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COEFFICIENT INEQUALITIES FOR CERTAIN CLASSES OF
ANALYTIC FUNCTIONS USING q-DERIVATIVES

S.VARADHARAJAN, C. SELVARAJ, and K. R. KARTHIKEYAN

Abstract. We introduce and we study the classes ST q (g, λ, γ, α, β) and
KVq (g, λ, γ, α, β) of analytic functions which are defined by making use of the
q-derivative operator. Coefficient inequalities for functions in these classes are
discussed. Some interesting consequences of the results are also pointed out.
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1. INTRODUCTION

Let A denote the class of functions of the form

(1) f(z) = z +
∞∑
n=2

anz
n,

which are analytic in the open disc U = { z : z ∈ C : |z| < 1}.
Let f ∈ A be given by (1)and g be given by

(2) g(z) = z +

∞∑
n=2

anz
n.

The convolution or Hadamard product of f(z) and g(z) is denoted by (f ∗g)
and is defined as

(3) (f ∗ g)(z) =
∞∑
n=0

anbnz
n.

An analytic function f is said to be subordinate to an analytic function
g (written as f ≺ g) if and only if there exists an analytic function ω with
ω(0) = 0 and |ω(z)| < 1 for z ∈ U, such that f(z) = g(ω(z)) for z ∈ U.

In particular, if g is univalent in U ,we have the following equivalence

f ≺ g ⇔ f(0) = g(0) and f(U) ⊂ g(U).
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A function f in A is said to be uniformly convex in U if f is a univalent
convex function along with the property that, for every circular arc γ contained
in U , with center ζ also in U , the image curve f(γ) is a convex arc. The class
of uniformly convex functions is denoted by UCV (see [11]). It is well known

[17] that UCV if and only if Re
(

1 + zf ′′(z)
f ′(z)

)
>
∣∣∣ zf ′′(z)f ′(z)

∣∣∣, z ∈ U , and the

corresponding class UST is defined by the relation that f ∈ UST if and only

if Re
(
zf ′(z)
f(z)

)
>
∣∣∣ zf ′(z)f(z) − 1

∣∣∣, z ∈ U .
Uniformly starlike and convex functions were first introduced by Goodman

[12] and then studied by various other authors.
Also, a function f ∈ A is said to be in the class of uniformly convex functions

of order α and type β denoted by UC(α, β) (see [2] and [6]) if

(4) Re

(
1 +

zf ′′(z)

f ′(z)

)
> α

∣∣∣∣zf ′′(z)f ′(z)

∣∣∣∣+ β, (α ≥ 0, 0 ≤ β < 1; z ∈ U)

and is said to be in a corresponding class denoted by SP (α, β) if

(5) Re

(
zf ′(z)

f(z)

)
> α

∣∣∣∣zf ′(z)f(z)
− 1

∣∣∣∣+ β, (α ≥ 0, 0 ≤ β < 1; z ∈ U).

We note that f(z) ∈ UC(α, β)⇔ zf ′(z) ∈ SP (α, β).
Now, we refer to a notion of q-operators i.e. q-difference operator and q-

integral operator that play vital role in the theory of hypergeometric series,
quantum physics and in the operator theory. The application of q-calculus was
initiated by Jackson [14, 15]. He was the first mathematician who developed
q-derivative and q-integral in a systematic way. Purohit and Raina [23], Kanas
and Răducanu [16] have used the fractional q-calculus operators in investiga-
tions of certain classes of functions which are analytic in the open disk. A
comprehensive study on applications of q-calculus in operator theory may be
found in [5]. Both operators play crucial role in the theory of relativity, usually
encompasses two theories by Einstein, one in special relativity and the other
in general relativity. Special relativity applies to the elementary particles and
their interactions, whereas general relativity applies to the cosmological and
astrophysical realm, including astronomy. Special relativity theory rapidly
became a significant and necessary tool for theorists and experimentalists in
the new fields of atomic physics, nuclear physics and quantum mechanics.

The q-difference operator denoted as Dqf(z) is defined by

Dqf(z) =

{
f(z)−f(qz)
z(1−q) for z 6= 0,

f ′(0) for z = 0,
(6)

and D2
qf(z) = Dq (Dqf(z)) .

