\ & = & \alpha(ay)D(a,z)+\alpha(a)D(y,z)\beta(a)+D(a,z)\beta(ya) \\ & + & D(ayb+bay,z)+\alpha(by)D(b,z)+\alpha(b)D(y,z)\beta(b) \\ & + & D(b,z)\beta(yb). \end{array}$$

Now by comparing the two equations, we get (iii).

(iv) Let us take ay instead of b in (iii) and get:

$$D(((ay)(ay) + ay^2a, z) = \alpha(ay)D(ay, z) + \alpha(ay^2)D(a, z) + \alpha(a)D(y, z)\beta(ay) + \alpha(ay)D(y, z)\beta(a)$$

+
$$D(ay,z)\beta(ya) + D(a,z)\beta(yay)$$
.

But

$$\begin{array}{lcl} D(((ay)(ay)+(ay^2a),z) & = & D((ay)^2,z)+D(ay^2a,z), \\ & = & \alpha(ay)D(ay,z)+D(ay,z)\beta(ay) \\ & + & \alpha(ay^2)D(a,z)+\alpha(a)D(y^2,z)\beta(b) \\ & + & D(a,z)\beta(y^2a). \end{array}$$

By comparing the previous two equations, we get

$$(D(ay, z) - \alpha(a)D(y, z) - D(a, z)\beta(y))(\beta(ay - ya)) = 0,$$

which finishes the proof.

For accommodation of utilization in an associative ring \mathcal{R} with char $(\mathcal{R}) \neq 2$, we utilize the image for all $x, y, z \in \mathcal{R}$

$$x_{\alpha,\beta}^{y} := D(x.y,z) - \alpha(x)D(y,z) - D(x,z)\beta(y).$$

LEMMA 3.5. Let \mathcal{R} be a ring with char $(\mathcal{R}) \neq 2$, $\alpha, \beta : \mathcal{R} \to \mathcal{R}$ are automorphisms and $D: \mathcal{R} \times \mathcal{R} \to \mathcal{R}$ be a symmetric Jordan bi- (α, β) -derivation. Then the following statements are hold for all $a, b, x, y, z \in \mathcal{R}$

- (i) $x_{\alpha,\beta}^y + y_{\alpha,\beta}^x = 0$,
- $\begin{array}{l} \text{(ii)} \ \ x_{\alpha,\beta}^{a+b} = x_{\alpha,\beta}^{a} + x_{\alpha,\beta}^{b}, \\ \text{(iii)} \ \ \alpha(yxz-xyz)x_{\alpha,\beta} + x_{\alpha,\beta}^{y}\beta(zyx-zxy) = 0. \end{array}$

Proof. (i) Let $x, y, z \in \mathcal{R}$. We have

$$\begin{array}{rcl} x^y_{\alpha,\beta} + y^x_{\alpha,\beta} & = & D(xy,z) - \alpha(x)D(y,z) - D(x,z)\beta(y) + D(yx,z) \\ & - & \alpha(y)D(x,z) - D(y,z)\beta(x) \\ & = & D(xy + yx,z) - \alpha(x)D(y,z) - D(x,z)\beta(y) \\ & - & \alpha(y)D(x,z) - D(y,z)\beta(x) \\ & = & \alpha(x)D(y,z) + \alpha(y)D(x,z) + D(x,z)\beta(y) + D(y,z)\beta(x) \\ & - & \alpha(x)D(y,z) - D(x,z)\beta(y) - \alpha(y)D(x,z) - D(y,z)\beta(x) \\ & - & 0 \end{array}$$

(ii) Let $x, z, a, b \in \mathcal{R}$. We have

$$\begin{array}{lll} x_{\alpha,\beta}^{a+b} & = & D(x(a+b),z) - \alpha(x)D(a+b,z) - D(x,z)\beta(a+b) \\ & = & D(xa,z) + D(xb,z) \\ & - & \alpha(x)D(a,z) - \alpha(x)D(b,z) - D(x,z)\beta(a) - D(x,z)\beta(b). \end{array}$$

Using the definition of $x_{\alpha,\beta}^y$, we can easily arrive at $x_{\alpha,\beta}^{a+b} = x_{\alpha,\beta}^a + x_{\alpha,\beta}^b$. (iii) Putting w := x(yzy)x + y(xzx)y, A := yzy and B := xzx for every

 $x, y, z \in \mathcal{R}$, and using additivity and Theorem 3.4 (ii), we get

$$D(w,t) = D(x(yzy)x + y(xzx)y,t),$$

$$= D(x(yzy)x,t) + D(y(xzx)y,t),$$

$$= D(xAx,t) + D(yBy,t),$$

$$= \alpha(xA)D(x,t) + \alpha(x)D(A,t)\beta(x) + D(x,t)\beta(Ax)$$

$$+ \alpha(yB)D(y,t) + \alpha(y)D(B,t)\beta(y) + D(y,t)\beta(By),$$

$$= \alpha(xyzy)D(x,t) + \alpha(xyz)D(y,t)\beta(x) + \alpha(xy)D(z,t)\beta(yx)$$

$$+ \alpha(x)D(y,t)\beta(zyx) + D(x,t)\beta(yzyx) + \alpha(yxzx)D(y,t)$$

$$= \alpha(yxz)D(x,t)\beta(y) + \alpha(yx)D(z,t)\beta(xy)$$

$$+ \alpha(y)D(x,t)\beta(zxy) + D(y,t)\beta(xzxy).$$

Conversely, since w := (xy)z(yx) + (yx)z(xy), so by using Theorem 3.4 (iii), we get

