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OPERATORS IN MINIMAL SPACES
WITH HEREDITARY CLASSES

AHMAD AL-OMARI and TAKASHI NOIRI

Abstract. Quite recently, a new minimal structure m} has been introduced in

[12] by using a minimal structure m and a hereditary class H. In this paper, we

introduce and investigate an operator I}, , (%)-strongly m-codense hereditary

class H and a minimal structure m which is said to be m-compatible with a
hereditary class H in a hereditary m-space (X, m, H).
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1. INTRODUCTION

The notion of ideals in topological spaces was introduced by Kuratowski [10].
Jankovi¢ and Hamlett [8] defined the local function on an ideal topological
space (X,7,Z). By using it they obtained a new topology 7* for X and
investigated relations between 7 and 7*. A subfamily p of the power set
P(X) on a nonempty set X is called a generalized topology (briefly GT) [6]
if ) € p and any union of elements of p belongs to u. Csdszar [7] defined a
hereditary class H which is weaker than an ideal and constructed a new GT
p* from a GT p and a hereditary class H. Moreover, he showed that many
properties related to 7 and 7* remain valid (possibly with small modifications)
for p and p*.

In [12], Noiri and Popa introduced the minimal local function on a minimal
space (X, m) with a hereditary class H and constructed a minimal structure
mj; which contains m. They showed that many properties related to 7 and
7* (or p and p*) remain similarly valid on m and m};.

In this paper, we investigate relationships between a minimal stracture m
and a hereditary class H. In Section 3, we define and study an operator, called
'Y 7, on a herediatary minimal space (X, m, H). In Section 4, we investigate a
minimal structure m which is said to be m-compatible with a hereditary class
‘H. In the last section, we define and investigate a heraditary class H which
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is said to be (x)-strongly m-codense. Several characterizations of minimal
stracture were provided in [1, 2, 3, 4, 5].

2. MINIMAL STRUCTURES

DEFINITION 2.1. A subfamily m of the power set P(X) of a nonempty set
X is called a minimal structure (briefly m-structure) [13] on X if ) € m and
X em.

By (X, m) we denote a nonempty set X with a minimal structure m on
X and call it an m-space. Each member of m is said to be m-open and the
complement of an m-open set is said to be m-closed. For a point z € X, the
family {U : € U and U € m} is denoted by m(x).

DEFINITION 2.2. Let (X,m) be an m-space and A a subset of X. The m-
closure mCl(A) of A [11] is defined by mCl(A) =n{F C X : AC F, X\ F €

LEMMA 2.3 (Maki et al. [11]). Let X be a nonempty set and m a minimal
structure on X. For subsets A and B of X, the following properties hold:

(1) A Cc mCIl(A) and mCI(A) = A if A is m-closed,

(2) mCl(0) = 0, mCl(X) = X,

(3) If A C B, then mCIl(A) C mCl(B),

(4) mCl(A) UmCl(B) ¢ mCI(AU B),

(5) mCl(mCl(A)) = mCIl(A).

DEFINITION 2.4. A minimal structure m of a set X is said to have

(1) property B [11] if the union of any collection of elements of m is an
element of m,

(2) property [F|] if m is closed under finite intersections.

LEMMA 2.5 (Popa and Noiri [13]). Let (X, m) be an m-space and A a subset
of X.

(1) 2 € mCI(A) if and only if UN A # 0 for every U € m(x).

(2) Let m have property B. Then the following properties hold:

(i) A is m-closed if and only if mCl(A) = A,

(7i) mCl(A) is m-closed.

DEFINITION 2.6. A nonempty subfamily H of P(X) is called a hereditary
class on X [7] if it satisfies the following properties: A € H and B C A implies

B € H. A hereditary class H is called an ideal if it satisfies the additional
condition: A € H and B € ‘H implies AUB € H.

A minimal space (X, m) with a hereditary class H on X is called a hereditary
minimal space (briefly hereditary m-space) and is denoted by (X, m,H).
DEFINITION 2.7 ([12]). Let (X, m,H) be a hereditary m-space. For a subset
A of X, the minimal local function A} ;;(H, m) of A is defined as follows:
Ary(H,m) ={z e X:UNA¢gH for every U € m(x)}.
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Hereafter, A} ,;(H, m) is simply denoted by A ;.

REMARK 2.8 ([12]). Let (X, m,H) be a hereditary m-space and A a subset
of X. If H = {0} (resp. P(X)), then A* ,, = mCI(A) (resp. A¥ ,; =0).

LEMMA 2.9 ([12]). Let (X,m,H) be a hereditary m-space. For subsets A
and B of X, the following properties hold:

(1) If AC B, then A’ ;; C Br ;.

