
MATHEMATICA, Tome 62 (85), No 2, 2020, pp. 148–159

GENERALIZED SEMIDERIVATIONS IN PRIME RINGS WITH
ALGEBRAIC IDENTITIES

ABDELKARIM BOUA and MOHAMMED ASHRAF

Abstract. Let R be a prime ring with center Z(R). Suppose that R admits a
generalized semiderivation F with associated derivation d 6= 0. In the present
paper we investigate the commutativity of a prime ring R satisfying any one of
the identities: (i) F ([x, y]) ∈ Z(R), (ii) F (x◦y) ∈ Z(R), (iii) F (xy)±xy ∈ Z(R),
(iv) F (xy) ± yx ∈ Z(R), (v) [F (x), F (y)] = 0, (vi) F (x) ◦ F (y) = 0 for all
x, y ∈ R.
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1. INTRODUCTION

Let R be an associative ring with center Z(R). For any x, y ∈ R; [x, y] will
denote the commutator xy−yx while x◦y will represent the anti-commutator
xy + yx. Recall that a ring R is said to be prime if aRb = {0} implies that
either a = 0 or b = 0. A ring R is said to be 2-torsion free if 2a = 0 (where
a ∈ R) implies a = 0. It is straight forward to see that a prime ring with
characteristic different from two is 2-torsion free. A mapping f : R → R
is said to be centralizing on R if [f(x), x] ∈ Z(R) holds for all x ∈ R. In
the special case if [f(x), x] = 0 for all x ∈ R, f is said to be commuting
on R. An additive mapping d : R → R is said to be a derivation of R if
d(xy) = d(x)y + xd(y) for all x, y ∈ R. A derivation d is said to be inner
if there exists a ∈ R such that d(x) = ax − xa for all x ∈ R. Following
Bresar [17], an additive mapping F : R → R is called a generalized derivation
if there exists a derivation d : R → R such that F (xy) = F (x)y + xd(y)
holds for all x, y ∈ R. The concept of generalized derivation includes both
the concept of derivation and the concept of left multiplier (i.e., an addi-
tive mapping F : R → R satisfying F (xy) = F (x)y for all x, y ∈ R).
The notion of semiderivation was introduced by Bergen [16]. An additive
mapping d : R → R is called a semiderivation on R if there exists a map
g : R → R such that (i) d(xy) = d(x)g(y) + xd(y) = d(x)y + g(x)d(y), and
(ii) d(g(x)) = g(d(x)) hold for all x, y ∈ R. If g is the identity map on R,
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then all semiderivations associated with g are merely ordinary derivations.
Moreover, if g is any endomorphism of R, then other example of semideriva-
tions associated with g are of the form d(x) = x − g(x). For an example
of semiderivation which is not a derivation, let R = R1 ⊕ R2 where R1

and R2 are any rings. Let α1 : R1 → R1 be any additive mapping and
α2 : R2 → R2 be a left and right R2-module map which is not a derivation.
Define d : R → R such that d(x1, x2) =

(
0, α2(x2)

)
and g : R → R such that

g(x1, x2) =
(
α1(x1), 0

)
, x1 ∈ R1, x2 ∈ R2. It can be easily verified that d is a

semiderivation of R with associated map g which is not a derivation of R. If
the underlying ring is prime and the semiderivation d 6= 0, then in this case it
was shown by Chang [19] that g must necessarily be a ring endomorphism. The
notion of semiderivation can be generalized in terms of generalized semideriva-
tion as follows: An additive mapping F : R → R is said to be a generalized
semiderivation onR if there exists a semiderivation d : R → R associated with
a map g : R → R such that (i) F (xy) = F (x)g(y)+xd(y) = F (x)y+g(x)d(y),
and (ii) F (g(x)) = g(F (x)) hold for all x, y ∈ R. Thus all semiderivations are
generalized semiderivations. Further, if the associated mappings g is merely
the identity mapping onR, then all generalized semiderivations are generalized
derivation on R. This is straightforward that every generalized derivation is
a generalized semiderivation but there exist generalized semiderivations which
are not generalized derivations. For example, if S be a ring of characteristic
different from 2 and

R =

{ 0 x y
0 0 0
0 0 z

 | x, y, z ∈ S}.
Define maps F, d, g : R → R by

F

 0 x y
0 0 0
0 0 z

 =

 0 0 y
0 0 0
0 0 z

 ; d = F, g

 0 x y
0 0 0
0 0 z

 =

 0 x 0
0 0 0
0 0 0

 .

