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AN EXTENSION SYSTEM OF SEQUENTIAL DIFFERENTIAL
EQUATIONS OF ARBITRARY ORDER

HAMMOU BENMEHIDI and ZOUBIR DAHMANTI

Abstract. We are concerned with an extension of a coupled sequential differ-
ential system of fractional type. Using the Banach contraction principle, we
establish new results for the existence and uniqueness of solutions. Then, we
prove another existence result via Schaefer’s fixed point theorem. At the end,
we illustrate one main result by an example.
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1. INTRODUCTION

The branch of differential equations is considered as an important branch
in mathematics, especially differential equations of fractional order, after the
spread of such equations in other scientific areas and it has many applica-
tions in physics, electrochemistry, biomathematics, aerodynamics, dynamics
of earthquakes, viscoelasticity, electromagnetic, control theory of dynamical
systems etc. For more details, we refer the reader to [3,10,11]. In particular,
the existence and uniqueness problems of differential equations of fractional
order have been investigated by many authors. For instance, we cite the papers
[1,2,14,15].

Recently, in [15], some existence and the uniqueness results have been given
for the following system of sequential Caputo and Hadamard fractional differ-
ential equations

DM DB (t) = f(t,z(t)),a <t <b,
iz (a) + ¥ DBz (a) =0, Mz (b) + M DBz (b) =0,
where D H DP denote the Caputo and Hadamard fractional derivatives of

orders a and (3, respectively with, 0 < o, 8 < 1 and v;, A\; € R (2 = ﬁ) [
[a,b] x R — R is continuous function.

The present paper is supported by DGRSDT Direction Generale de Recherche Scientifique
et du Developpement Technologique, Algeria. The authors thank the referee for his helpful
comments and suggestions.

DOLI: 10.24193/mathcluj.2021.2.04



172 H. Benmehidi and Z. Dahmani 2

Very recently, S. Asawasamrit et al. [1] studied the existence and unique-
ness of solutions for the coupled system of nonlinear sequential Caputo and
Hadamard fractional differential equations with coupled separated boundary
conditions defined by:

CoPHEDN () = f(t,x(t),y (1)),
HD®RCDP2y (1) = g (8,2 (1) ,y (1)),
a1z (a) + a§ DP2y (a) = 0, Bz (b) + B DP2y (b) = 0,
agy (a) + aff DUz (a) = 0, By (b) + B DPrax (b) = 0,

where ¢ DPi H D% are the Caputo and Hadamard fractional derivatives of or-
ders p; and g;, respectively with, 0 < a;,8; < 1,7 =1,2 and «;, §; (i = 1,4)
are real constants and f, g : [a,b] x R® — R are continuous functions.

Motivated by the above results, in this paper, we are concerned with extend
the study of the work of S. Asawasamrit et al. [1], by considering the following
sequential problem:

CDMHDPry () = f (t,z(t) ), A D2y (1)), a<t<b,
H D0 pazy ( ) g(t,w( ) HDﬁl (t ),y(t)), a<t<b,
mz(a )+VCD°‘2 (a) = 01, Mz (b) + XS D2y (b) = 62,
3y (a) + ’nyBla: (a) = 03, A3y (b) + /\fDﬁlx (b) = 64,

where ¢ D% H DBi denote the Caputo and Hadamard fractional derivatives of
orders o; and B;, respectively with, 0 < o;,3; < 1,4 = 1,2 and ~;, \;,6;,
(i = m) are real numbers such that v;, A\; are no zero numbers, a,b € R with
a>0,and f,g:[a;b] x R® = R are two given functions.

a<t<b,
a<t<b,

(1)

—~
[N}
~

2. PRELIMINARY RESULTS

In this section, we present some definitions and lemmas for fractional deriva-
tives which are used later, for more details, see [7, 8, 9, 11].

DEFINITION 2.1. The Riemann-Liouville fractional integral operator of or-
der a > 0, for a continuous function f on [a,b] is defined as:

t
Iaf(t)—r(la)/ (t—m) " f(r)dr, a >0, a<t<b.