From (6), we have Dqf(z) = 1 +
∑∞

n=2 [n]q anz
n−1, where

(7) [n]q =
1− qn

1− q
.
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As q → 1−, [n]q → n. For a function h(z) = zn, we observe that

Dq(h(z)) = Dq(z
n) =

1− qn

1− q
zn−1 = [n]q z

n−1,

lim
q→1

Dq(h(z)) = lim
q→1

(
[n]q z

n−1
)

= nzn−1 = h′(z),

where h′ is the ordinary derivative.
As a right inverse, Jackson [14] introduced the q-integral

z∫
0

h(t)dqt = z(1− q)
∞∑
n=0

qnf (zqn) ,

provided that the series converges. For a function h(z) = zn, we observe that

z∫
0

h(t)dqt = lim
q→1−

zn+1

[n+ 1]q
=

zn+1

n+ 1
=

z∫
0

h(t)dt,

where
z∫
0

h(t)dt is the ordinary integral.

Motivated by the work of Muhammad Arif et al.[19], using q-derivative
operator, we define the following subclasses:

ST q (g, λ, γ, α, β) and KVq (g, λ, γ, α, β)

of analytic function.

Definition 1.1. An analytic function f(z) of the form (1) belongs to the
class ST q (g, λ, γ, α, β), if and only if

(8)

Re

{
eiλ
(

1− 2

γ
+

2

γ

(
zDq(f ∗ g)(z)

(f ∗ g)(z)

))}
> α

∣∣∣∣∣2γ
(
zDq(f ∗ g)(z)

(f ∗ g)(z)
− 1

) ∣∣∣∣∣+ β cosλ

where α ≥ 0, γ ∈ C \ {0}, λ is a real with |λ| < π
2 , 0 < q < 1 and 0 ≤ β < 1.

Definition 1.2. An analytic function f(z) of the form (1) belongs to the
class KVq (g, λ, γ, α, β), if and only if

(9) Re

{
eiλ
(

1− 2

γ
+

2

γ

(
Dq(zDq(f ∗ g)(z))

Dq(f ∗ g)(z)

))}
> α

∣∣∣∣∣2γ
(
Dq(zDq(f ∗ g)(z))

Dq(f ∗ g)(z)
− 1

) ∣∣∣∣∣+ β cosλ

where α ≥ 0, γ ∈ C \ {0}, λ is a real with |λ| <
(
π
2

)
, 0 < q < 1 and 0 ≤ β < 1.
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2. MAIN RESULTS

Theorem 2.1. Let f(z) ∈ ST q (g, λ, γ, α, β) with 0 ≤ α ≤ β. Then

f(z) ∈ ST q
(
g, λ, γ, 0, β−α1−α

)
.

Proof. Let f(z) ∈ ST q (g, λ, γ, α, β). Then we obtain

Re eiλ
{

1− 2

γ
+

2

γ

(
zDq(f ∗ g)(z)

(f ∗ g)(z)

)}
> α

∣∣∣∣∣2γ
(
zDq(f ∗ g)(z)

(f ∗ g)(z)
− 1

) ∣∣∣∣∣+ β cosλ

(10)

> αRe eiλ
(

1− 2

γ
+

2

γ

(
zDq(f ∗ g)(z)

(f ∗ g)(z)

))
− αRe eiλ + β cosλ

and this implies

(11) Re

{
eiλ
(

1− 2

γ
+

2

γ

(
zDq(f ∗ g)(z)

(f ∗ g)(z)

))}
>
β − α
1− α

cosλ.

Also if 0 ≤ α ≤ β, the we can easily obtain 0 ≤ β−α
1−α < 1, and this completes

the proof. �

Theorem 2.2. If f(z) ∈ ST q (g, λ, γ, α, β) , then

(12) |a2| ≤
|γ||η|

([2]q − 1) |1− α||b2|
and

(13) |an| ≤
|γ||η|

([n]q − 1) |1− α||bn|

n−1∏
j=2

(
1 +

|γ||η|
([j]q − 1) |1− α|

)
, n ≥ 3,

where

(14) η = (1− β) cosλ+ i(1− α) sinλ.

Proof. Let f(z) ∈ ST q (g, λ, γ, α, β). Then by Theorem 2.1, we have

(15) Re

{
eiλ
(

1− 2

γ
+

2

γ

(
zDq(f ∗ g)(z)

(f ∗ g)(z)

))}
>
β − α
1− α

cosλ, (z ∈ U) .

