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THE BOUNDEDNESS OF A CLASS OF SEMICLASSICAL
FOURIER INTEGRAL OPERATORS ON BESOV SPACES

REKIA MESSIOUENE and ABDERRAHMANE SENOUSSAOUI

Abstract. The aim of this paper is to discuss the Besov spaces bounds for
semiclassical Fourier integral operator. We give the conditions that the symbol
and the phase function must satisfy for this operator to be bounded.
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1. INTRODUCTION

For a function v € C§°(R"™) a Fourier integral operator (FIO) is given by:

(1) (Fu)(@) = e [ € afa . ulw)dyds.

where a is the symbol and ¢ is the phase function. These operators appear
naturally in the expression of the solutions of the hyperbolic partial differential,
see [9, 10], and in the expression of the C'* solution of the associated Cauchy’s
problem, see [12], and appear also in the quantum mechanics, see [11, 17].

A semiclassical Fourier integral operator (with semiclassical parameter h)
is defined by:

) (Pu)(@) = gy [ eF%e 9l s hyuly)duds.

If ¢(z,y) = (z — y)&, then we obtain what we call the pseudodifferenatial
operator (PDO):
1

Q (Pu)(@) = e [ € ale. uly)dnde.

An interesting question is: under which conditions for a and ¢ are these op-
erators bounded? Since 1970, many authors made efforts in the study of the
boundedness of these operators on many functional spaces (such as LP, Holder
and Besov spaces). In [1, 15, 2] the authors have studied the boundedness of
FIO of the form (1) on LP. Qingjiu in [16] has argued that a class of FIO is
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2 Semiclassical Fourier integral operators on Besov spaces 157

bounded on certain Besov space. However, Boudraud in [4] and Moussai in
[13, 14] have discussed the boundedness on this space for the pseudodifferen-
tial operators. Harrat and Senoussaoui in [8] have proved that (2) is bounded
on L? if the weight of the amplitude is bounded. Elong and Senoussaoui in [6]
have demonstrated that (2) is bounded from LP to L? such that % + % =1.In
this work we deal with the boundedness of a class of a semiclassical Fourier
integral operator which is denoted by: h-FIO on the Besov spaces.

2. NOTATIONS AND DEFINITIONS

NoTaTION 2.1.

— F(f) or f denotes the Fourier transformation of f and F~ g is the
inverse Fourier tranformation of a function g.

— 8§ is the Schwartz space (space of rapidly decreasing functions), and S’
its dual space.

— L denotes the function space for which the derivatives up to and
including order m belong to L.

— Cg° is the space of infinitely differentiable functions having a compact
support.

Next, we give the definitions of some spaces that are useful later.

DEFINITION 2.2 (Series of Littlewood-Paley). Let C'*°-functions ¢g(£) and
©(§) be such that

(1) ¢o(§) =0, 90(5)20;
(2) if pr(€) = p(277¢), then Y320 or(§) = 1;
(3) supppo C {€ € R™: [¢] <2}, and suppp C {€ € R™: 271 < [¢] < 2},
S0, supp pr C {f cR?: 21 < g < 2’”’1}.
For any f(z) € 8’ let fi(x) = f* F~pr(€)].

So, we have the Littlewood-Paley expansion of f(x) as follows:

(4) fx) =) filx)
k=0

DEFINITION 2.3 (Besov spaces By ;). Let 1 <p <o00,1 <g<ocands€R.
Then

1
0 q

B, =7 e8 s, = [Z (2*1fillz,)”

k=0

< 00

We note that Ay = B3, o (classical Holder space).

00,00
It is clear that the Besov spaces were introduced by interpolation spaces,
see [3, 18].
DEFINITION 2.4. Let 1 <p <00, 1< g < o0 and s € R. Then

° (ngq)comp is the collection of all f € B, , having a compact support.
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° (B;q)loc is the collection of all f € S’ such that ¢ f € B, , for any
v e CF°.

For more details about these spaces (properties and equivalents norms) we
refer to [19].

