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COURNOT EQUILIBRIUM
IN CASE OF (-1)-CONCAVE PRICE FUNCTION

DETELINA KAMBUROVA and RUMEN MARINOV

Abstract. We consider a class of homogeneous Cournot oligopolies with (—1)-
concave price function. We show some useful properties of the revenue function
in case of (—1)-concave price function and prove the existence of an equilibrium
in the continuous and non-differentiable case. A simple proof of an equilibrium
uniqueness result in the smooth case with (—1)/N-concave (N-number of the
firms in the market) price function is provided.
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1. INTRODUCTION

Various results in the literature guarantee the existence of a unique Cournot
equilibrium in homogeneous Cournot oligopolies. One of the first results is in
Murphy et. al (1982) [8], and employs concave revenue functions and convex
cost functions. Amir (1996) [1], shows that log-concavity of the inverse de-
mand guarantees the existence of an equilibrium and in case of convex cost
functions the uniqueness of the equilibrium. Deneckere and Kovenock (1999)
[4] derive an existence and uniqueness theorem using assumptions based on
the direct demand function. This theorem is restated, using the concept of
p-concavity, in [2]. Biconcavity is a condition on the inverse demand that cor-
responds to concavity after a simultaneous parametrization of price and quan-
tity, the price function is («, 8)-biconcave if and only if the demand function is
(B, a)-biconcave. Ewerhart (2014) [5] uses this concept to analyze the Cournot
model. The existence theorem in his paper admits values of 0 < « < 1 in the
non-smooth case and « < 0 in the case of twice differentiable price function.
von Mouche and Quartieri (2013) [9] define the concept of concave integrated
price flexibility to provide new results about semi-uniqueness and uniqueness
of Cournot equilibria.
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(—1)-concavity of the price function corresponds to (—1, 1)-biconcavity, i.e.
a < 0. We prove some properties of the revenue function in case of (—1)-
concavity of the price function without assuming differentiability and we prove
the existence theorem in the non-smooth case with convex costs functions. Em-
ploying the same approach as in [9] and [10] we derive a simple proof of the
uniqueness theorem in the smooth case with (—1)/N-concave price function
and convex costs functions (N-number of the firms in the market), without
assuming twice differentiability. The uniqueness theorem for log-concave (0-
concave) price function is a consequence of our result. We also show that
the property of concave price flexibility, assumed in [9] does not entail (—1)-
concavity. To the best of our knowledge the conditions we impose are not
entailed by any other conditions used in the proofs of the existence and unique-
ness theorems of a Cournot equilibrium so far.

The paper is organized as follows: Section 2 introduces the concept of a
Cournot game and lists some results from the literature that will be used in our
proofs. Section 3 introduces the concept of generalized concavity and provides
some properties of the revenue function in the case of (—1)/N-concavity of the
price function. In Section 4 existence and uniqueness theorems are derived.
In Section 5 concluding remarks are given.

2. BACKGROUND AND SETTINGS

Cournot oligopoly is a game with perfect information, N players (firms)
that produce a homogenous product and compete on quantities. Each firm
has a cost ¢;(x;) for producing x; > 0, ¢ = 1,...,N. The market price is a
function of the firms’ total output 1 + ... + zy = X. Let N = {1,..., N}; the
profit of the i—th firm is given by:

fZ(X) = :c,P(acZ + Z 1’j> - cz(:c,)
JEN j#i
A Nash equilibrium of an oligopoly is called a Cournot equilibrium.
We will provide the following results from [9] in the framework for our needs.
LEMMA 2.1. Suppose each cost function is conver and:
e p is left and right differentiable at each point of R, ;
o dfp(x) <d p(x) <0 (v € Ry).
If there exists more than one equilibrium, then 0 is not an equilibrium.

THEOREM 2.2. Suppose each cost function is conver and:

e p is left and right differentiable at each point of Ry ;
e d p(zr) <dp(z) <0 (z € Ry).

Then the Nash-sums are injective.