DEFINITION 2.2. The fractional derivative of order a,n — 1 < a@ < n for a
continuous function f : [a,b] — R is given by

t
D (1) = ks / (t— 1) f™) (1) dr, a<t<b.

LEMMA 2.3. For a > 0, the general solution of the fractional differential
equation D%z (t) = 0 is given by

n—1 .
= Zci (t—a)",
=0
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where ¢; € R,i=0,1,2,..,n—1,n=[a] + 1.
LEMMA 2.4. Let a > 0. Then

I*°D%x +cht—a , n=la]+1.

DEFINITION 2.5. The Hadamard fractlonal integral of order a > 0, for a
continuous function f on [a,b] is defined as:

1 t flogt\* ! dr
H 7o
I¢f (t) = — >0, a<t<h.
10=ri [ () 0T az0esis
DEFINITION 2.6. The Caputo-type Hadamard fractional derivative of order
a,n = [a]+1 for an For an at least n-times differentiable function f is defined

as:
n—a—1
HDO‘f(t):F(nl_a) /t (k’ft) T a<i<o,

d
where 0 = ta and log (.) =log, (.).

NOTATION 2.7. We denote by ACY' [a,b]: {g a,b] — R: 6" 1g € AC [a, b]}
the space of functions g that have ¢ derlvatlves up to (n—1) on [a,b] and
o"~tg € AC[a,b], where, AC [a,b] is the set of absolutely continuous functions
on [a,b] wich coincide with the space of primitives of Lebesgue measurable
functions.

The Riemann-Liouville and Hadamard fractional integrals of a function with
three variables are given by

i (RLF’ (fras)
//(log )q - T)p_lf(ﬁx(r)ay(T)vz(r))dr%,

and
RLIp (HIq (fx Y, z

// =t (1oa )" i) w0, 2 (0) T,

where 0 <p,q S 1 and ¢ € {t,b}.
As a special case that will be needed in this paper, we consider the following
two quantities:

" (0)(©) = o | C A (1&) (= ar,

S

(1 (1) (©) = s [ € (o) s

r
We recall also the following lemma.
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LEMMA 2.8. Let a > 0 and x € AC§ [a,b]. Then we have

Hre(FDY) x (t) = z (t) —gq <log (2))1

where, ¢; e R,i=1,2,....,n—1,(n=[a] +1).

We introduce the following quantities

B1
L

T(i+1) 2 Y2
V4 (b—a)* <91 71>
A ::A _)\ —, A ::)\ _ - ,
’ 1T ! 3F(a2+1) T2 Y2

Y= A4A1 — A3A2.
In the following lemma, we prove a first auxiliary main result.
LEMMA 2.9. Let the functions ¢, € C ([a,b],R). Then, the solution of the
problem
CDMHDBy (1) =p(t), a<t<h,
(3) HpRCDey (1) =4 (1), a<t<b,
na (a) +15 D%y (a) = 01, M (b) + X5 Dy (b) = b3,
73y (a) + 74" D%ra (a) = 03, Asy (b) + A DPra (b) = 6,
is given by (x (t),y (t)), where

oo (L B1
x (t) :;[—Ageg-i- (Ag—A4(I£EgBEa_2)1))

y <A{1151 (FE10) (b) + A T4 (b) + A23;) ]

t\\61
(A1 +Ag) 04 — (Al + AQ(log(a))>

E r'G+1)

0
<)\ 12 Hfﬁw ( )+ AT (b) + Ag,g) +H T (RET ) (2)

and

05 6 t—a)™ 1 <’y4 (t—a)a2>
n=rynlza Mgt p, Ym0
y () 3 ml(az+1) X\ 73 y2 "T(az+1)

X (92 — (A{f 190 (BE190) (b) + A T724p (b)) Agil)

1|74 (74 7 (t—a)a2>
S RECY YR (5 WIS W Gl
2[73 e o V2 3F(02+1)
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0
x(ﬁ%meﬁ%gwﬂmdmﬂw—&g>

(t —a)*?

