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THE STRONG NORMAL SYSTEM OF SOME COMPACT
RIGHT TOPOLOGICAL GROUPS

ZOHREH BAHRAMIAN and ALI JABBARI

Abstract. The aim of the present paper is to characterize the strong normal
system of the Ellis groups of a well-known family of dynamical systems on the
finite and infinite dimensional tori.
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1. INTRODUCTION

A right topological group is a group G endowed with a topology τ such that
for each t ∈ G the mapping ρt : G → G defined by ρt(s) = st is continuous.
On a right topological group G, the set of all continuous left translations
λs : G → G (with s ∈ G), defined by λs(t) = st, is called the topological
center of G and is denoted by Λ(G). A right topological group (G, τ) is said
to be (countably) admissible if there is a (countable) subset S of Λ(G) such
that S is dense in G. By a CHART group we mean a compact Hausdorff
admissible right topological group. The Furstenberg-Ellis-Namioka structure
theorem deals with the existence of a (transfinite) sequence of closed normal
subgroups in a CHART group G characterizing the structure of G explicitly
[2, 3, 8, 9]. The σ-topology, introduced by Namioka [9], on a right topological
group (G, τ) is the quotient of the product topology τ × τ under the map
(G × G, τ × τ) → G defined by (x, y) 7→ x−1y. For a σ-closed subgroup
L of G let N(L) denote the intersection of all σ-closed σ-neighborhoods of
the identity element 1 in L, then N(L) is a σ-closed normal subgroup of
L. Furthermore, N(G) is the smallest closed normal subgroup of G with
the property that the quotient space G/N(G) is a topological group. As a
matter of fact, if we define L0 = G, L1 = N(G), L2 = N(L1), . . . , and
Lξ = ∩η<ξLη for any limit ordinal ξ ≤ ξ0 then the system of normal subgroups
{Lξ}ξ is exactly the strong normal system of G that is constructed in the
Furstenberg-Ellis-Namioka structure theorem. Namioka [9] Showed that if a
CHART group (G, τ) is countably admissible, and if U denotes the family of
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all τ -open neighborhoods of its identity 1, then N(G) =
⋂
{U−1UU−1U, U ∈

U}. Later, Moors and Namioka [8] removed the countability condition and
showed that the above result remains true for admissible compact Hausdorff
right topological groups. More generally, it is a result of Milnes and Pym
[7] that for a σ-closed normal subgroup L of a CHART group G, the family
{U−1U∩L, U ∈ U} is a base of open neighborhoods of 1 in (L, σ) andN(L) is a
normal subgroup of G and that N(L) =

⋂
{(U−1U∩L)−1(U−1U∩L), U ∈ U}.

They also proved the existence of a unique left invariant Haar measure on any
CHART group, by using the strong normal system in the Furstenberg-Ellis-
Namioka structure theorem.

For a dynamical system (X,T ), the closure of the set {Tn : X → X, n ∈
Z} in XX with the product topology is a semigroup with composition as
multiplication, is called the enveloping semigroup of the system and is denoted
by Σ(X,T ). A dynamical system (X,T ) is called distal if for any two points
x, y in X and any net {nα}α in Z, the identity limα T

nαx = limα T
nαy implies

that x = y. Ellis [1] showed that a dynamical system is distal if and only if
its enveloping semigroup is a group, called the Ellis group of the system.

Assume that T is the unit circle in the complex plane and let E(T) denote
the family of all endomorphisms of the group T. Consider the dynamical
systems (Tk, Tk) and (T∞, T∞) defined by

Tk(x1, x2, . . . , xk) = (λx1, x1x2, . . . , xk−1xk), and

T∞(x1, x2, x3, . . .) = (λx1, x1x2, x2x3, . . .),

in which λ is an element of T. Such systems are distal [4], hence their envelop-
ing semigroups are actually groups. A characterization of the Ellis groups
Σ(T∞, T∞), Σ(Tk, Tk) (for irrational λ), and Σ(Tk, Tk) (for rational λ) as
closed subgroups of E(T∞), E(T)k−1 × T and E(T)k−1 is given in [6], [5] and
[10], respectively, as follows: If σ ∈ Σ(T∞, T∞) and σ = limα T

nα , for some net

(nα)α in Z, then for each i = 1, 2, . . . define θi ∈ E(T) by θi(x) = limα x
Pi(nα),

for all x ∈ T, in which for positive integer n, Pi(n) = (ni ) and for negative

integer n, Pi(n) = (−1)i(i−n−1
i ), where 1 ≤ i ≤ |n|. Then Θ∞ : Σ(T∞, T∞) →

E(T)∞ defined by Θ∞(Σ) = (θ1, θ2, θ3, . . .) is an embedding isomorphism onto
its range. If λ ∈ T is irrational and σ ∈ Σ(Tk, Tk), and σ = limα T