It can be verified that R is a ring and F is a generalized semiderivation with
associated semiderivation d and a map g associated with d. However F is not
a generalized derivation on R.

The study of centralizing and commuting derivations was initiated by E.
C. Posner who proved that the existence of nonzero centralizing derivation
on a prime ring R forces R to be commutative. This result has been very
influential and after its inception there has been a great deal of work concern-
ing commutativity of prime and semiprime rings satisfying certain differential
identities (see for reference [1, 2, 3, 5, 6, 7, 9, 11] etc. where further ref-
erences can be found). Many results in the recent past have also appeared
concerning commutativity of rings satisfying certain differential identities in-
volving generalized derivations, for reference see [4], [13] etc. In this paper, we
shall consider similar problems when the ring R is equipped with generalized
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semiderivation d. More precisely, we obtain commutativity of R admitting
generalized semiderivation F satisfying any one of the identities:

(i) F ([x, y] ∈ Z(R), (ii) F (x ◦ y) ∈ Z(R), (iii) F (xy) + xy ∈ Z(R),
(iv) F (xy) + yx ∈ Z(R), (v) [F (x), F (y)] = 0, (vi) F (x) ◦ F (y) = 0 for all
x, y ∈ R.

In this paper, we suppose that F is a generalized semiderivation with asso-
ciated semiderivation d, while it is also assumed that the associated maps g is
onto.

2. PRELIMINARY LEMMAS

This section, includes some well known results which will be used for devel-
oping the proof of our main results. The proof of the first lemma is straight-
forward while the second lemma is an easy consequence of [11, Theorem 2.9]

Lemma 2.1. Let R be a prime ring which admits a semiderivation d whose
associated map g is onto. Then d(Z(R)) ⊆ Z(R).

Lemma 2.2. Let R be a prime ring. If I is a nonzero ideal of R such that
[x, y] ∈ Z(R) for all x, y ∈ I, then R is a commutative.

Lemma 2.3. Let R be a prime ring, and let F be a generalized semideriva-
tion with associated semiderivation d 6= 0. If d(F (R)) = {0}, then F (d(R)) =
{0}.

Proof. Since d(F (x)) = 0 for all x ∈ R, it follows that 0 = d(F (xy)) =
d(F (x)y) + d(g(x)d(y)) for all x, y ∈ R which implies that

(2.1) F (x)d(y) + d(g(x))d(y) + g2(x)d2(y) = 0 for all x, y ∈ R.

Applying d again, we get
(2.2)
F (x)d2(y)+d2(g(x))g(d(y))+d(g(x))d2(y)+d(g2(x))g(d2(y))+g2(x)d3(y) = 0.

Taking d(y) in place of y in (2.1), then (2.2) becomes

d2(g(x))g(d(y)) + d(g2(x))g(d2(y)) = 0 for all x, y ∈ R.

Using the fact that d(g(x)) = g(d(x)) for all x ∈∈ R, we find that

d2(g(x))d(g(y)) + d(g2(x))d2(g(y)) = 0 for all x, y ∈ R.

Since g is onto, we obtain

(2.3) d2(g(x))d(y) + d(g2(x))d2(y) = 0 for all x, y ∈ R.