We will use the following classical existence theorem (Debreu, Glicksberg,
Fan (1952) [3, 6, 7]):
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THEOREM 2.3. Consider a game with N > 2 players with strategies s; € S;,
i1=1,...,.N. If:
e S;,i=1,...,N are nonempty, compact, convex subsets of finite dimen-
stonal Fuclidean spaces,
e all pay-off functions are continuous on S1 X ... X Sy,
e all payoff functions are quasi-concave of s; over S;, if all the other
strategy sets are held fixed,

then there exists at least one equilibrium.
3. GENERALIZED CONCAVITY OF FUNCTIONS
We consider a function p : Q — R4 defined on a convex set Q & R.

DEFINITION 3.1. A positive function defined on a convex set Q & R is said
to be a — concave, where a € [—o0, +0o0], if for all z,y € Q and all A € [0,1]
the following inequality holds true:

p(Az + (1 = A)y) = ma(p(x), p(y), A),

where my, : Ry X Ry x [0,1] — R is defined as follows:

atbr A, ifa=0
(@b, \) = max{a, b}, if @ =00
T ) min{a, b}, if o = —00

(Aa® + (1 — A\)b*)/ otherwise.

In the case a = 0 the function is log-concave, in the case a = 1 the function
is simply concave.

The following lemma is very important, because it implies that a-concavity
entails S-concavity, for all § < a.

LEMMA 3.2. The mapping o — my(a,b, \) is non-decreasing and continu-
ous.

We are interested especially in (—1)/n-concave functions, n > 1:

DEFINITION 3.3. A positive function defined on a convex set Q & R, is
said to be (—1)/n — concave, n > 1, if for all z,y € Q and all A € [0,1] the
following inequality holds true:

p(Az + (1= Ny) = (Ap() ™" + (1= N (p(y) ")

From Lemma 3.2 it follows that all concave (o = 1) and log-concave (o = 0)
functions are (—1)/n-concave. It is clear that a positive function p(-) is (—1) /n-

concave if and only if 1/p(-)*/" is convex.

THEOREM 3.4. Letp: Q & Ry U{0} — Ry be a decreasing, continuous and
(—1)/n-concave function and let n > 1. Then xp(z + k)™ is strictly concave
on the interval where it is strictly increasing for all k > 0.
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Proof. Let x1, 79 € Q) with 1 < z9 and
(1) zip(zy + k)™ < op(we + k)Y™.

Note that convexity (concavity) is equivalent to midpoint convexity (concav-
ity) in the case of a continuous function. The function p(-) is a continuous
and (—1)/n-concave function, therefore 1/p(z + k)™, k > 0, is convex and
midpoint convex. We get

1 1 1
< + /2.
1/n — < 1/n 1/n)
p(m;rm + k) p(z1 + k) p(z2 + k)
Hence,

(2)

<£U1 + x9 n k)l/" S 2p(x1 + k)Y p(xs + k)"
P = play + B)V + play + k)L

1/n

Suppose xp(z + k)*/™ is not strictly midpoint concave on the interval where it

is strictly increasing;:

1+ T2 (X1 + T2 Un  xp(ay + k)Y + zop(zg + k)7
(T k) s > -

From (2), we have

x1 + o 2p(xy + k)Y"p(ag + k)™ < z1p(x1 + k)Y + zop(xy + k)Y
2 plazr+ k)Y 4 pleg + k)Un 2

which yields

)

(x1 + x2)p(z1 + k‘)l/np(l‘g + k‘)l/n < zp(z1 + k‘)Q/n + xop(z2 + k‘)2/n,
or
w1 ((p(x1 + k)*™ = plar + k) p(as + k)H7)
> wa(p(z1 + k)" (p(w2 + k)™ — p(az + k)*™).
Dividing by p(z1 4+ k)™ — p(x2 + k)1/™ > 0, we obtain
z1p(z1 + k)" > ap(w + k)
The last inequality is in contradiction with (1). O

THEOREM 3.5. Letp : Q& Ry U{0} — R4 be a (—1)/n-concave function,
n>1,k>0. Then, if zp(xz + k)l/n has an extremum greater than 0, it is a
global mazimum.