nα ,
for some net (nα)α in Z, then define Θk : Σ(Tk, Tk) → E(T)k−1 × T by

Θk(σ) = (θ1, . . . , θk−1, u), where u = limα λ
Pk(nα) and θ1, . . . , θk−1 are defined

as above and the mapping Θk is an embedding isomorphism onto its range.
Finally, if λ ∈ T is rational and σ ∈ Σ(Tk, Tk), and σ = limα T

nα , for some net
(nα)α in Z, then define Θk : Σ(Tk, Tk) → E(T)k−1 by Θk(σ) = (θ1, . . . , θk−1),
where θ1, . . . , θk−1 are defined as above and the mapping Θk is an embedding
isomorphism onto its range. Notice that the products in the groups E(T)∞,
E(T)k−1 and E(T)k−1 × T are given by

(θ1, θ2, . . .)(θ
′
1, θ

′
2, . . .) = (φ1, φ2, . . .),
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(θ1, . . . , θk−1)(θ
′
1, . . . , θ

′
k−1) = (φ1, . . . , φk−1) and

(θ1, . . . , θk−1, u)(θ
′
1, . . . , θ

′
k−1, u

′
) = (φ1, . . . , φk−1, z),

where for i = 1, 2, . . ., one has φi =
∏i

j=0 θi−j ◦ θ
′
j with θi, θ

′
i ∈ E(T), and also

z = u
′∏k−1

j=1 θk−j ◦ θ
′
j(λ)u, for θi, θ

′
i ∈ E(T) and u, u′ ∈ T.

In this paper, we characterize the Furstenberg-Ellis-Namioka structure of
the groups Σ(Tk, Tk) and Σ(T∞, T∞) (Theorem 2.2) explicitly. In [11] the
structure of the group Σ(T3, T3) is discussed in detail.

2. THE MAIN RESULT

Assume that Q is the set of all rational numbers. Let TQ denote the torsion
subgroup of T, that is TQ = {x ∈ T; xn = 1, for some n ∈ Z} = {e2πiq; q ∈
Q}. For given t ∈ T and U ⊆ T, put B(t, U) = {φ ∈ E(T); φ(t) ∈ U}. Then
the family {B(t, U), t ∈ T, U ⊆ T an open set containing 1} forms a sub-base
of E(T) around the element 1T, where 1T(t) = 1, for all t ∈ T. In fact, the
family {B(t, U); t ∈ TQ, U ⊆ T an open set containing 1} forms a sub-base
of E(T) around 1T [11]. We need the next lemma in the sequel.

Lemma 2.1. Let W = B(t1, U1) × · · · × B(tk−1, Uk−1) × U, where for j =
1, . . . , k − 1, tj ∈ TQ and U and Uj are open sets in T containing 1. Let

(1T, ψ2, . . . , ψk−1, v) ∈ E(T)k−1×T with ψj(tj) = 1, for all j = 2, 3, . . . , k− 1,

then (1T, ψ2, . . . , ψk−1, v) ∈W−1WW−1W, where the product in E(T)k−1 × T
is given above with λ ∈ T− TQ.

Proof. Let W ⊂ E(T)k−1 × T and (1T, ψ2, . . . , ψk−1, v) ∈ E(T)k−1 × T be
as stated in the lemma. Let y = (θ1, . . . , θk−1, u) ∈ W−1W be arbitrary. Let

x = (θ
′
1, . . . , θ

′
k−1, u

′
) ∈W with u

′
v ∈ U and

xy = (θ
′
1, . . . , θ

′
k−1, u

′
)(θ1, . . . , θk−1, u) ∈W.

Then (by taking θ
′
0 = idT) one has

z =

(
1

θ1
,

ψ2

(θ
′
1 ◦ θ1)θ2

, . . . ,
ψk−1∏k−1

r=1 θ
′
(k−1)−r ◦ θr

,
v

u
∏k−1

r=1 θ
′
k−r ◦ θr(λ)

)
∈W−1W.

