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A GENERALIZATION OF WEIGHTED
BILINEAR HARDY INEQUALITY

BOUHARKET BENAISSA and MEHMET ZEKI SARIKAYA

Abstract. In this paper, we give some new generalizations of the weighted
bilinear Hardy inequality by using weighted mean operators S := (Sf)y, where
f nonnegative integrable function with two variables on A = (0, +00) x (0, +00),

defined by e .
s =/ | %g(f(t,s))dsdt,

with
W(z) :/ w(r)dr, for z € (0,+00),
0
where w is a weight function and g is a nonnegative continuous function on
(0, +00).
MSC 2010. 26D15, 26D10.
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1. INTRODUCTION

The inequality

0 [ e () o

where F(x) = fgc f(t)dt, known as Hardy’s inequality, is satisfied for all func-
tions f non-negative and measurable on (0,00) with p > 1. The constant

P
(p%) is the best possible.

T
In 1928, Hardy proved the following inequality [5]. Let f non-negative
measurable function on (0, 00),

JJy fydt,  fora<p—1,
Fe)= {f}o f)dt, fora>p-—1.
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Then
o] p o]
(2) / 2 PFP(z)dx < <p> / z fP(z)dz, forp> 1.
0 0

lp—1—qf

Some works are devoted to this inequality in dimension two. Hardy-type
inequalities for various integral operators in dimension two have been studied
in [1-4, 7-14] and the references therein. The objective of this paper is to give
some new generalizations of the weighted bilinear Hardy inequality by using
some elementary methods of analysis and Sarikaya operator S := Sfg".

2. PRELIMINARIES

In this section we give some lemmas which will be used in the proof of
main theorems. Let W(z) = [ w(r)dr, for z € (0,400) and A = (0, 400) x
(0, 400).

LEMMA 2.1. Suppose f nonnegative integrable on /\, g nonnegative contin-
uous on (0,400) andp > 1, a <p—1. Let

Fiz x > a. Then

® [ s (L) [ e

Proof. Let be x fixed in (3) and using Fubini’s theorem, we have

Ste = [ 100 (/W s»dt)ds,

then S'(z,y) = 85( = WLG( y). Let I(z WP a SP(x,y)dy. In-
tegrating by parts (

we get

d
z,y) L P
p—a—leal(y)c p-a-1

)
9=
/d O) G, y)sP Lz, y)dy,
|-

X

Wr=e(y
Spa:d) N P
(p— a—1)Wr—e—1(q) p—a—1

¢ w(y) -
X/c WTa(y)G(J?ay)S Ya, y)dy.
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Since p — a — 1 > 0 and S(x,d) > 0, we have

p—1
I(z) < _a_1/ Wpa G(z,y)S" (2, y)dy.

From Hélder integral inequality for * + = =1, we obtain

012ty ([ g ([ i)

and thus on simplification, we get
d P pd
w(y) p w(y)
SP(z,y dy§< ) / GP(z,y)dy,
/c Wr=a(y) (®3) p—a—1) J. Wr=e(y) (@)
which gives the required inequality. O

LEMMA 2.2. Suppose f nonnegative integrable on A\, g nonnegative contin-
uous on (0,+0c0) andp > 1, « <p—1. Let G(z,y) = [ %g(f(t,y))dt. Fizx
y > c. Then

b P rb
w(r) P w(zx)
—_— dx < P dz.
@ [ e () [ e G

Proof. Let be y fixed in (4). Then
0G(z,y) _ w(x)

oxr  W(x)

Integrating by parts I(y) = ff W;f}_(i)(x) GP(z,y)dz, it follows that

_ | Gp(x,y) b p

b
<[t a6 e
_ | GP(b,y) p
‘[ (p—a— Wi >]+p—a—1

G/(xvy) =

g(f(z,y)).

< [ e 6 @i

Since p — a > 1 and G(b,y) > 0, we have

b
I(y) Sp_i_l/a Wffizx)g(f(x,y))Gp1(w,y)dw-

By Holder integral inequality for 113 + % =1, we obtain

1

10— ([ 5 o rtamas) ([ ) orar)
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and thus on simplification, we get

[ e < (i) [ e i
U

LEMMA 2.3. Suppose f nonnegative integrable on A\, g nonnegative contin-
uwous on (0,400) andp > 1, a >p—1. Let

b d w wlSs
st = [ [ e o asat

b w
H(z,y) = / %g(f(t,y»dt.