Replacing x by d(x) in (2.1) and using (2.3), we conclude that F (d(x))d(y) = 0
for all x, y ∈ R. Letting ry in place of y in the above equation and using it
again, we arrive at F (d(x))Rd(y) = {0} for all x, y ∈ R. By primeness of R
with d 6= 0, we conclude that F (d(R)) = {0}. �



4 Generalized semiderivations in prime rings 151

3. SOME RESULTS FOR PRIME RINGS

Theorem 3.1. Let R be a prime ring with char(R) 6= 2. If R admits a
generalized semiderivation F associated with a nonzero semiderivation, then
the following assertions are equivalent:

(i) F ([x, y]) ∈ Z(R) for all x, y ∈ R;
(ii) F (x ◦ y) ∈ Z(R) for all x, y ∈ R;
(iii) R is commutative.

Proof. It is clear that (iii) implies (i) and (ii). So we need to prove that
(i)⇒ (iii) and (ii)⇒ (iii).
(i)⇒ (iii) Suppose that R satisfies (i), i.e.;

(3.1) F ([x, y]) ∈ Z(R) for all x, y ∈ R.
Then

(3.2) F ([[u, v], y]) ∈ Z(R) for all u, v, y ∈ R.
Replacing y by y[u, v] in (3.2), we get

(3.3) F ([[u, v], y])g([u, v]) + [[u, v], y]d([u, v]) ∈ Z(R) for all u, v, y ∈ R.
Using the definition of F and the fact that F ([u, v]) ∈ Z(R), we get

F ([x, y])F ([u, v]) + g([x, y])d(F ([u, v])) = F ([x, y]F ([u, v]))

= F ([x, yF ([u, v])]),

for all u, v, x, y ∈ R. By (3.1), we find that

(3.4) F ([x, y])F ([u, v]) + g([x, y])d(F ([u, v])) ∈ Z(R) for all u, v, x, y ∈ R.
Using again equation (3.1), we can write the last expression in the form

g([x, y])d(F ([u, v])) ∈ Z(R) for all u, v, x, y ∈ R.
Sine F ([u, v]) ∈ Z(R), d(F ([u, v])) ∈ Z(R) by Lemma 2.1 and primeness of R
gives

(3.5) d(F ([u, v])) = 0 or g([x, y]) ∈ Z(R) for all u, v, x, y ∈ R.
Suppose that g([x, y]) ∈ Z(R) for all x, y ∈ R. Then by (3.3) we get

(3.6) [[u, v], y]d([u, v]) ∈ Z(R) for all u, v, y ∈ R.
Replacing y by [u, v]y, we find that

(3.7) [u, v][[u, v], y]d([u, v]) ∈ Z(R) for all u, v, y ∈ R.
Combining (3.6), (3.7) and using the primeness of R, we get

(3.8) [[u, v], y]d([u, v]) = 0 or [u, v] ∈ Z(R) for all u, v, y ∈ R.
Suppose there exist two elements u0, v0 ofR such that [[u0, v0], y]d([u0, v0]) = 0
for all y ∈ R. Taking ty instead of y in the last expression and using it again,
we can easily find the relation [[u0, v0], t]Rd([u0, v0]) = {0} for all t ∈ R. Using
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the primeness of R, the last expression gives that either [u0, v0] ∈ Z(R) or
d([u0, v0]) = 0. In this case, (3.8) becomes

(3.9) d([u, v]) = 0 or [u, v] ∈ Z(R) for all u, v ∈ R.
Suppose there are two elements u0, v0 ∈ R such that d([u0, v0]) = 0. Return-
ing to the definition of F, we have F (x)y + g(x)d(y) = F (x)g(y) + xd(y)
for all x, y ∈ R and replacing x by [r, s] and y by [u0, v0], we arrive at
F ([r, s])R

(
g([u0, v0]) − [u0, v0]

)
= {0}. Since R is prime, F ([r, s]) = 0 or

g([u0, v0]) = [u0, v0] ∈ Z(R) and hence by (3.9), we obtain F ([r, s]) = 0 or
[u, v] ∈ Z(R) for all r, s, u, v ∈ R. By Lemma 2.2 we then conclude that
F ([r, s]) = 0 for all r, s ∈ R or R is commutative. Since F ([r, s]) = 0 for all
r, s ∈ R implies d(F ([r, s])) = 0 for all r, s ∈ R, the equality (3.5) becomes

(3.10) d(F ([r, s])) = 0 for all r, s ∈ R or R is commutative.