In fact, it is enough to show that (xy)z ∈W . A straightforward computation
shows that

(xy)z = (θ
′
1, θ

′
2ψ2, θ

′
3ψ3, . . . , θ

′
k−1ψk−1, u

′
v) ∈W,

because ψj(tj) = 1, for j = 2, 3, . . . , k − 1. Thus we derive that z ∈ W−1W
and hence (1T, ψ2, . . . , ψk−1, v) = yz ∈ (W−1W )(W−1W ). □

We are ready to prove our main result. In what follows (T∞, T∞) and
(Tk, Tk) are the dynamical systems stated in the introduction.
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Theorem 2.2. (i) The strong normal system {Ni}i∈N of Σ(T∞, T∞) is char-
acterized by: (θ1, θ2, θ3, . . .) ∈ Ni(Σ(T∞, T∞)) if and only if θ1 = θ2 = . . . =
θi = 1T.

(ii) The strong normal system {Ni, 1 ≤ i ≤ k} of Σ(Tk, Tk) with λ ∈ T−TQ
is characterized by: (θ1, . . . , θk−1, u) ∈ Ni(Σ(Tk, Tk)) if and only if u ∈ T
is arbitrary and θ1 = θ2 = . . . = θi = 1T (for 1 ≤ i ≤ k − 1) and Nk =
{(1T, . . . , 1T, 1)}.

(iii) The strong normal system {Ni, 1 ≤ i ≤ k−1} of Σ(Tk, Tk) with λ ∈ TQ
is characterized by: (θ1, . . . , θk−1) ∈ Ni(Σ(Tk, Tk)) if and only if θ1 = θ2 =
. . . = θi = 1T (for 1 ≤ i ≤ k − 1).

Proof. We prove part (ii) by induction. The other two cases are proved
similarly. Fix k ≥ 2 in N. Let λ ∈ T be irrational, i.e. λ ∈ T − TQ. Define
Θk : Σ(Tk, Tk) → E(T)k−1 × T by Θk(σ) = (θ1, . . . , θk−1, u), where u =

limα λ
Pk(nα) and θ1, . . . , θk−1 are defined as in the introduction. The mapping

Θk is an embedding isomorphism onto its range. Clearly Σ = Σ(Tk, Tk) is a
CHART group. Thus

N(Σ) =
⋂

(W∩Σ)−1(W∩Σ)(W∩Σ)−1(W∩Σ) =
⋂

(W−1W∩Σ)(W−1W∩Σ)

where W runs over the local sub-basis W of all open sets of the form

W = B(t1, U1)× · · · ×B(tk−1, Uk−1 × U),

in which for j = 1, . . . , k−1, tj ∈ TQ and U and Uj are open sets in T containing
1. (Actually, it is easily verified that (W ∩Σ)−1(W ∩Σ) =W−1W ∩Σ.) Hence,

N(Σ) =
⋂

W∈W
(W−1W ∩ Σ)(W−1W ∩ Σ).

Let (ψ1, . . . , ψk−1, v) ∈ N1 = N(Σ). Thus for W ∈ W, (ψ1, . . . , ψk−1, v) ∈
(W−1W ∩ Σ)(W−1W ∩ Σ). It follows that ψ1(t1) ∈ U−1

1 U1U
−1
1 U1, for each

t1 ∈ TQ, and for any open set U1 in T containing 1. Hence ψ1 = 1T. Therefore,

N(Σ) = N1 ⊆ {(1T, θ2, . . . , θk−1, u) ∈ Σ; u ∈ T, θj ∈ E(T), j = 2, . . . , k − 1}.

To prove the converse inclusion, let (ψ1, ψ2, . . . , ψk−1, v) ∈ Σ with ψ1 = 1T. It
follows from [10, Theorem 3.9 (iii)] that for each j = 1, 2, . . . , k − 1,

ψj(t
j!) =

j∏
l=1

ψ
(l)
1 (ts(j,l)) = 1, for all t ∈ TQ,

in which ψ
(l)
1 denotes the composition of l instances of ψ1, and s(j, l) is a

Stirling number of the first kind. Furthermore, for 1 ≤ j ≤ k − 1, we know
that every element s of TQ can be written in the form s = tj!, for some t ∈ TQ.
Hence ψ2(t) = . . . = ψk−1(t) = 1, for all t ∈ TQ. Let W = B(t1, U1) × · · · ×
B(tk−1, Uk−1) × U, where for j = 1, . . . , k − 1 tj ∈ TQ and U and Uj are
open sets in T containing 1. By Lemma 2.1, (1T, ψ2, . . . , ψk−1, v) ∈ (W−1W ∩



162 Z. Bahramian and A. Jabbari 5

Σ)(W−1W ∩ Σ). In fact, it is easily verified that if y = (θ1, . . . , θk−1, u) ∈
W−1W ∩ Σ, then

z =

(
1

θ1
,

ψ2

(θ
′
1 ◦ θ1)θ2

, . . . ,
ψk−1∏k−1

r=1 θ
′
(k−1)−r ◦ θr

,
v

u
∏k−1

r=1 θ
′
k−r ◦ θr(λ)