Proof. First we will prove xzp(z + k)'/™ does not possess a positive local
minimum z* such that: z*p(z* + k)™ < zp(x + k)'/", where z is in a small
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neighbourhood of z* and the inequality is strict at least for xz > z* or z < x*.
Suppose z* = (x1 + 22)/2 is a local minimum, z1,x2 > 0 and
2 2

(3)
x1+2x2 /1 + X9
(4) (5

From (3) we obtain:
xr1 + 9 1/n X1 1/n xr1 + T2 1/n
0<p<T—|—k> <$—2(2p(x1—|—k¢) —p(T+k‘> )

and

1/n
1+ ﬂﬁzp(l‘l + T2 n k) < p(z1 + k;)l/nx1

1/n
+ k) < p(as + k)" s

1/n
ey

) > .
5) x2 "~ 2p(xzq + k) — p(BEE2 4 k)L

Using (4), we have:

1 [x1+ 29 1/n 1/n 1 + 22 1/n
) < _
x2p< : +/<:) < 2p(as + k) p( . +k) :
that is
9 1/n _ (z1+T2 1/n
(6) 1 < p(x2 + k) p( 21 + k) '
L2 T4 /n
p( 5~ + k)
From (5) and (6), we get
1/n 1/n
p(—“g’” + k) 2p(za + k)™ — p(% + k>
1/n _ T1+T2 1/n 1/n

or

(961+SU2 +k>1/” 2p(x1 + k)Y p(x0 + k)H/"
S pler + )"+ play + W)
The last is in contradiction with (2).

If xp(x + k)™ is non-increasing around 0, it will be non-increasing for all
x > 0, since there is no local minimum and the function will not change its
behavior. If zp(z + k)'/™ is increasing around 0 and there is a local maximum
z*, xp(z + k)" will be non-increasing for all > 2* and z* is a global
maximum. O

COROLLARY 3.6. Let p: Q € Ry U{0} — Ry be a decreasing, continuous
and (—1)/n-concave function, n > 1. If 0 < x; <z, k >0, 1 < s < n, then
from xod™ p(xa+k)+sp(xe+k) > 0, it follows that x1dp(z1+k)+sp(z1+k) >
xod " p(x2 + k) + sp(xa + k).



6 Cournot equilibrium in case of (-1)-concave price function 143

Proof. If p is (—1)/n-concave, it is (—1)/s-concave, 1 < s < n (Lemma
3.2). From Theorem 3.4 and Theorem 3.5, it follows that if there is an interval
where the function xp(a:Jrk:)l/ % is increasing, it is unique and its left boundary
point is 0; moreover, zp(z + k:)l/ 8 is strictly concave in this interval, therefore,
ifO0<zy <x9, k>0 and

rod™p(x2 + k) + sp(a2 + k?)p

S

A~ (zop(ze + k)V/*) > 0 = (z2)/*71 >0,

which is
rod”p(w2 + k) + sp(z2 + k) >0,
then it follows
A" (ap(z + k&)%) (21) > d™ (zp(x + k)/*) (22)
or

1/s—1 z1dTp(z1 + k) + sp(z1 + k)
s

p(x1)

1/s—1%2d " p(@2 + k) + sp(x2 + k)
S

> p(x2)

and, since p(z) is decreasing and, for s > 1, p(x1)Y/*~1 < p(xp)'/571,

r1dtp(ay + k) + sp(xy + k) > xod " p(wg + k) + sp(xg + k).

4. EXISTENCE AND UNIQUENESS OF AN EQUILIBRIUM

THEOREM 4.1. Suppose each cost function is convex and strictly increasing,
pi 1S a positive, strictly decreasing, continuous and (—1)-concave function on
Ry U{0} for eachi=1,...,N. Then there exists at least one equilibrium.