Suppose that d(F ([r, s])) = 0 for all r, s ∈ R. Using the definition of F and the
choice of x = [u, v], y = F ([r, s]), we can easily arrive at F ([u, v])R

(
g(F ([r, s]))

−[r, s]
)

= {0} for all r, s, u, v ∈ R. Since R is prime, g(F ([r, s])) = [r, s] for
all r, s ∈ R or F ([u, v]) = 0 for all u, v ∈ R.
Suppose that g(F ([r, s])) = [r, s] for all r, s ∈ R. By definition of F , it is
clear that F (F ([u, v])x) = F 2([u, v])x + F ([u, v])d(x) and F (F ([u, v])x) =
F 2([u, v])g(x) + F ([u, v])d(x) for all u, v, x ∈ R. By comparing the last two
equalities, we can easily arrive at

(3.11) F 2([u, v])x = F 2([u, v])g(x) for all u, v, x ∈ R.
Replacing x by xt in (3.11), we get

F 2([u, v])xt = F 2([u, v])g(xt) = F 2([u, v])g(x)g(t) = F 2([u, v])xg(t)

for all u, v, x, t ∈ R. This implies that

F 2([u, v])R(g(t)− t) = {0} for all u, v, t ∈ R.
Now the primeness of R yields that F 2([u, v]) = 0 for all u, v ∈ R or g = idR.
In all cases, we can conclude

(3.12) F 2([u, v]) = 0 for all u, v ∈ R or g = idR.

Suppose that F 2([u, v]) = 0. Now further expansion of

F (xF ([u, v])) = F (F ([u, v])x)

for all x ∈ R yields F ([u, v])F (x) = F ([u, v])d(x) for all x ∈ R. This implies
that

F ([u, v])R(F (x)− d(x)) = {0} for all x ∈ R,
and by primeness of R, we get either F ([u, v]) = 0 for all u, v ∈ R or F = d.

If F = d, by Theorem 3.1 of [8] we conclude that R is commutative.
If F ([u, v]) = 0 for all u, v ∈ R, taking vu in place of v we get

0 = F ([u, vu]) = F ([u, v])g(u) + [u, v]d(u) = [u, v]d(u) for all u, v ∈ R,
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which implies that uvd(u) = vud(u) for all u, v ∈ R. Replacing v by tv in the
last equation and using it, we arrive at [u, t]Rd(u) = {0} for all u, t ∈ R and
the primeness of R assures that either u ∈ Z(R) or d(u) = 0 for all u ∈ R. It
follows from Lemma 2.1 that d(R) ⊆ Z(R) which implies that d(xy)t = td(xy)
for all x, y, t ∈ R. By developing the last expression, we arrive at

(3.13) d(x)yt+ g(x)d(y)t = td(x)y + tg(x)d(y) for all x, y, t ∈ R.
Replacing t by g(x), we arrive at d(x)R[g(x), y] = {0} for all x, y ∈ R. Since
R is prime, either d(x) = 0 or g(x) ∈ Z(R) for all x ∈ R. If there is x0 ∈ R
such that d(x0) = 0, replace x by x0 in (3.13), we get d(y)R[g(x0), t] = {0}
for all x, t ∈ R. By primeness of R with d 6= 0, we obtain g(x0) ∈ Z(R). In
all case, g(x) ∈ Z(R) for all x ∈ R and the fact g is onto forces that R is
commutative.

If g = idR, then F becomes a generalized derivation and [18, Lemma 1]
forces that R is commutative.

(ii)⇒ (iii). Using similar techniques with necessary variations, we get the
desired result. We skip the details of the proof just to avoid repetition. �

The following example shows that we cannot removed the primeness of R
in Theorem 3.1.

Example 3.1. Let

R =

{ 0 x y
0 0 0
0 0 z

 | x, y, z ∈ Z

}
.