)
is inW−1W∩Σ. Hence (1T, ψ2, . . . , ψk−1, v) = yz ∈ (W−1W∩Σ)(W−1W∩Σ).
It follows that (1T, ψ2, . . . , ψk−1, v) ∈ N(Σ). Therefore

N1 = N(Σ) = {(1T, θ2, . . . , θk−1, u) ∈ Σ; u ∈ T, θj ∈ E(T), j = 2, . . . , k − 1}.
To continue the proof by induction, fix 1 ≤ i < k − 1, and assume that

Ni = {(1T, . . . , 1T, θi+1, . . . , u) ∈ Σ; u ∈ T, θj ∈ E(T), j = i+ 1, . . . , k − 1}.
We have to show that Ni+1(Σ) coincides with the set

{(1T, . . . , 1T, θi+2, . . . , θk−1, u) ∈ Σ; u ∈ T, θj ∈ E(T), j = i+ 2, . . . , k − 1}.
To this end, with relativization of the σ-topology of Σ to Ni(Σ), recall that

Ni+1(Σ) = N(Ni(Σ)) =
⋂

W∈W
(W−1W ∩Ni(Σ))

−1(W−1W ∩Ni(Σ))

=
⋂

W∈W
(W−1W ∩Ni(Σ))(W

−1W ∩Ni(Σ)).

Similar to the proof given above, for the fact that

N1(Σ) = {(1T, θ2, . . . , θk−1, u) ∈ Σ; u ∈ T, θj ∈ E(T), j = 2, . . . , k − 1},
by looking at the i+1-th component of the product of two elements in Ni(Σ),
it is straightforward to show that Ni+1(Σ) is contained in the set

{(1T, . . . , 1T, θi+2, . . . , θk−1, u) ∈ Σ; u ∈ T, θj ∈ E(T), j = i+ 2, . . . , k − 1}.
For the converse inclusion, let (ψ1, ψ2, . . . , ψk−1, v) ∈ Σ with ψ1 = ψ2 = . . . =
ψi+1 = 1T. We have to show that (1T, . . . , 1T, ψi+2, . . . , ψk−1, v) ∈ Ni+1(Σ).
Recall that for each j = 1, 2, . . . , k − 1,

ψj(t
j!) =

j∏
l=1

ψ
(l)
1 (ts(j,l)) = 1, for all t ∈ TQ,

Hence

ψi+2(t) = . . . = ψk−1(t) = 1, for all t ∈ TQ.

LetW = B(t1, U1)×· · ·×B(tk−1, Uk−1)×U, where for j = 1, . . . , k−1, tj ∈ TQ
and U and Uj are open sets in T containing 1. To prove the result it is enough
to show that

(1T, . . . , 1T, ψi+2, . . . , ψk−1, v) ∈ (W−1W ∩Ni(Σ))(W
−1W ∩Ni(Σ)).

If y = (1T, . . . , 1T, θi+1, . . . , θk−1, u) ∈W−1W ∩Ni(Σ), then

xy = (θ
′
1, . . . , θ

′
k−1, u

′
)(1T, . . . , 1T, θi+1, . . . , θk−1, u) ∈W,
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for some x = (θ
′
1, . . . , θ

′
k−1, u

′
) ∈W . Let

z =

(
1T, . . . , 1T,

ψi+1∏i+1
r=1 θ

′
(i+1)−r ◦ θr

, . . . ,

ψk−1∏k−1
r=1 θ

′
(k−1)−r ◦ θr

,
v

u
∏k−1

r=1 θ
′
k−r ◦ θr(λ)

)
.

To show that z ∈ W−1W , it is enough to show that (xy)z ∈ W . A straight-
forward computation shows that

(xy)z = (θ
′
1, θ

′
2, . . . , θ

′
i, θ

′
i+1ψi+1, . . . , θ

′
3ψ3, . . . , θ

′
k−1ψk−1, u

′
v).

But (θ
′
1, θ

′
2, . . . , θ

′
i, θ

′
i+1ψi+1, . . . , θ

′
3ψ3, . . . , θ

′
k−1ψk−1, u

′
v) ∈ W , since ψj(tj) =

1, for j = i+ 1, . . . , k − 1. Hence z ∈W−1W ∩Ni(Σ). Furthermore,

(1T, . . . , 1T, ψi+2, . . . , ψk−1, v) = yz ∈ (W−1W ∩Ni(Σ))(W
−1W ∩Ni(Σ)).

Hence part (ii) follows by induction. □
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