71
+ =01 A —F—
Y2 ! 1F(a2—|—1)

A gon (1) (1),

Proof. We apply lemmas 4 to the first equation of (3), we can write

(4) Hpbrg(t) = ¢ + I%p (t), ¢ €R.
We apply Lemma 8 to (4), we get
log (£))"
(5) $@=@+qgé$pU+Hﬁwmﬂwﬂﬂ,@eR

By using the Hadamard fractional integral of order s to the second equation
of (3), it yields that

(6) D2y (1) = s+ 129 (1), 3 R

Thanks to Lemma 4 to (6), yields the following formula

(7) Mﬂza+%@_wm+mfmﬁﬁwﬁw e €R.
Tr (CEQ + 1) ’

Thanks to the initial conditions of (3), we obtain

Yic2 + yac3 = b1,

logﬁl
A (CQ4—C1(FiggHS-+f11ﬁ1(RL1a1¢)(b)

(8) +X2 (c3 +7 1824 (b)) = 62,
Y3cq + yac1 = 03,

Aﬂq+@&@3+MPWWﬁwﬂQ%muq+mw®»:@

so, we have

(log (2))” "
AHX&+U“+<M_MW>@

= Oy — MO (BLIG) (b) = NI (5) = Aot

Y4 (b—a)* (91 ’Yl)
MoAs ) e g ()
(9) <4 373) T (g + )\ /)

0
= 04 — MFETO2 (H[P24)) (b) — AT (b) — Ag—,
73
_ 0
C3 = — — —C2
2 72
3 Y4
Cyp = — — —C1
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Aicr + Agep = Ay

By solving { Aser + Agey = A,

where

Avs =y = NP (R1900) (6) = M1 (5) = 22,
V2

Ao =0, — Moz (H Iﬁw) (b) — AT o () — )\332,
we obtain
Ay Asg
L YN
C1 » 1+ 5 25
Ay As
= —Ag — —=A;.
2 =502 -4
Using (9) , we get
0 M 113
Cc3 = — — Ala
Y2 ek 72X
03  yalso Yala
cy = — A Aq.
T T

Lemma 9 is thus proved.

3. MAIN RESULT
We introduce the spaces
X = {x e O ([a,b],R) L DPra (1) C’([a,b],R)} ,
V= {y e C([a,b],R),” D*y(t) € C([a,b],R)}
We endowed the space X by the norm

Jull = max (2], [*D*a

). Nzl = sup [a(0)],

a<t<b
o

= sup )HDﬁlx(t)‘.
a<t<b

In the same manner with Y,
lylly = max (lyll,[|["D2y[[) , Nyl = sup [y()],
a<t<b

I D%y] = sup [Dy(®)].
a<t<b
Thus, (X x Y,|.|x«y) is a Banach space with norm
1@, )l x oy 7= max ([lz]lx , lz]ly) -
We consider the operator 7 defined as follows:

T: XxY — XxY
(.y) @) — (Thi(z,y) (1), T2(z,y) (1)),
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where, Vt € [a, b,

Ti(x,y) (1) :

3 I'(Bi+1)

— A3by + <A3 - A4W>

< A M (FEIF (0,2 (0) ,y (0) 1 D2y (b))

t\\51
(A1 + Ay) 6y — <A1+A2(log(a))>

1
+§ I'(B+1)

x (Agﬂw (1% (b2 (0).y ()7 DV )

+ NI (b, (b),y (b)), D2y (b)) ) + >\33j

+H h (RL]alf (t,z(t),y (1) A D%y (t)))

and

T2 (z,y) (1) == S| A+ —As

3 wD(ae+1) 2\ 13 v2 "T(az+1)
x (92 _ ()\{I 1% (BETf (b2 (b) ,y (b) D2y (b))

+ M 17 (0,2 (0),y (0).7 D72 (1)) ) - A%)

1|4 <74 9ol (t—a)w)
S LY WY (Y DRIy W U0
2[73 P T T 2 T (a2 )

6y 6 (t—a)® 1(74 " (t—a)‘”)

< (M (M1 (b (). (1)1 DO )

0
FAT S (. (0),5 ()7 D2y () = Xs )
3
t—a)*
Vg, L=
72 T(az+1)
We need to consider the following hypothesis:

H1): Sll ose that there exist some constants lz P> (),Z = 1, 27 = 1, 3 SllCh
pp 7 J
that

