
MATHEMATICA, 61 (84), No 2, 2019, pp. 138–145

COURNOT EQUILIBRIUM
IN CASE OF (-1)-CONCAVE PRICE FUNCTION

DETELINA KAMBUROVA and RUMEN MARINOV

Abstract. We consider a class of homogeneous Cournot oligopolies with (−1)-
concave price function. We show some useful properties of the revenue function
in case of (−1)-concave price function and prove the existence of an equilibrium
in the continuous and non-differentiable case. A simple proof of an equilibrium
uniqueness result in the smooth case with (−1)/N -concave (N-number of the
firms in the market) price function is provided.
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1. INTRODUCTION

Various results in the literature guarantee the existence of a unique Cournot
equilibrium in homogeneous Cournot oligopolies. One of the first results is in
Murphy et. al (1982) [8], and employs concave revenue functions and convex
cost functions. Amir (1996) [1], shows that log-concavity of the inverse de-
mand guarantees the existence of an equilibrium and in case of convex cost
functions the uniqueness of the equilibrium. Deneckere and Kovenock (1999)
[4] derive an existence and uniqueness theorem using assumptions based on
the direct demand function. This theorem is restated, using the concept of
ρ-concavity, in [2]. Biconcavity is a condition on the inverse demand that cor-
responds to concavity after a simultaneous parametrization of price and quan-
tity, the price function is (α, β)-biconcave if and only if the demand function is
(β, α)-biconcave. Ewerhart (2014) [5] uses this concept to analyze the Cournot
model. The existence theorem in his paper admits values of 0 ≤ α ≤ 1 in the
non-smooth case and α < 0 in the case of twice differentiable price function.
von Mouche and Quartieri (2013) [9] define the concept of concave integrated
price flexibility to provide new results about semi-uniqueness and uniqueness
of Cournot equilibria.
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(−1)-concavity of the price function corresponds to (−1, 1)-biconcavity, i.e.
α < 0. We prove some properties of the revenue function in case of (−1)-
concavity of the price function without assuming differentiability and we prove
the existence theorem in the non-smooth case with convex costs functions. Em-
ploying the same approach as in [9] and [10] we derive a simple proof of the
uniqueness theorem in the smooth case with (−1)/N -concave price function
and convex costs functions (N-number of the firms in the market), without
assuming twice differentiability. The uniqueness theorem for log-concave (0-
concave) price function is a consequence of our result. We also show that
the property of concave price flexibility, assumed in [9] does not entail (−1)-
concavity. To the best of our knowledge the conditions we impose are not
entailed by any other conditions used in the proofs of the existence and unique-
ness theorems of a Cournot equilibrium so far.

The paper is organized as follows: Section 2 introduces the concept of a
Cournot game and lists some results from the literature that will be used in our
proofs. Section 3 introduces the concept of generalized concavity and provides
some properties of the revenue function in the case of (−1)/N -concavity of the
price function. In Section 4 existence and uniqueness theorems are derived.
In Section 5 concluding remarks are given.

2. BACKGROUND AND SETTINGS

Cournot oligopoly is a game with perfect information, N players (firms)
that produce a homogenous product and compete on quantities. Each firm
has a cost ci(xi) for producing xi ≥ 0, i = 1, ..., N . The market price is a

function of the firms’ total output x1 + ...+ xN = X. Let Ñ = {1, ..., N}; the
profit of the i−th firm is given by:

fi(X) = xiP
(
xi +

∑
j∈Ñ,j 6=i

xj

)
− ci(xi).

A Nash equilibrium of an oligopoly is called a Cournot equilibrium.
We will provide the following results from [9] in the framework for our needs.

Lemma 2.1. Suppose each cost function is convex and:

• p is left and right differentiable at each point of R+;
• d+p(x) ≤ d−p(x) < 0 (x ∈ R+).

If there exists more than one equilibrium, then 0 is not an equilibrium.

Theorem 2.2. Suppose each cost function is convex and:

• p is left and right differentiable at each point of R+;
• d−p(x) ≤ d+p(x) < 0 (x ∈ R+).

Then the Nash-sums are injective.