Define maps F, d, g : R → R by

F

 0 x y
0 0 0
0 0 z

 =

 0 xy 0
0 0 0
0 0 0

 , g

 0 x y
0 0 0
0 0 z

 =

 0 x 0
0 0 0
0 0 0

 and d = g.

It is clear that R is not prime and F is a generalized semiderivation on R
with associated semiderivation d of R which satisfies the following:

(i) F ([A,B]) ∈ Z(R) (ii) F (A ◦B) ∈ Z(R)

for all A,B ∈ R. However, R is not commutative.

Theorem 3.2. Let R be a prime ring. If R admits a generalized semideriva-
tion F associated with a semiderivation d. If F 6= idR, then the following
assertions are equivalent:

(i) F (xy)− xy ∈ Z(R) for all x, y ∈ R;
(ii) F (xy)− yx ∈ Z(R) for all x, y ∈ R;
(iii) R is commutative.

Proof. (i)⇒ (iii). We start the proof by treating the case Z(R) = {0}. In
this case, we have F (xy) = xy for all x, y ∈ R.

If F = 0, then xy = 0 for all x, y ∈ R which implies that xRy = {0} for all
x, y ∈ R. The primeness of R gives a contradiction.
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Now suppose that F 6= 0, then

xyt = F (xyt)

= F (xy)t+ g(xy)d(t)

= xyt+ g(xy)d(t) for all x, y, t ∈ R.

This implies that g(xy)d(t) = 0 for all x, y, t ∈ R and replacing t by rt in the
last expression, we arrive at g(xy)Rd(t) = {0} for all x, y, t ∈ R. By primeness
of R, we get

(3.14) g(xy) = 0 for all x, y ∈ R or d = 0.

If g(xy) = 0 for all x, y ∈ R, then by definition of F , we have

F (xyz) = F (x)g(yz) + xd(yz)

= F (x)yz + g(x)d(yz) for all x, y, z ∈ R

which means that xd(yz) = F (x)yz + g(x)d(yz) for all x, y, z ∈ R. Taking
xt in the place of x, we can easily arrive at xR(d(yz) − yz) = {0} for all
x, y, z ∈ R. Since R is prime, we get d(yz) = yz for all y, z ∈ R. Using
the definition of d, we have d(xy)z + g(xy)d(z) = d(xy)g(z) + xyd(z) for all
x, y, z ∈ R which easily gives us the equation xR(d(z) + g(z) − z) = {0} for
all x, z ∈ R. By primeness of R, we get d = idR − g and using again the
definition of F , we have F (x)g(y) +xd(y) = F (x)y+ g(x)d(y) for all x, y ∈ R,
then F (x)(g(y) − y) + (x − g(x))d(y) = 0 for all x, y ∈ R. This implies that
(F (x)− d(x))d(y) = 0 for all x, y ∈ R. Replacing y by yt in last equation and
using it again, we arrive at (F (x) − d(x))Rd(t) = {0} for all x, t ∈ R. Using
the primeness of R and d 6= 0, we arrive at F = d.

Now, replacing x by g(x) in equation d(xy) = xy, we obtain d(g(x))g(y) +
g(x)d(y) = g(x)y for all x, y ∈ R. Using d(g(x)) = g(d(x)) for all x ∈ R and
the fact that g(xy) = 0 for all x, y ∈ R, we arrive at g(x)(d(y)− y) = 0 for all
x, y ∈ R. Since g is onto, x(d(y)−y) = 0 for all x, y ∈ R and by the primeness
of R, we obtain d = idR = F and this expression contradicts with F 6= idR.

If d = 0, then F (x)g(y) = F (x)y for all x, y ∈ R which implies that
F (x)(g(y)− y) = 0 for all x, y ∈ R. Putting xr instead of x we get xr(g(y)−
y) = 0 for all x, y, r ∈ R which means xR(g(y)− y) = {0} for all x, y ∈ R and
by the primeness of R again, we conclude that g = idR, in this case F (xy) =
F (x)y = xy for all x, y ∈ R. Taking ry in place of y we get (F (x)−x)Ry = {0}
for all x, y ∈ R which gives a contradiction with F 6= idR.