. | RL oz <H[»329 (t,m (t),y (), DMx (t)>> ’

|f (t, 22,2, 22) — f (t, 21,91, 21)| < lia |22 — 1| + Lz ly2 — w1 | + lis |22 — 21,
lg (t, 2,92, 22) — g (t,z1,y1,21)| < lor |we — x| + lo2 |y2 — y1| + log |22 — 1],
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for each ¢ € [a,b] and all x;,y;, z; € R.
Then, we introduce the quantities:

B1
Q= Pl <|A3|+|A4|(10g())> P (R (1)) (b)

2] [(f1+1)

b B RL
+Mdh0m%HMNMNJ)> 1 (1) (b) + ' 17 (FR1%1 (1)) (0),

= TG +1)
el (log(g))ﬁl ! Ba
@ = (|A|+|A|(5 ) oo
Nl (og ()™ o) i
g <|A|+|A|(5+1) 192 (1% (1)) (v),
Ml (|l il =)\ o ke
Qs = T (M A+ el <a2+1>> ) e
Mgl l1 (|4l 71| b—a) "
O (R i+ Ml ft) oo,
xally (|4 |71 b—a)*\" 4
Qi:= g (m‘ l+ [y el <a2+1>> =)
ala] (|l Il (b—a) \
T (m RIS <a2+1>>

e (1% (1) ) + e (112 (1) (),

B1 Qs
), ()
My = My =

TA+6) 2 T(+a)’
where ll = max (lu, l12, 113) y lg = max (lgl, lgg, 123) .

THEOREM 3.1. Assume that (H1) is satisfied. Then, the problem (2) has a
unique solution on [a,b], provided that Q < 1, where

Q = max {max ((Q1 + Q2), M1 (Q1 + Q2)) ,max ((Q3 + Q4) , M2 (Q3 + Q1)) } .

Proof. We show that the operator 7 is contractive. Let (x1,y1), (z2,y2) €
X x Y. Then, for each t € [a,b], we have

T1 (z2,92) (t) — Th (z1,91) ()]

b))\ A
|§1]| (|A3| + |A4] (l(gﬁ(—z)l)> (M)l (|le2 — 21|

+llyz =yl + || D* (y2 — yl)H)HIBI (11 (1)) (b)
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+alls (lle2 = @l + gz = | + || D% (22 — 1))

(log (£))”
(’Aﬂ + |A2’ m

x (19alt2 oz = @1l + llya = sl + | D™ (@3 = @1)|)

) RE e (1% (1)) () + [l b (2 = 2] + llga — w1
0% lyp = yu])) ™ 120 (1) (6)] + b (w2 = 2| + 1y =
+1D% lyy = )" 17 (F1 (1)) 0).

Consequently,

Th (w2,92) (t) — Th (z1,91) (1)
b

< Pl (IA g Log ) Wl)

w1 182 (1) (b))] + ’;

== ESY
18 o |A2] I
<l =1l + oo = ) 117 (1) 0) +
(log (£))" 2
o <|A3| M S ) (o = all + 2 = ) 1% (1) 0)
b\\ 51
+ B <|Alr Ay |(fﬁ(+))1)> (22 = 21llx +llg2 = 1lly)
N Ml (og(é))ﬁl

+ 0 (2 — w1l + llyz — nally) " 7710 (1) (b)
< (@1 + Q2) max ([[x2 — z1 | s lv2 — w1llo0) -

On other hand, we have

TDAT; (22,2) (1) 1 DOTs (a1, 0) (1)
1 a\ [t AN d
W <t () [ (o2l) MmO - T@m 01
< My (Q1 + Q2) max ([lag — 21l [ly2 — w1llo) -
Similarly, we can write
T2 (z2,92) (¢) — T2 (z1,91) ()] < (@3 + Qa) max ([[z2 — z1]l o+ [lv2 — Y1 llo) -
Also, we have

[ D%, (22, 30) (1) = DT, (1,1) (1)
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< e () [ (o53)

X Tz (x2,y2) (t) — T2 (z1,91) (5)] %
< My (@3 + Qq) max ([|x2 — 21| s ly2 — v1llo) -