We will use the following classical existence theorem (Debreu, Glicksberg,
Fan (1952) [3, 6, 7]):
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Theorem 2.3. Consider a game with N ≥ 2 players with strategies si ∈ Si,
i = 1, ..., N . If:

• Si, i = 1, ..., N are nonempty, compact, convex subsets of finite dimen-
sional Euclidean spaces,
• all pay-off functions are continuous on S1 × ...× SN ,
• all payoff functions are quasi-concave of si over Si, if all the other

strategy sets are held fixed,

then there exists at least one equilibrium.

3. GENERALIZED CONCAVITY OF FUNCTIONS

We consider a function p : Ω→ R+ defined on a convex set Ω j R+.

Definition 3.1. A positive function defined on a convex set Ω j R+ is said
to be α − concave, where α ∈ [−∞,+∞], if for all x, y ∈ Ω and all λ ∈ [0, 1]
the following inequality holds true:

p(λx+ (1− λ)y) ≥ mα(p(x), p(y), λ),

where mα : R+ ×R+ × [0, 1]→ R is defined as follows:

mα(a, b, λ) =


aλb1−λ, if α = 0

max{a, b}, if α =∞
min{a, b}, if α = −∞
(λaα + (1− λ)bα)1/α, otherwise.

In the case α = 0 the function is log-concave, in the case α = 1 the function
is simply concave.

The following lemma is very important, because it implies that α-concavity
entails β-concavity, for all β ≤ α.

Lemma 3.2. The mapping α → mα(a, b, λ) is non-decreasing and continu-
ous.

We are interested especially in (−1)/n-concave functions, n ≥ 1:

Definition 3.3. A positive function defined on a convex set Ω j R+ is
said to be (−1)/n − concave, n ≥ 1, if for all x, y ∈ Ω and all λ ∈ [0, 1] the
following inequality holds true:

p(λx+ (1− λ)y) ≥ (λ(p(x))−1/n + (1− λ)(p(y))−1/n)−n.

From Lemma 3.2 it follows that all concave (α = 1) and log-concave (α = 0)
functions are (−1)/n-concave. It is clear that a positive function p(·) is (−1)/n-

concave if and only if 1/p(·)1/n is convex.

Theorem 3.4. Let p : Ω j R+∪{0} → R+ be a decreasing, continuous and

(−1)/n-concave function and let n ≥ 1. Then xp(x+ k)1/n is strictly concave
on the interval where it is strictly increasing for all k ≥ 0.
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Proof. Let x1, x2 ∈ Ω with x1 < x2 and

x1p(x1 + k)1/n < x2p(x2 + k)1/n.(1)

Note that convexity (concavity) is equivalent to midpoint convexity (concav-
ity) in the case of a continuous function. The function p(·) is a continuous

and (−1)/n-concave function, therefore 1/p(x + k)1/n, k ≥ 0, is convex and
midpoint convex. We get

1

p
(
x1+x2

2 + k
)1/n ≤ ( 1

p(x1 + k)1/n
+

1

p(x2 + k)1/n

)
/2.

Hence,

p
(x1 + x2

2
+ k
)1/n

≥ 2p(x1 + k)1/np(x2 + k)1/n

p(x1 + k)1/n + p(x2 + k)1/n
.(2)

Suppose xp(x+ k)1/n is not strictly midpoint concave on the interval where it
is strictly increasing:

x1 + x2
2

p
(x1 + x2

2
+ k
)1/n

≤ x1p(x1 + k)1/n + x2p(x2 + k)1/n

2
.

From (2), we have

x1 + x2
2

2p(x1 + k)1/np(x2 + k)1/n

p(x1 + k)1/n + p(x2 + k)1/n
≤ x1p(x1 + k)1/n + x2p(x2 + k)1/n

2
,

which yields

(x1 + x2)p(x1 + k)1/np(x2 + k)1/n ≤ x1p(x1 + k)2/n + x2p(x2 + k)2/n,

or

x1((p(x1 + k))2/n − p(x1 + k)1/np(x2 + k)1/n)

≥ x2(p(x1 + k)1/n(p(x2 + k)1/n − p(x2 + k)2/n).

Dividing by p(x1 + k)1/n − p(x2 + k)1/n > 0, we obtain

x1p(x1 + k)1/n ≥ x2p(x2 + k)1/n.

The last inequality is in contradiction with (1). �

Theorem 3.5. Let p : Ω j R+ ∪ {0} → R+ be a (−1)/n-concave function,

n ≥ 1, k ≥ 0. Then, if xp(x + k)1/n has an extremum greater than 0, it is a
global maximum.