DEFINITION 2.5 (Symbol class S} §"). We say that a € 575" if a(x,§;h) €
C*®(R™ x R™ x [1,400[ and satisfies the estimate

0802a(x, & h)| < Ch1ol(1 + [g])—m-lel*ol8l,

A semiclassical Fourier integral operator with the semiclassical parameter
h such that h > 1 is introduced as follows: for f € S

(5) F(f)(x) = (2ch)™" / ot @AW a(z, & h) f(y)dyde,

where @ is called the phase function which is a positive function and homoge-
neous of degree 1 in £.
Furthermore, we assume that 83251’ >0 or (<0), the map
;Y€
Ve®(z,§)

(6) Sx:{fesuppa(x,ﬁ;h);q)(x,f)21}9£r—>m is 1—-1

and the symbol a(z,&;h) € Sy 4"
We put
1

(1) (Fia)(@) = Un(@) = o / ek (PO, (277¢) || u(y)dyde,

where W;,(277¢) is supported in 12771 < |¢| < 42/ To prove the main
result we need the next lemmas.

LEMMA 2.6. Suppose U; p(x) is as in (7) and ®(x,§) satisfies the condition

(6). Then, if m > (n — 1)]% — 1, there exists a constant C such that

q

o0
(8) 22 Winllzg,, | < Clullzs o
§=0

Proof. Set
Kj(w,y) = / ek (PO~ WDy, (277¢) ¢ e

and for m = 5% + ¢, by the method of [1, Lemma 4.2] and [6, Lemma 3.3],
we have

sup [/ Kje(x,y)dy] <C
near yY

near 20

and
sup [/ Kje(x,y)dx] < C, forany z°, y° € R™.
near xV

near y©
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Therefore, for u(y) supported near 3°, we have

sup
near xV

/ / Kje(z,y)u(y)dy
near 0

where Co and Cj are independent on j. It means that Fjj : Lgy,,,, — Li,,
u — Ujp and Fj), Liomp — Li,., w — Uj, are uniformly bounded for
any € > 0.
Then, using the Marcinkiewiez interpolation theorem, we obtain
/ Kje(z, y)u dy

|:/near z0
1

where 1 < pg < 0o and C, = CC’ i CY°, so Cp, is also independent of j. It
implies that the map

/K]6 z,y)u dy‘ < Cool|ul| oo

and
dz < Cyljul| 1,

o
4| " < Cpo |ul| oo,

—1
Fjp: LES, — LI° for m = = + €.

comp loc? 2
is also uniformly bounded. We consider the symbol
Ajo = 0, (2798) |¢|~m2im (27) (o= D("g+e) ¢ gla=D)("g7+e),

where (|¢] ~ 27) and

Kﬂ%y):Qﬂuﬂmwy+¢mw/g;@u@—@@x%agﬂg

Then Ajp € S~ 2 ¢, Ay € SO, Wthh means that the map Fjp, : Ligmp —
Lj? , has the upper bound C, 27 Heem) and Fjp : L2,,, — L%, has the

upper bound Cy277™,
Assume that 1 < p < 2 and

—_

-3+ =55

2 -1
po=L—2-D g cpy<p.
p 271 ey

Then, by Stein’s analytic interpolation theorem in [7], we obtain F} 5, : Loy —
LP

loc» Where

1 l—-a « . 1-
- = + -, le. a=-—"—
p Do 2 +

and the upper bound
O(C,, 21T Hemm)yl=a(cpo=imya — ¢ o ((=Dly=3lem)

a DI

n—1

N[

where C), is independent on j.



160 R. Messiouene and A. Senoussaoui

By duality, we have I, : Lcomp — 1P
Cp2]((n 1|1 —3|+e=—m)

(9)

1
Uinlzg, < €2 =11 = 5|+ €= mlliz,,.

loe» 1 < p < 0o, with the upper bound
. It implies that

fore > 0 small.

Now, we take the Littlewood-Paley series of u = >_;° u;, so U; = @i and

supp u; C {f ol < el < 2l+1}, supp up C {€: [§] < 2}.