Now suppose that Z(R) 6= {0} and

(3.15) F (xy)− xy ∈ Z(R) for all x, y ∈ R.

It follows that F (x)g(y) + xd(y) − xy ∈ Z(R) for all x, y ∈ R. This can be
rewritten as

(3.16) (F (xt)− xt)g(y) + xt(d(y) + g(y)− y) ∈ Z(R) for all x, y, t ∈ R.
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This implies that

(3.17) g(y)xt(d(y) + g(y)− y) = xt(d(y) + g(y)− y)g(y) for all x, y, t ∈ R.
Putting xu in place of x in the above equality and using it, then we get,

[x, g(y)]Rt(d(y) + g(y)− y) = {0} for all x, y, t ∈ R.
By primeness of R, we get

(3.18) g(y) ∈ Z(R) or d(y) + g(y)− y = 0 for all y ∈ R.
If there exists y0 ∈ R such that g(y0) ∈ Z(R), by (3.16) we arrive at

xt(d(y0) + g(y0)− y0) ∈ Z(R) for all x, t ∈ R.
Replacing x by ux in the last expression with primeness of R, we can easily
show that d(y0) + g(y0)− y0 = 0 or R is commutative, and in this case, (3.18)
becomes

(3.19) d(y) + g(y)− y = 0 for all y ∈ R or R is commutative.

Suppose that d(y) + g(y) − y = 0 for all y ∈ R. By (3.15), (3.16) and the
primeness of R, we get

(3.20) F (xt) = xt for all x, t ∈ R or g(y) ∈ Z(R) for all y ∈ R.
The first case is already treated previously and for the second case, the fact
that g is onto forces that R is commutative.

(ii)⇒ (iii). Assume that Z(R) = {0}, then F (xy) = yx for all x, y ∈ R. If
F = 0, then yx = 0 for all x, y ∈ R. The primeness of R gives a contradiction.

If F 6= 0, using the definition of F we obtain g(x)d(y) = yx − F (x)y for
all x, y ∈ R. Replacing x by tx in the last equation, we get g(t)g(x)d(y) =
ytx−xty for all x, y, t ∈ R. For y = x, we have g(t)g(x)d(x) = 0 for all x, t ∈ R.
Using the fact that g is onto and the primeness of R, we find that g(x)d(x) = 0
for all x ∈ R. Using the definition of F , we have F (x)g(y) + xd(y) = yx and
right multiplying by d(y), we arrive at xd(y)d(y) = yxd(y) for all x, y ∈ R.
Replacing x by xt in last equation and using it again, we arrive at [x, y]Rd(y) =
{0} for all x, y ∈ R. By primeness of R we get either y ∈ Z(R) or d(y) = 0
for all y ∈ R. By Lemma 2.1, we get d(R) ⊆ Z(R) and this forces that R is
commutative.

Assume that

(3.21) F (xy)− yx ∈ Z(R) for all x, y ∈ R.
It follows that

(3.22) (F (x)− x)y + g(x)d(y) + [x, y] ∈ Z(R) for all x, y ∈ R.
Putting yx in place of y, we get

((F (x)− x)y + g(x)d(y) + [x, y])x+ g(x)g(y)d(x) ∈ Z(R) for all x, y ∈ R.
Using (3.22), we can rewrite the last equality as