$$D(w,t) = D((xy)z(yx) + (yx)z(xy),t)$$

$$= \alpha(xyz)D(yx,t) + \alpha(yxz)D(xy,t) + \alpha(xy)D(z,t)\beta(yx)$$

$$+ \alpha(yx)D(z,t)\beta(xy) + D(yx,t)\beta(zxy) + D(xy,t)\beta(zyx).$$

By comparing the previous two equations, we get

$$\alpha(yxz)x_{\alpha,\beta}^y + \alpha(xyz)y_{\alpha,\beta}^x + x_{\alpha,\beta}^y\beta(zyx) + y_{\alpha,\beta}^x\beta(zxy) = 0.$$

Now by using $x_{\alpha,\beta}^y = -y_{\alpha,\beta}^x$, we obtain

$$\alpha(yxz - xyz)x_{\alpha,\beta} + x_{\alpha,\beta}^y \beta(zyx - zxy) = 0.$$

Thus the proof of this lemma is completed.

THEOREM 3.6. Let \mathcal{R} be an associative prime ring with $\operatorname{char}(\mathcal{R}) \neq 2$ and $D: \mathcal{R} \times \mathcal{R} \to \mathcal{R}$ be a symmetric Jordan bi- (α, α) -derivation. Then D is a symmetric bi- (α, α) -derivation.

Proof. Let x and y be fixed elements of \mathcal{R} . For the proof of this result, it is good to treat two cases xy = yx and $xy \neq yx$.

For xy = yx, then $x, y \in Z(\mathcal{R})$. Using Theorem 3.1, we get

$$\begin{array}{lcl} 2D(xy,z) & = & D(xy+yx,z) \\ & = & \alpha(x)D(y,z) + \alpha(y)D(x,z) + D(x,z)\alpha(y) + D(y,z)\alpha(x) \\ & = & \alpha(x)D(y,z) + D(x,z)\alpha(y) + D(x,z)\alpha(y) + \alpha(x)D(y,z) \\ & = & 2(\alpha(x)D(y,z) + D(x,z)\alpha(y)). \end{array}$$

Since char(\mathcal{R}) $\neq 2$, it is obvious that $D(xy,z) = \alpha(x)D(y,z) + D(x,z)\alpha(y)$. So that D is symmetric bi-derivation.

If $xy \neq yx$, then using Lemma 1, we can easily arrive at $x_{\alpha,\alpha}^y = 0$, i.e., $D(xy,z) = \alpha(x)D(y,z) + D(x,z)\alpha(y)$. So that D is a bi- (α,α) -derivation. \square

COROLLARY 3.7. Let \mathcal{R} be an associative prime ring with $\operatorname{char}(\mathcal{R}) \neq 2$ and $D: \mathcal{R} \times \mathcal{R} \to \mathcal{R}$ be a symmetric Jordan bi-derivation. Then D is a symmetric bi-derivation.

REFERENCES

- [1] M. Ashraf, A. Asma and A. Shakir, On Lie ideals and generalized (θ, ϕ) -derivations in prime rings, Comm. Algebra, **32** (2004), 2977–2985.
- [2] M. Ashraf and N. Rehman, On commutativity of rings with derivation, Results Math., 42 (2002), 3–8.
- [3] M. Ashraf, N.-ur-Rehman and M. Rahman, On generalize derivations and commutativity of rings, Internat. J. Math., Game Theory, and Algebra, 18 (2008), 19–24.
- [4] M. Bresar and J. Vukman, Jordan derivations on prime rings, Bull. Aust. Math. Soc., 37 (1988), 321–322.
- [5] M. Bresar and J. Vukman, On left derivations and related mappings, Proc. Am. Math. Soc., 10 (1990), 7–16.
- [6] Y. Çeven and Z. Çiloğlu, On symmetric Jordan and Jordan left bi-derivations of prime rings, Afr. Mat., 29 (2018), 689–698.
- [7] I.N. Herstein, Jordan derivations of prime rings, Proc. Am. Math. Soc., 8 (1957), 1104– 1110.
- [8] G. Maksa, A remark on symmetric biadditive functions having nonnegative diagonalization, Glas. Mat., 15 (1980), 279–282.
- [9] E. Posner, Commuting derivations in prime rings, Proc. Amer. Math. Soc., 8 (1957), 1093-1100.

Received January 23, 2020 Accepted August 31, 2020 Sidi Mohammed Ben Abdellah University
Polydisciplinary Faculty
LSI, Taza, Morocco
E-mail: abdelkarimboua@yahoo.fr

Cairo University
Faculty of Science
Department of Mathematics
Giza, Egypt
E-mail: ayunis@sci.cu.edu.eg