Since ¢;_1, 1, 111 are not equal to zero,

or=p1teteo po1=0,
for 201 < |§| < 21+1 and @m = Or U = F1

1 X
Ul = gy | 9000, (2796) |67 ()

(27r1h)" / ot @O, (2-g) || < / PG (y — z)ul(z)dz> dydé
o | ) | [ R0 g
([ rriE - ) e a
Ki(e,y) = [ ot ®0-0a,2ig) | [71) (g — )dydg
_ / @@~ ), (2-Tg) || < / =28 P15 (y — z)dy> de

_ / en (P@O—WEg, (277¢) ||~ (€)de
— Kj 1 —+ K]l-70 + K]l',lv

(¢1) * ug. Then

n

>

where

Ky = / oh @AWy, (276) e[ p(2Hhe)de, k= 1,0,1,

supp ,(277€) Nsupp o(27%¢) # 0, when [l — j| < 3,

and the intersection is empty when |l — j| > 3.
So, for fixed j, we have

i((n—1)t=1 .
10 e :{Op?“" Bsle—mllallg,,, Sl-1<3,
” toe 07 7|l7.]|>37
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and then,
00 q 00 00 q) ¢
j l
Sty r| <43 (23 0kl
j=0 7=0 =0
1
q) g
7((n— 1 L —<|+e—m+s)?
<c 22 s <Zuu3+krummp>

k=-2

Z2j n— 1 *—*H‘E m+s H ]H

comp

Q=

oo
j—2)((n—1)|L =1 |+e—m+s)a
LD IR 1 T

e 1 1 %
IR A R T P
j=0
with
> ( 1) 1 1
m > (n >3
S0
1 1
(n—=1)|-—=|+e—m <0, for esmall
p 2
Hence, we obtain (8). O
REMARK 2.7. The spectrum of U}, is contained in
(10) b~ 'a? < |€| < ba’ for some constants a > 1, b > 0.

In fact, the nondegeneracy of ® implies that, after a linear change of coor-
dinates,

(11) Oz, &) = (2,6) — @1(E) + O(|z*[€)).
Therefore, when

®(z,8) = (z,§) — P1(8),
51 (6) = e Ow, (277 a(e),

=)

we have
supp Ujp(€) € {€:y71277 g < 42711}
It means that Uj, satisfies the condition (11).
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LEMMA 2.8. For series hj, j = 0,1,..., suppose that the spectrum of h; is
contained in b~tal =t < |¢| < balt! for some a > 1, b > 0, we have

1

q

(12) > hy Z 2% {[hsll )
j=0 =0

Bp.q
Moreover, if s > 0, (12) holds when the spectrum of h; is contained in |£| < ba’.
Proof. Put

Hy(z) = H * F~ Zh*F 5 (6)]

and take the Littlewood-Paley series of H = 3 72 h; as follows: > 22 Hi(x)
such that

(hy * FLpr(€)]) = hypn(€),

and suppose b = a. Then we have
hior(€) = hipr(), (i=Fk), or=0, (j#k),
S0,

Hy(z) = by = F~ 1 [or(€)].
Then

Q=

S| = |3 (28’“\|Hk||Lp)q]

Lk=0
Bp.q

[
I
o

Qe

= > (2 s P m(@nup)q]

Lk=0

Q=

IN

C

> (28kr\hkrer)q] ,

k=0
i.e. (12) holds. By [7, Lemma 5], we obtain the second part of this lemma. [

LEMMA 2.9. For any a(x,§;h) € S{§", any v > 0 and large N > 0 there

exists a positive convergent series Y ;o up and a sequence {ay(x,§;h)} such
that

(13) a(,&h) = upag(x, & h),
kezm
where

ap(z, & h) =Y My (2 62)W 5 (277€) ¢

J=0
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1
Wn € C, supp ¥, C {f << 3}

w

and

A SO Wl <Ol

([ M5
where C and C' are independent on j and k.

Proof. Set |¢[Ta(x,&;h) = A(x, & h), so, A(x, & h) € S?,é. For A(z,&;h),
let

Ao e A {ei g <ld <2

and -

D OM2TE) =1 at £#£0; 0(8) € CF,

=0

supp 6(¢) {Sréé |§!<3} and=1 in o <|g<2
Set
Aj(x, & h) = M AR, 27¢; h),

SO

Az, & D) ZAJ (27%2,277¢; h).
J=
Then take the Fourier series of A;(x,&;h):
Aj(x,&h) =) Cijla (x)en™S0(¢), ¢ € R™,

kezn

let ug = (14 k)72, @a(€) = (1+ k)2 eh 40(¢), and My;(x) =
(14 |k[? ) .Cj(x). Then we have

Az, & h) = Z ug, (Z Mkj(2j5$)kpk,h(2j§))

kezn 7=0

and a(z,&; h) has the decomposition (13) .
For any r > 0, let || =[r],sor =|8| +ri and 0 <r; < 1.