(3.23) g(x)g(y)d(x) ∈ Z(R) for all x ∈ Z(R), y ∈ R.
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Since g is onto, (3.23) implies that g(x)yd(x) ∈ Z(R) for all x ∈ Z(R), y ∈ R.
Since d(Z(R)) ⊆ Z(R), we get g(x)y ∈ Z(R) or d(x) = 0 for all x ∈ Z(R),
y ∈ R. Replacing y by yr in the last equation and using it with the primeness
of R, we obtain either g(x)y = 0 or d(x) = 0 or r ∈ Z(R) for all x ∈ Z(R),
y, r ∈ R which implies that g(x)Ry = {0} or d(x) = 0 for all x ∈ Z(R), y ∈ R
or R is commutative. By primeness of R, we arrive at g(x) = 0 or d(x) = 0
for all x ∈ Z(R) or R is commutative. Using the fact that g is onto, we obtain
d(Z(R) = {0} or R is commutative. Assume that d(Z(R) = {0}. By (3.22),
we obtain (F (x) − x)y ∈ Z(R) for all x ∈ R, y ∈ Z(R). By primeness of R,
we get F (x) − x ∈ Z(R) for all x ∈ R or Z(R) = {0}. The second case is
already treated previously and for the first case, we have F (xy)− xy ∈ Z(R)
for all x, y ∈ R. Combining this expression with (3.21), we conclude that
[x, y] ∈ Z(R) for all x, y ∈ R which forces that R is commutative by Lemma
2.2 . �

Using similar techniques with necessary variations, one can easily prove the
following theorem.

Theorem 3.3. Let R be a prime ring. If R admits a generalized semideriva-
tion F associated with a semiderivation d. If F 6= −idR, then the following
assertions are equivalent:

(i) F (xy) + xy ∈ Z(R) for all x, y ∈ R,
(ii) F (xy) + yx ∈ Z(R) for all x, y ∈ R,
(iii) R is commutative.

Remark 3.1. For F = ±idR, is easy to demonstrate (ii) ⇔ (iii) in The-
orems 3.2 and 3.3, just by apply Lemma 2.2.

The following example shows that we cannot removed the primeness of R
in Theorems 3.2 (i) and 3.4 (i).

Example 3.2. Let

R =

{ 0 x y
0 0 0
0 0 z

 | x, y, z ∈ Z2

}
.

Define maps F, d, g : R → R by

F

 0 x y
0 0 0
0 0 z

 =

 0 0 y
0 0 0
0 0 z

 , d = F, g

 0 x y
0 0 0
0 0 z

 =

 0 x 0
0 0 0
0 0 0

 .

It is clear that R is not prime and F is a generalized semiderivation on R
with associated semiderivation d of R which satisfies the following:

(i) F (AB)±AB ∈ Z(R) for all A,B ∈ R.
However, R is not commutative.

In [12], H. E. Bell and N.-Ur Rehman showed that the prime ring R with
1 and char(R) 6= 2 is commutative if the condition [F (x), F (y)] = 0 for all
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x, y ∈ R holds in R. Several authors investigated this result for prime ring
admitting derivation and generalized derivation. Motivated by these works, we
will prove this result in prime ring with 1 involving generalized semiderivation.

Theorem 3.4. Let R be a prime ring with 1 such that char(R) 6= 2. If R
admits a generalized semiderivation F associated with a nonzero semideriva-
tions d, then the following assertions are equivalent:

(i) [F (x), F (y)] = 0 for all x, y ∈ R;
(ii) R is commutative.

Proof. Obviously (ii)⇒ (i).
(i)⇒ (ii). Suppose that [F (x), F (y)] = 0 for all x, y ∈ R, This means that

F (x)F (y) = F (y)F (x) for all x, y ∈ R. Using the definition of F after putting
y by yF (z), we arrive at F (x)yd(F (z)) = y(F (z))F (x) for all x, y, z ∈ R. By
replacing y by ys for arbitrary s ∈ R it is easy to see that [F (x), y]Rd(F (z)) =
{0} for all x, y, z ∈ R. Since R is prime, either d(F (R)) = {0} or F (R) ⊆
Z(R).

Now, suppose the second case. By Lemma 2.3 we obtain F (d(x)) = 0 for
all x ∈ R. Using the definition of F , we have

F (d(x)y) = F (d(x))y + g(d(x))d(y)

= F (d(x))g(y) + d(x)d(y) for all x, y ∈ R.