Let us define p(z) by
(16)

eiλ
(

1− 2

γ
+

2

γ

(
zDq(f ∗ g)(z)

(f ∗ g)(z)

))
=

[(
1− β
1− α

)
p(z) +

(
β − α
1− α

)]
cosλ+i sinλ.

Then p(z) is anlaytic in U with p(0) = 1 and Re p(z) > 0, z ∈ U . Let

(17) p(z) = 1 +

∞∑
n=1

pnz
n, z ∈ U .
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Then (16) becomes

(18) 1− 2

γ
+

2

γ

(
zDq(f ∗ g)(z)

(f ∗ g)(z)

)
= 1+

(1− β) cosλ+ i(1− α) sinλ

eiλ(1− α)

∞∑
n=1

pnz
n.

That is,

(19) 2eiλ(1− α) [zDq(f ∗ g)(z)− (f ∗ g)(z)] = γη(f ∗ g)(z)

( ∞∑
n=1

pnz
n

)
,

where η is given by (14). Using (3) in (19), we obtain

2eiλ(1− α)

[ ∞∑
n=2

([n]q − 1) anbnz
n

]
= γη

[
z +

∞∑
n=2

anbnz
n

]( ∞∑
n=1

pnz
n

)
.

(20)

Comparing coefficients of zn on both sides,

(21) 2eiλ(1− α) ([n]q − 1) anbn = γη (pn−1 + a2b2pn−2 + · · ·+ an−1bn−1p1) .

Taking absolute on bothsides and then applying the coefficient estimates
|pn| ≤ 2 for Caratheodory functions [4], we obtain

(22) |an| ≤
|γ||η|

([n]q − 1)|1− α||bn|
(1 + |a2||b2|+ · · ·+ |an−1||bn−1|) .

For n = 2,

|a2| ≤
|γ||η|

([2]q − 1)|1− α||b2|
,

which proves (12).
For n = 3,

|a3| ≤
|γ||η|

([3]q − 1)|1− α||b3|

(
1 +

|γ||η|
([2]q − 1)|1− α|

)
.

Therefore, (13) holds for n = 3.
Assume that (13) is true for n = k.
Consider,

|an+1| ≤
|γ||η|

([n+ 1]q − 1)|1− α||bn+1|

{
1 +

|γ||η|
([2]q − 1)|1− α|

+
|γ||η|

([3]q − 1)|1− α|

(
1 +

|γ||η|
([2]q − 1)|1− α|

)
+ · · ·

+
|γ||η|

([n]q − 1)|1− α|

n−1∏
j=2

(
1 +

|γ||η|
([j]q − 1)|1− α|

)}
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=
|γ||η|

([n+ 1]q − 1)|1− α||bn+1|

n∏
j=2

(
1 +

|γ||η|
([j]q − 1) |1− α|

)
.

Therefore, the result is true for n = k + 1, using mathematical induction,
(13) holds true for all n ≥ 3. �

The error function erf defined by [1]

(23) erf(z) =
2√
π

z∫
0

exp(−t2)dt =
2√
π

∞∑
n=0

(−1)nz2n+1

(2n+ 1)n!
,

is the subject of intensive studies and applications during the last years. Sev-
eral properties and inequalities of error function can be found in [3, 9]. In
[10] the authors study the properties of complementary error function occur-
ring widely in almost every branch of applied mathematics and mathematical
physics, e.g., probability and statistics [8] and data analysis [13]. Its inverse,
introduced by Carlitz [7], which we will denote by inverf , appears in multiple
areas of mathematics and the natural sciences.

Let Erf (see [25]) be a normalized analytic function which is obtained from
(23), and given by

Erf = z +
∞∑
n=2

(−1)n−1

(2n− 1)(n− 1)!
zn.

Let g(z) = Erf in Theorem 2.2, then we get the following corollary.

Corollary 2.3. If f(z) ∈ ST q (Erf, λ, γ, α, β), then |a2| ≤ 3|γ||η|
(1−[2]q)|1−α|

and

|an| ≤
|γ||η|(2n− 1)(n− 1)!

(−1)n−1 ([n]q − 1) |1− α|

n−1∏
j=2

(
1 +

|γ||η|
([j]q − 1)|1− α|

)
, n ≥ 3.