n N k.
Mgl =m0 -89 gt
lgl<2 Ay

< C sup OfA;(x,&h)

\alszv,sew“ ‘ s
< C sup a8 0 Aj(z, &; h)‘

la|<N.ER™ "
< C sup 3f+18314j($755h)‘

|| <N, EER™
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< C sup (
|| <N EER™

05 10¢ A(w, & )| 2 A2l ) <

C' is independent on j and k.
We take N > n + 1, so, when |a] < N —n — 1, we have

08V (€)] < Ch N0z, < C,

N—-n—1 —

where C’ is also independent on k. O

THEOREM 2.10. Suppose that:

e the phase function @(x,&) of semi classical Fourier integral operator
(5) satisfies the conditions (6) and (10),

eqc Sig",

e and m > (n—l)]%—%.
Then h-FIO preserves locally the Besov spaces By, , boundedness, i.e.
(14) Fy, (B;,q>comp — (Bqu)lom

where s >0 at 6 =1, s € R when § < 1.

Proof. By Lemma 2.9, it is sufficient to prove the boundedness for

a(z, & h) = M;(27)w,(277¢)|¢[ ™.

j=0
Set A, = sup;>ol|Mjla,. First, we consider the case of 6 = 1. We take
r>s>0andlet M; = Z]O'io Mj; be the Littlewood-Paley series of M, where

supp]\/Zjl c {¢: 27t < ¢ < 2j+1} J#0,
and .
supp Mjo C {¢ 1 [§] <2}.
We note that M; € A, implies || Mj;||loo < CA27". Put Njj(z) = M;(—j)(22),
S0,
supp Ny C {€: 21 < [¢] < 2%}

and
o I Njlloo < CA2707R),
Therefore,
< oo
In fact,
(Frhu)(z) = (27rh)"/ei<1>(z,£)<y7£>a(x7§; h)u(y)dyde
and

M;(27%2) 0, (277€) €] 7™

M

<
I
=)

a(x,&h) =
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Then

(@) = (2xh)" / H =) S M (2l (2T €[

4 00 —5
= Z ZNJJ+U ih +Z Nj,kUj,h

=0 \ j=0
= G1+G2.

We note that I}, = N;pU;, has the support required in Lemma 2.8.

Jj=

So, by Lemma 2.6, Lemma 2.8 and (15), we have

AT

and

IN

IN

IN

IN

4 o0
> Nj7j+UUJ}h||((IB;q)l

v=0 j=0

4 00
DI N',j-i-vUj,h”((]B;q)l

v=0 5=0

o0

4
CY A D@ IN o Usnllze )

v=0 \j=0

o0

{3 (21Ul )

J=0
" q
C ||U”( s ) )

Pq/comp

Gt

IN

IN

oo k=5

155 Wittt

k=5 j=0
oo  h—5

CYID N

U |19
3k J,h|’(35q)l
k=5 j=0

e}

h—5
c’ 2" NN
j=0

k=5

j’kU}hHLfoc

u(y)dydg
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s [hW-5 4

" h ( h/
< o[ 3| T e Ny,
=5 \ j=0
o0 h -5 '
< C//Z 2h’(s—r)Z2j(r—8)2j52(j_h/) 1Uj.nll r
< loc
W =5 7=0

By [4, Lemma 3|, since s < r, the norm [? of the sequence
h'—5
W (s—r) j(r—s)9jso(i—h)r||17.
P Y 2O Uy,
J

is controlled by

q

OO .
> (2105l )

§=0
So,
e .
Gy, <€ | 2 (2 Wil ) | < "l
j=0

Secondly, we consider the case 0 < 6 < 1.
Since S| §" C Sy, it is sufficient to prove this theorem for s < 0.

For fixed s < 0, let 7 > 0 such that (6 — 1)r < s <0, and

M;=> M
1=0
be the Littlewood-Paley series of M, where
supp M, € {&207907D < |g| < 2070 L (1 2£0)

and
supp Myo € {€: 16 <2170} and | Myl < CA4,2007D7

In virtue of condition (11), it is easy to see that there exists v = v(d) > 0 such
that

supp (M;;(2792)U; ) C {& - b lad Tl < e < baj'H} when j>1+4w,
and

supp (M (292)U; 1) © {€ : |€] < ba},

(16)
when j<14wv forsome a>1, b>0.