Let x > a fired. We get

d p pd
w(y) p w(y)
—— _SP dy < | ——— —— _HP dy.
| iy < <1p+a> ;W) VW
Proof. The proof is similar to the proof of Lemma 2.1. O

LEMMA 2.4. Suppose f nonnegative integrable on A\, g nonnegative contin-

uous on (0,+00) andp > 1, a« >p—1. Let H(x,y) = f; V“[)/((tt))g(f( y))dt. Let

y > c be fired. Then

bw@) o, P\ w@) o,
/a WTQ(:U)H (z,y)dz < (1—p—|—a> Wra(m)? (f(z,y))dz.

Proof. The proof is similar to the proof of Lemma 2.2. O

3. MAIN RESULTS

Let 0 < a < b < +o0and 0 < ¢ < d < +00. Throughout the paper,
we will assume that the functions f and g are nonnegative integrable on A =
(0, +00) x (0, +00) and (0,400), the integrals throughout are assumed to exist
and are finite ( i.e., convergent), w € Ly(0,00) and W (z) = [j w

THEOREM 3.1. Suppose f nonnegative integrable on A, g nonnegative con-
tinuous on (0,400) and p > 1, a« <p—1. Let

S(z,y) = /x /cy Vmg(m,s)) dsdt.

/ / Wr—a i Wp)a( )Sp(l“ay)dydx
_< _0‘_1>2p/ / Wp—o i Wp>a( ) P(f(x,y))dydz.

Then
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Proof. We denote by ”"Lhs” the left hand side of inequality (7). By using
Fubini’s theorem, Lemma 2.1 and Lemma 2.2, we get

/ Wp o x) (/ W a( 75" (@, y)dy> dz

<(,=e= a—1> / T (/ G )dy ) do
() [ ([ e ner)a
(i) [ Wpay)( ') a
= (i) [ i e e

which completes the proof. ]

THEOREM 3.2. Suppose f nonnegative integrable on /\, g nonnegative con-
tinuous on (0,4+00) andp > 1, a >p—1. Let

bord n(t)w(s
S(xay)_/ / W/Egm%g(f(t,s))dsdt.
Then

/ / Wr—a i Wp)a( )Sp(%y)dydx
: (1—p+a> / Wr— aﬁxilv”v(i)a( )gp(f(a:,y))dyd:c.

Proof. By using Lemmas 2.3 and Lemma 2.4, the proof is similar to Theo-
rem 3.1. g

4. APPLICATIONS

If we put W(x) = x and g(f(z,y)) = zyf(z,y) in Theorem 3.1 and The-
orem 3.2, we have the following corollary, the weighted bilinear Hardy
inequality:

COROLLARY 4.1. Suppose p>1,a<p—1and f be nonnegative integrable
function on A. Let F(x,y) f fy (t,s)dsdt. Then

[ [ @ e
<2 )" [ [ e v

9)
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COROLLARY 4.2. Supposep > 1, a > p—1 and f be nonnegative integrable
function on /. Let F(x,y) = ff fyd f(t,s)dsdt. Then

/ b / " ()" PP (2 )yl

2p b pd
§<1—§+Oz> /G/c(xy)“fp(:v,y)dydrv-

e Function with two independent variables:
Suppose f(z,y) = fi1(z).f2(y) where fi, fo are nonnegative integrable func-
tions on (0, 00). From Corollary 4.1 and Corollary 4.2, we obtain:

(10)

COROLLARY 4.3. Letp>1, a<p—1 and

Fan) = ([ aoa) ([ peas),

/ b / () P (e )y

<(2) " ([ o) ([ o).

COROLLARY 4.4. Letp>1, a>p—1 and

Fla,y) = </: A dt> (/yd £o(s) ds) |

/ab /Cd (xy)* " FP(z,y)dyda

< (72 ([ swe) ([ v gwa).

If we choose f1 = fo, £ =y, a = ¢, b= d, we deduce the weighted Hardy
integral inequality:

Then

(11)

Then

(12)

COROLLARY 4.5. Suppose p > 1, a < p—1 and f nonnegative integrable on
(0,00). Let F(z) = [ f(t)dt. Then

(13) / b 2@ PFP(z)de < (*)p / o 2(2)dz.

COROLLARY 4.6. Suppose p > 1, a > p—1 and f nonnegative integrable on
(0,00). Let F(x) = [° f(t)dt. Then

(14) / b 2O PFP(z)de < <p>p / " g £7(x)dz.

l-p+a
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