If g(z) =
z

1− z
in Theorem 2.2, then we get the following corollary.

Corollary 2.4. If f(z) ∈ ST q
(

z

1− z
, λ, γ, α, β

)
, then |a2| ≤ |γ||η|

([2]q−1)|1−α|

and

|an| ≤
|γ||η|

([n]q − 1) |1− α|

n−1∏
j=2

(
1 +

|γ||η|
([j]q − 1)|1− α|

)
, n ≥ 3.

If q → 1 in the above Corollary 2.4, we get the following corollary.

Corollary 2.5. If f(z) ∈ ST
(

z

1− z
, λ, γ, α, β

)
, then |a2| ≤ |γ||η|

|1−α| and

|an| ≤
|γ||η|

(n− 1) |1− α|

n−1∏
j=2

(
1 +

|γ||η|
(j − 1)|1− α|

)
, n ≥ 3.
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Corollary 2.6. If we put λ = 0, γ = 2 in the Corollary 2.5, we get the

Theorem 2.3 in [20] which states that. If f(z) ∈ ST (α, β) , then |a2| ≤ 2(1−β)
|1−α|

and

|an| ≤
2(1− β)

(n− 1) |1− α|

n−1∏
j=2

(
1 +

2(1− β)

(j − 1)|1− α|

)
, n ≥ 3.

Corollary 2.7. Let α = 0 in Corollary 2.6. Then we get

|an| ≤
1

(n− 1)!

n∏
j=2

(j − 2β), n ≥ 2,

a result by Roberston [26].

Theorem 2.8. Let f(z) ∈ KVq (g, λ, γ, α, β) with 0 ≤ α ≤ β. Then

f(z) ∈ KVq
(
g, λ, γ, 0, β−α1−α

)
.

Theorem 2.9. If f(z) ∈ KVq (g, λ, γ, α, β) , then

(24) |a2| ≤
|γ||η|

[2]q ([2]q − 1) |1− α||b2|
,

(25) |an| ≤
|γ||η|

[n]q ([n]q − 1) |1− α||bn|

n−1∏
j=2

(
1 +

|γ||η|
([j]q − 1)|1− α|

)
, n ≥ 3.

If g(z) = Erf in Theorem 2.9, then we get the following corollary.

Corollary 2.10. If f(z) ∈ KVq (Erf, λ, γ, α, β) , then

|a2| ≤
3|γ||η‖

[2]q(1− [2]q)|1− α|
,

|an| ≤
|γ||η|(2n− 1)(n− 1)!

(−1)n−1[n]q ([n]q − 1) |1− α|

n−1∏
j=2

(
1 +

|γ||η|
([j]q − 1)|1− α|

)
, n ≥ 3.

If g(z) =
z

1− z
in Theorem 2.9, then we get the following corollary.

Corollary 2.11. If f(z) ∈ KVq
(

z

1− z
, λ, γ, α, β

)
, then

|a2| ≤
|γ||η|

[2]q([2]q − 1)|1− α|
,

|an| ≤
|γ||η|

[n]q ([n]q − 1) |1− α|

n−1∏
j=2

(
1 +

|γ||η|
([j]q − 1)|1− α|

)
, n ≥ 3.

If q → 1 in the Corollary 2.11, we get the following corollary.
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Corollary 2.12. If f(z) ∈ KV
(

z

1− z
, λ, γ, α, β

)
, then |a2| ≤ |γ||η|

2|1−α| and

|an| ≤
|γ||η|

n (n− 1) |1− α|

n−1∏
j=2

(
1 +

|γ||η|
(j − 1)|1− α|

)
, n ≥ 3.

Corollary 2.13. If we put λ = 0, γ = 2 in the Corollary 2.12, we get the
Corollary 2.5 of [20] which states that. If f(z) ∈ KV (α, β) , then |a2| ≤ 1−β

|1−α|
and

|an| ≤
2(1− β)

n (n− 1) |1− α|

n−1∏
j=2

(
1 +

2(1− β)

(j − 1)|1− α|

)
, n ≥ 3.

Remark 2.14. If we let α = 0 in Corollary 2.13, we get a result given by

Roberston [26]: |an| ≤ 1
n!

n∏
j=2

(j − 2β), n ≥ 2.
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