Now, we decompose Fju as follows:

0o Jj—v . 0o I+v—1
(Fru)(z Z (Z Mjl(2j6$)Uj,h> + M (27°2)U;
=0 l =0

=0 j
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= G+ Gs.
Now, we estimate (G; and Gg. ‘We have
o
Gille, = IS (X M@0 ) )
j=v \Il=0
o q
< C ”HZ (22 Unll
Jj=v
oo q
< (Z 225 DUl
Jj=v

o0
q
< |3 (2P0l )
Jj=v
S C///H

comp

UH( Bs,)
Since Byl C B2, s1 < sg and s < 0,t = s+ (1 —d)r > 0, by using Lemma

2.9, (16) and [4, Lemma 3|, we have

1Gallpg,y < Gally )

00 +v—-1 ' 4
= | X[ 21 ). Ma@)Usallee,
1=0 §=0
00 l+v—1 q
" ls —sj sJ .
< I 21X 2 (29U, )
1=0 j=0
) ‘ q
< o Z (QSJ HUj’hHL;zDoc>
=0
< Cllully,
g
REFERENCES

[1] R.M. Beals, L? boundedness of Fourier integral operators, Mem. Amer. Math. Soc., 38
(264) (1982), 57p.+viii.

[2] P. Benner, L,_L, estimates for Fourier integral operators related to hyperbolic equa-
tions, Math. Z., 152 (1977), 273-286.

[3] J. Bergh and J. Lofstorm, Interpolation Spaces. An Introduction, Vol. 223, Springer
Verlag, Berlin, 1976.

[4] G. Boudraud, L? estimates for certain non regular pseudodifferential operators, Comm.
Partial Differential Equations, 7 (1982), 1023—-1033.



168 R. Messiouene and A. Senoussaoui 13

[5] J. J. Duistermaat, Fourier integral operators, Courant Institute Lecture Notes, New
York, 1974
[6] O. Elong and A. Senoussaoui, On the L? boundedness of a class of semiclassical Fourier
operators, Mat. Vesnik, 70 (2018), 189-203.
[7] C. Fefferman and E.M. Stein, H? spaces ef several variables, Acta Math., 129 (1972),
137-193.
[8] C. Harrat and A. Senoussaoui, On a class of h-Fourier integral operators, Demonstr.
Math., 47 (2014), 595-606.
[9] L. Hormander, Fourier integral operators. I, Acta Math. 127 (1971), 79-183.
[10] L. Hormander, The analysis of linear partial differential operators III: Pseudo-di-
[fferential operators, Springer Verlag, Berlin, 2007.
[11] A. Martinez, An Introduction to Semiclassical and Microlocal Analysis, Springer Verlag,
2002.
[12] B. Messirdi and A. Senoussaoui, Parametriz du probléme de Cauchy C°° hyperbolique
muni d’un systéme ordres de Leray—Volevic, Z. Anal. Anwend., 24 (2005), 581-592.
[13] M. Moussai, Continuity of pseudodifferential operators on Bessel and Besov spaces,
Serdica Math. J., 27 (2001), 249-262.
[14] M. Moussai, On the continuity of pseudodifferential operators on Besov spaces, Analysis
(Berlin), 26 (2006), 491-506.
[15] J. Peral, L? Estimate for the Wave Equation, Doctoral Dissertation, Princeton Univ.,
1987.
[16] Q. Qingjiu, The Besov space boundedness for certain Fourier integral operators, Acta
Math. Sin., 5 (1985), 167-174.
[17] D. Robert, Autour de l’approzimation semi classique, Birkauser, 1987.
[18] E.M. Stein, Interpolation of linear operators, Trans. Amer. Math. Soc., 83 (1956), 482—
492.
[19] H. Triebel, Theory of Function Spaces, Birkhduser, Basel, 1983.

Received April 9, 2018 Université Oran 1, Ahmed Ben Bella
Accepted January 31, 2019 Laboratoire de Mathématiques Fondamentales
et Appliquées d’Oran (LMFAQ)
B.P. 1524 El M’naouar, Oran, Algeria
E-mail: rekiamessiouene@yahoo.fr
E-mail: senoussaoui_abdou@yahoo.fr