Thanks to (10), (11), we obtain

|71 (z2,y2) — Th (21, 91) || x < max ((Q1+ Q2), M1 (Q1 + Q2))

xmax ([lzz — 21 x, ly2 = w1lly) -

With the same arguments as before, we have

72 (22, y2) — T2 (z1,91)lly < max ((Q3 + Q1) , M2 (@3 + Q1))

xmax (|2 = 21l x s ly2 = willy) s

consequently, we obtain

1T (@2, y2) = T (@1, 91) [ x oy < Quuax (|22 = z1l[x, [ly2 = w1lly) -

Using the fact that () < 1, we conclude that 7 is a contraction mapping.
As consequence of Banach’s fixed point theorem, the problem (2) admits a
unique solution over [a, b]. O

The second main result is based on Schaefer’s fixed point theorem. We
prove the following existence result.

THEOREM 3.2. Assume that the following two hypotheses are valid:

(Hs) : The functions f,g : [a,b] x R — R are continuous

(Hs) : There exist two constants K1 Ko > 0 such that, ¥t € [a,b],x,y,z €
R, |f (t,z,y,2)| < K1, |g(t,x,y,2)| < Ka. Then, the problem (2) has at least
one solution on [a,b].

Proof. First of all, it is to note that the operator is continuous since the
given functions of our problem are also continuous. Then, the following steps
are needed to achieve the proof of this results.

Step 1. We show that the operator 7 maps bounded sets into bounded
sets in X x Y. Let Q2 bounded in X x Y. For each t € [a,b] and (z,y) € 2, we
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have

71 (z,) ()] <

‘A392‘ + <‘A3‘ + ‘A4‘ (log (2))61>

|z ’ I'(B1+1

0
x (B A P41 () + K ol 172 (8)) + o) -

12) , L

12| Ls+1)

t)\61
(IAx] + [Aal) [64] + <|A1| Ty M

+ K{ 1 1% (b)

)
V3 '

0
x (Bl 12117 () + Dl KO T () o ] |2

1
< K1Q1 + K2Q2 + = o

On the other hand, we have

(!A:»ﬂﬂ (A 1) 1]+

‘HD517'1 (x,y) (t)‘ < M <K1Q1 + K2Q)2
(13)
<|A392| (A1) + [Ad]) 02] + [No]

)

K1 Q1 + K2Qs + 1y ( 14362]
+ ([A1] + [Ad]) |04] + [ A3] -

0
o)

14 lix =
(14) 71 (z,y) (B)x < max M1<K1Q1+K2Q2+gl(|1\392|
 (1Aal + [Aal) 0a] + 1A | 5

%))

1
Tl

So, (12) and (13) give us

Similarly, we get

93 91 (b—a)”
D <= - —
T (@) 0 < | 2|+ |2 F(a2+1>
1
’2| (\92| + \)\2|
(b a)a2 03
AN|=—————+ N3] |—=

+ K1Q3 + K2Q4.
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Also, we have

0
DT (z,y) (t)| < Mo (K1Q3 + KoQ4 + Wz

6h V4 g6l (b—a)*? 05 )
X 02 + [Nl |[—=| + | —||A4] 04| + |—=]|101] |A{]| =—L— =1 1.
(1621 v |2 124 | 2 b ] 2+ Dl |2
Then,
172 (2, ) (D)]ly
O3] 01| p-a)2
sl T 7l fask + (102
+ ol |22+ | 22 Al 164
a)o‘2
A N 7
15
(15) < max +\)\3\ — +K1Q3+K2Q4>
93 91 (b—a)o@
Mo (K1Qs + KoQu + | 2| + | 2| -—
2( 1Q3 2Q4 9 | T lan + 1)
1 Y4
+ |02 + |A2| | — |Aal|64]
|E\< o )QQ )
s a 3
01] A4 =
eI g Pl 1))

01
V2

(b—a)*? 1

T(az+1)  [%]

Hence, from (14) and (1

), we deduce that 7€ is a uniformly bounded set.