Proof. First we will prove xp(x + k)1/n does not possess a positive local

minimum x∗ such that: x∗p(x∗ + k)1/n ≤ xp(x + k)1/n, where x is in a small
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neighbourhood of x∗ and the inequality is strict at least for x > x∗ or x < x∗.
Suppose x∗ = (x1 + x2)/2 is a local minimum, x1, x2 > 0 and

x1 + x2
2

p
(x1 + x2

2
+ k
)1/n

< p(x1 + k)1/nx1(3)

x1 + x2
2

p
(x1 + x2

2
+ k
)1/n

≤ p(x2 + k)1/nx2(4)

From (3) we obtain:

0 < p
(x1 + x2

2
+ k
)1/n

<
x1
x2

(
2p(x1 + k)1/n − p

(x1 + x2
2

+ k
)1/n)

and

x1
x2

>
p
(
x1+x2

2 + k
)1/n

2p(x1 + k)1/n − p(x1+x22 + k)1/n
.(5)

Using (4), we have:

x1
x2
p
(x1 + x2

2
+ k
)1/n

≤ 2p(x2 + k)1/n − p
(x1 + x2

2
+ k
)1/n

,

that is

x1
x2
≤

2p(x2 + k)1/n − p(x1+x22 + k)1/n

p
(
x1+x2

2 + k
)1/n .(6)

From (5) and (6), we get

p
(
x1+x2

2 + k
)1/n

2p(x1 + k)1/n − p(x1+x22 + k)1/n
<

2p(x2 + k)1/n − p
(
x1+x2

2 + k
)1/n

p
(
x1+x2

2 + k
)1/n

or

p
(x1 + x2

2
+ k
)1/n

<
2p(x1 + k)1/np(x2 + k)1/n

p(x1 + k)1/n + p(x2 + k)1/n
.

The last is in contradiction with (2).

If xp(x + k)1/n is non-increasing around 0, it will be non-increasing for all
x > 0, since there is no local minimum and the function will not change its
behavior. If xp(x+ k)1/n is increasing around 0 and there is a local maximum

x∗, xp(x + k)1/n will be non-increasing for all x > x∗ and x∗ is a global
maximum. �

Corollary 3.6. Let p : Ω j R+ ∪ {0} → R+ be a decreasing, continuous
and (−1)/n-concave function, n ≥ 1. If 0 < x1 ≤ x2, k ≥ 0, 1 ≤ s ≤ n, then
from x2d

−p(x2+k)+sp(x2+k) > 0, it follows that x1d
+p(x1+k)+sp(x1+k) >

x2d
−p(x2 + k) + sp(x2 + k).
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Proof. If p is (−1)/n-concave, it is (−1)/s-concave, 1 ≤ s ≤ n (Lemma
3.2). From Theorem 3.4 and Theorem 3.5, it follows that if there is an interval

where the function xp(x+k)1/s is increasing, it is unique and its left boundary

point is 0; moreover, xp(x+k)1/s is strictly concave in this interval, therefore,
if 0 < x1 ≤ x2, k ≥ 0 and

d−(x2p(x2 + k)1/s) ≥ 0⇔ x2d
−p(x2 + k) + sp(x2 + k)

s
p(x2)

1/s−1 ≥ 0,

which is

x2d
−p(x2 + k) + sp(x2 + k) ≥ 0,

then it follows

d+(xp(x+ k)1/s)(x1) ≥ d−(xp(x+ k)1/s)(x2)

or

p(x1)
1/s−1x1d

+p(x1 + k) + sp(x1 + k)

s

≥ p(x2)1/s−1
x2d

−p(x2 + k) + sp(x2 + k)

s

and, since p(x) is decreasing and, for s ≥ 1, p(x1)
1/s−1 ≤ p(x2)1/s−1,

x1d
+p(x1 + k) + sp(x1 + k) ≥ x2d−p(x2 + k) + sp(x2 + k).

�

4. EXISTENCE AND UNIQUENESS OF AN EQUILIBRIUM

Theorem 4.1. Suppose each cost function is convex and strictly increasing,
pi is a positive, strictly decreasing, continuous and (−1)-concave function on
R+ ∪ {0} for each i = 1, ..., N . Then there exists at least one equilibrium.