Proof. From Theorem 3.4 and Theorem 3.5, it follows that zp;(z+k) —c;(x)
is a quasi-concave function. As p;(-) is positive, (—1)-concave and decreasing,
1/pi(-) is positive, convex and increasing, therefore for each ¢ > 0 and each ¢
there exists a supporting line a;(zo)x + b;(xo) such that: 1/p;(z) > a;(zo)x +
bi(zp) (with an equality at * = xp). From the fact that p; is positive and
strictly increasing it follows that a;(xo)x + bj(zg) > 0 for each x > 0 and
ai(xog) > 0. Moreover, there exists Zo such that a;(Z9) > 0. Then

1
li i k) —ci(x) < i - -
im sup zp (x + k) —ci(z) xlﬁn;oxai(azo)x i)

—¢i(z) = —00

Consequently, there exists X; such that: zp;(z) —c;i(z) < —¢;(0) for all x > X;
and the effective strategy of each firm is contained in [0, X;].

The conditions of Theorem 2.3 are fulfilled and there exists at least one
equilibrium. O
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THEOREM 4.2. Suppose each cost function is convex and increasing, p; is a
positive, strictly decreasing, continuous and (—1)/N-concave function on R,
for eachi=1,....,N N > 2. Then the Nash-sums o are constant.

Proof. As in [9], Theorem 2, suppose a, b are equilibria with:

xa:Zal <Zbl=$b-

leN leN
Let J = {l € Nl|a; < by}, Ta = > ey, Tp = Yy bi, s — the number of
elements of J. Note that z, # 0 (Lemma 2.1), x;, > 0, s > 1, 7, < x4,
Ty < xp, Tq < Tp, Ty — Tq > Ty — Tq-

As a and b are equilibria, d*;m;(a) < 0 < d~;m(b) (i € J), i.e.
d™p(xs)a; + p(za) — dei(a;) <0< d p(ap)b; + plap) — d ei(bi),
or
dtp(ze)Tq + sp(xq) — Z d¥ei(a;) <0< d p(ap)Tp + sp(xp) — Zd*ci(bi).
ieJ e

As each ¢; is convex this inequality implies:
(7) d*p(20)Tq + sp(xa) < d7p(xp)Tp + sp(as).
Consider the two points 1 = x4 — (zp — ) > 0, 29 = 7 > 0, 1 < x9,
k = xp — 2 > 0. From Corollary 3.6:
(Ta — (x0 — T))d T p(2a) + sp(xa) > Tpd ™ p(as) + sp(x3) > 0.

From zj, —x, > xp — x4 it follows x4 — (xp — Tp) > T4; furthermore, p; is strictly
decreasing and consequently:

%d+p($a) > ($a - (xb - fb))d—’—p(xa)a
therefore

f;d"'p(a:a) + sp(zq) > Tpd " p(xp) + sp(28),

in contradiction with (7). O

COROLLARY 4.3. Suppose each cost function is convex and increasing, p; s
a positive, strictly decreasing, continuous, differentiable and (—1)/N -concave
function on Ry U{0}, for eachi=1,...,N, N > 2. Then there exists a unique
equilibrium.

Proof. This is a direct consequence of Theorems 2.2, 4.2 and 4.1. O

5. CONCLUDING REMARKS

As noticed in the Introduction, our results are not equivalent to the results
presented in [9]. An example of a function that is (—1)-concave, but with-
out concave integrated price flexibility, is p(z) = m In this case
the revenue function is quasi-concave (but not concave). There are examples
of functions that are with concave integrated price flexibility, but not (—1)-

concave ((xz +1)*,0 < a < 1), therefore, our results neither imply, nor are
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implied by the results in [9]. The existence theorem [5, Theorem 3.3] supposes
the payoff and costs functions are twice differentiable. The existence theorem
4.1 is in the non-smooth case. So, to the best of our knowledge, the results
presented here are new.
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