Step 2. We prove that 7 maps bounded sets into equicontinuous sets. Let
t1,ts € [a,b] such that t; < to, and let (z,y) € Q, then
|Adl

1 t2 /81 1 tl 61
ST (B + 1) <g) ( )

X (]Al\Hlﬁl (RETor | £ (b2 (b),y (b) 1 D2y (b))])

71 (2,) (t2) = Th (z,y) (02)] <

ol 1% g (b2 (8), 5 (6) 7 D 1))
‘AZ‘ t2 B1 tl B1
TETG D (k)ga) (lg >

x (Dl 12 (1% g (b2 ()5 (1), D72 (v)) )
+ T [f (b, (8), 5 (8).F D2y (0)])
HIPEEI ([ (b, (t2) ,y (t2) 1 D2y (t2))

—f (tr, 2z (t1) ,y (1), D%y (1))
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|Adl

<10 Q)Bl_ <10 tl)ﬁl
“ET (B +1) & &

x (B Dl 17 (REE (1)) (8) + K Dol T 17 (1) ()
Az

(10 752)51 (10 tl)ﬁl
SITB+1) |\ % &

< (Bl 102 (1% (1) (0) + Dl K1 (1) (0)

B1 B1 b1
t t
2 <log 2) + (log 2) (log 1)
tl a

As t; — to, the right-hand side of the above inequality tends to zero.
On the other hand, we obtain

DT (2,y) (t2) =" DO Ti () (tl)‘ < My [T1 (2,y) (t2) — Th (2, y) (01)]-

Therefore, we obtain|7; (z,y) (t2) — T1 (x,y) (t1)] — 0, as t; — t2. With the
same manner, we can show that|73 (z,y) (t2) — T2 (x,y) (t1)| — 0, as t; — ta.
Thanks to Steps 1 and 2 and using Arzela-Ascoli theorem, we conclude that
the operator T is completely continuous.

_l’_

Kl (b — a)o‘l
[+ (B +1)

Step 3. Now, we show that the set
E={(z,y) e X XY : (z,y) = AT (z,y), 0 <A< 1}

is bounded. (t) = AT1 (2, 9) ()
o z(t) = ATi (v,y) (t
If (z,y) € &, this yields that { y(t) = ATz (x,y) (t)

have|z (t)| < AT (2, y) Ol < |71 (z,y)|| and [y ()] < ATz (z,y) @) <
72 (z,y)|l . Thus, we get
[z, ¥)ll x xy = max (|lz ()], [y (¢)]) < max (|71 (z, y)[|, [ T2 (z, y)]])-

Using the condition (H2) of Theorem (3.2), we deduce that £ is bounded.
At the end, in view of Schaefer’s fixed point theorem, we conclude that 7T
has a fixed point which is a solution of the problem (2). O

,Vt € [a,b] Hence, we

4. AN ILLUSTRATIVE EXAMPLE

Let us consider the example:

CD3HDig ( <t,af HD7y()>, 1<t<3,
16) HD3ODYy (1) — (t,x )HD4x(t) y(t)), 1<t<3,
0.2z )+12CD6 1.3, 0.6z (3)+2.6CD7y(3) = 0.9,

(1
2.15y()+1.6HD4x() 1.7, 03y(1)+ 1.6 Dix (1) = 3.2.
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Here, a1 = §; 00 = & f1 = 45 2 = ;1 = 0.2 92 = 1.2, 53 = 2.15;
Y4 = 1.6; 01 = 1.3; 92 = 0.9; 93 = 1.7; 94 = 3.2; )\1 = 0.6; )\2 = 2.6; )\3 = 0.3;
A1 = 1.6, and the functions f,g: [1;3] x R® — R are given by

1 2z (t) 1

ta(t),y(t), " D? t):—t b Y R t
F (L @),y DRy (W) = S0+ sy + g eosy ()

t
+E tan~! gHDgy(t))

g (o @ Diz(t) .y (@) = - tan~! (2 (1) +
t Hpig (t)
29 (1 +H Dig (t))

ty (1)
21 (1+y ()

\

13

It is clear that f, g are continuous functions and we have: |f (t,x,y, z)| < ST
K and |g (t,2,y,2)| < 2% = K. Thanks to Theorem 3.2, the system (2) has
at least one solution (z (t),y(t)),t € [1,3].
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