Proof. From Theorem 3.4 and Theorem 3.5, it follows that xpi(x+k)−ci(x)
is a quasi-concave function. As pi(·) is positive, (−1)-concave and decreasing,
1/pi(·) is positive, convex and increasing, therefore for each x0 ≥ 0 and each i
there exists a supporting line ai(x0)x+ bi(x0) such that: 1/pi(x) ≥ ai(x0)x+
bi(x0) (with an equality at x = x0). From the fact that pi is positive and
strictly increasing it follows that ai(x0)x + bi(x0) > 0 for each x ≥ 0 and
ai(x0) ≥ 0. Moreover, there exists x̄0 such that ai(x̄0) > 0. Then

lim sup
x→∞

xpi(x+ k)− ci(x) ≤ lim
x→∞

x
1

ai(x̄0)x+ bi(x̄0)
− ci(x) = −∞

Consequently, there exists Xi such that: xpi(x)−ci(x) ≤ −ci(0) for all x ≥ Xi

and the effective strategy of each firm is contained in [0, Xi].
The conditions of Theorem 2.3 are fulfilled and there exists at least one

equilibrium. �
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Theorem 4.2. Suppose each cost function is convex and increasing, pi is a
positive, strictly decreasing, continuous and (−1)/N -concave function on R+,
for each i = 1, ..., N N ≥ 2. Then the Nash-sums σ are constant.

Proof. As in [9], Theorem 2, suppose a, b are equilibria with:

xa =
∑
l∈N

al <
∑
l∈N

bl = xb.

Let J = {l ∈ N |al < bl}, x̃a =
∑

l∈J al, x̃b =
∑

l∈J bl, s – the number of
elements of J . Note that xa 6= 0 (Lemma 2.1), xb > 0, s ≥ 1, x̃a ≤ xa,
x̃b ≤ xb, x̃a < x̃b, x̃b − x̃a ≥ xb − xa.

As a and b are equilibria, d+
iπi(a) ≤ 0 ≤ d−iπi(b) (i ∈ J), i.e.

d+p(xa)ai + p(xa)− d+ci(ai) ≤ 0 ≤ d−p(xb)bi + p(xb)− d−ci(bi),

or

d+p(xa)x̃a + sp(xa)−
∑
i∈J

d+ci(ai) ≤ 0 ≤ d−p(xb)x̃b + sp(xb)−
∑
i∈J

d−ci(bi).

As each ci is convex this inequality implies:

d+p(xa)x̃a + sp(xa) ≤ d−p(xb)x̃b + sp(xb).(7)

Consider the two points x1 = xa − (xb − x̃b) > 0, x2 = x̃b > 0, x1 < x2,
k = xb − x̃b > 0. From Corollary 3.6:

(xa − (xb − x̃b))d+p(xa) + sp(xa) > x̃bd
−p(xb) + sp(xb) ≥ 0.

From x̃b− x̃a ≥ xb−xa it follows xa−(xb− x̃b) ≥ x̃a; furthermore, pi is strictly
decreasing and consequently:

x̃ad
+p(xa) > (xa − (xb − x̃b))d+p(xa),

therefore
x̃ad

+p(xa) + sp(xa) > x̃bd
−p(xb) + sp(xb),

in contradiction with (7). �

Corollary 4.3. Suppose each cost function is convex and increasing, pi is
a positive, strictly decreasing, continuous, differentiable and (−1)/N -concave
function on R+∪{0}, for each i = 1, ..., N , N ≥ 2. Then there exists a unique
equilibrium.

Proof. This is a direct consequence of Theorems 2.2, 4.2 and 4.1. �

5. CONCLUDING REMARKS

As noticed in the Introduction, our results are not equivalent to the results
presented in [9]. An example of a function that is (−1)-concave, but with-
out concave integrated price flexibility, is p(x) = 1

(x+1) ln(x+2) . In this case

the revenue function is quasi-concave (but not concave). There are examples
of functions that are with concave integrated price flexibility, but not (−1)-
concave ((x + 1)α, 0 < α < 1), therefore, our results neither imply, nor are



8 Cournot equilibrium in case of (-1)-concave price function 145

implied by the results in [9]. The existence theorem [5, Theorem 3.3] supposes
the payoff and costs functions are twice differentiable. The existence theorem
4.1 is in the non-smooth case. So, to the best of our knowledge, the results
presented here are new.
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