This implies that (g(d(x))−d(x))d(y) = 0 for all x, y ∈ R. Letting ry in place
of y, we arrive at (g(d(x)) − d(x))Rd(y) = {0} for all x, y ∈ R and by the
primeness of R and the fact that d 6= 0, we get g(d(x)) = d(x) = d(g(x)) for
all x ∈ R. Invoking this in the relation of F (d(xy)) = 0, using two different
ways, we arrive at F (x)d(y)+d(x)d(y)+xd2(y) = 0 and F (x)d(y)+d(x)d(y)+
g(x)d2(y) = 0 for all x, y ∈ R. By comparing the latter expressions, we can
easily arrive at g(x)d2(y) = xd2(y) for all x, y ∈ R. Replacing x by rx in
the latter equation we find that (g(x) − x)Rd2(y) = {0} for all x, y ∈ R. By
the primeness of R, we arrive at either g = idR or d2(y) = 0 for all y ∈ R.
Suppose we have the second condition. Then

0 = d2(yz) = d2(y)g(z) + g(d(y))d(z) + d(g(y))d(z) + g(y)d2(z)

= 2d(y)d(z) for all y, z ∈ R.

Since char(R) 6= 2, the last expression becomes d(x)d(y) = 0 for all x, y ∈ R.
Letting y = rt for arbitrary r ∈ R and using the definition of d, we can
conclude that d(x)Rd(t) = {0} for all x, t ∈ R and primeness of R forces that
d = 0, a contradiction.

Now assume that g = idR. Then F becomes a generalized derivation and
by Theorem 3.4 of [12], we find that R is commutative.

Now suppose that F (R) ⊆ Z(R). Then F (x)y = yF (x) for all x, y ∈
R. Replacing x by xt in the latter expression and using it again, we get
xd(y)g(y) = g(y)xd(y) for all x, y ∈ R. Putting xr in place of x, we arrive at
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[g(y), x]Rd(y) = {0} for all x, y ∈ R. Since R is prime, we obtain

(3.24) d(y) = 0 or g(y) ∈ Z(R) for all y ∈ R.
Suppose there is y0 ∈ R such that d(y0) = 0. Using the definition of F and the
fact that F (R) ⊆ Z(R), we get F (x)g(y0)t + xd(y0)t = tF (x)g(y0) + txd(y0)
for all x, t ∈ R which forces that F (x)R[g(y0), t] = 0 for all x, t ∈ R. Using the
primeness of R and F 6= 0, we find that g(y0) ∈ Z(R). In all case, (3.24) forces
that g(y) ∈ Z(R) for all y ∈ R. Since g is onto, we obtain that R ⊆ Z(R)
which forces that R is commutative. �

If the commutator is replaced by the anti-commutator in Theorem 3.4, then
the conclusions of this theorem is not valid.

Theorem 3.5. Let R be a prime ring with 1 such that char(R) 6= 2.
Then there exists no generalized semiderivation F associated with a nonzero
semiderivation d satisfying F (x) ◦ F (y) = 0 for all x, y ∈ R.

Proof. By the assumption, for all x, y, z ∈ R, we get F (x)F (yF (z)) +
F (yF (z))F (x) = 0. This implies that F (x)yd(F (z)) = −yd(F (z))F (x). Re-
placing y by yt, we get

F (x)ytd(F (z)) = −ytd(F (z))F (x) = yF (x)td(F (z)) for all x, y, z, t ∈ R.
This yields that [F (x), y]Rd(F (z)) = {0} for all x, y, z ∈ R. Since R is prime,
F (R) ⊆ Z(R) or d(F (R)) = {0}.

Suppose the first case. Then F (x) ◦ F (y) = 0 for all x, y ∈ R becomes
2F (x)RF (y) = {0} for all x, y ∈ R. Using primeness of R and char(R) 6= 2,
we conclude that F = 0; a contradiction.

Now, suppose that d(F (R)) = {0}. Proceeding in the similar manner as
above, we obtain g = idR, then F becomes a generalized derivation and by
Theorem 4.1 of [12], we get F = 0. �
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