(2) A%,y = mCI(Az ) € mCI(A),

(3) AnmUBLy C (AUB)

(4) (Ar)t C (AU Anylongy = Al
(5) If A e H, then Af ;= 0.

LEMMA 2.10. Let (X, m,H) be a hereditary m-space and A a subset of X.
IfUemand UNAeH, then UNAS 5 =0.

m

*
3. THE OPERATOR I'},

DEFINITION 3.1. Let (X, m, #) be a hereditary m-space. An operator I'} ,; :
P(X) — P(X) is defined as follows: for every A € X, I} ,(A) = {z € X :
there exists M € m(x) such that M — A € H}.

THEOREM 3.2. Let (X, m,H) be a hereditary m-space. Then, for every
subset A of X, I'f y(A) =X — (X = A)F 4.

Proof. Suppose x € X — (X — A) ;. Then = ¢ (X — A)! ;;, and so there
exists M € m(x) such that M N (X — A) € H, which implies that M — A € H.
Therefore, X — (X — A)! ; € {z € X : there exists M € m(z) such that
M —AeH} =T} ,(A). Conversely, assume that y € I'? ;;(A). Then there
exists M € m(y) such that M — A€ H. Since M —AeH, MN(X—-A)eH
which implies that y ¢ (X — A)? ;. Therefore, y € X — (X — A)* ;. Thus,
T r(A) = X — (X =AYy 0

DEFINITION 3.3 ([12]). Let (X, m, H) be a hereditary m-space and A a
subset of X. The minimal -closure mCl3;(A) of A is defined as mCl};(A) =
AUAY . A new m-structure, m};, is defined as follows: m}; = {U C X :
mCl; (X \U) = X \ U}. Each member of m}; is said to be mJ;-open and the
complement of an mj;-open set is said to be m};-closed.

LEMMA 3.4. Let (X,m, H) be a hereditary m-space. A subset F of X is
myy-closed if and only if Fr o C F.

Proof. F is mj;-closed if and only if F' = mCl};(F) = F U F} ; if and only
if F* . CF. O

LEMMA 3.5. Let (X, m, H) be a hereditary m-space, then my = {A C X :
ACT (A}
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Proof. Let AC X and A CI'} ;(A). By Theorem 3.2, AC X —(X—-A)! 4
and X — A D (X — A)F ;. Therefore, X — A = mCl3;(X — A) and hence
A € mj. Conversely, let A € m};. Then X — A is m}{-closed Therefore,
(X —A)f ;€ X — A, which implies that X — (X —A) C X — (X - A)! 4 and
hence A C T ,(A). O

COROLLARY 3.6. Let (X, m,H) be a hereditary m-space. Then U C T ,,(U)
for every m-open set U C X.

Proof. We know that I'} ,(U) = X — (X -U)! . Now, (X -U)’ 4 C
mCIl(X —-U) = X —U, since X —U is m-closed. Therefore, U = X —(X—-U) C
X — (X —U):,, =15, (). O

Several basic properties concerning the behavior of the operator I'} ;; are
included in the following theorem.

THEOREM 3.7. Let (X, m, H) be a hereditary m-space. Then, for a subset
A of X, the following properties hold:
(1) If m has property B, then I'} ;(A) is m-open.
(2) IfA CBCX, thenT? ;(A) CT? 4 (B).
(3) T (AN B) C T2y (A) N5, (4]
(4) I7q(A) =17 H[T%H(A)] if and only if (X — A)S =X = Ayl
(5) F:nH( ) C g (A)).
Proof. (1) This follows from Lemma 2.9 (2) and Theorem 3.2.
(2) This follows from Lemma 2.9 (1).
(3) This is obvious by (2).
(4) This follows from the facts:
(1) T, (A) = X — (X — A%
(i) I gl p(A)] =X — [X = (X = (X = A)} p)lhm
S (6 QoI
(5) By Lemma 2.9 and the above fact, ((X — A)r ;)5 5y C (X — A)r 5 and
Lhp(A) =X — (X = A)5y CX = (X = A5 m)hn =Tnu,m(A)). [

The following example due to Renukadevi and Vimaladevi [14] shows that
the inequality in Theorem 3.7(5) will not be an equality.

ExXAMPLE 3.8. Let X = {a,b,c,d}, m = {0, X, {a},{a,b}, {b,c},{a,b,c}}
and H = {0,{b},{c}}. Then (X,m, H) is a hereditary m-space. Let A =
{a.d}, then T,y (4) = {a,b} and T,y (Th,5(A)) = Tiyp({a.b}) = {a,bc).
Therefore, I'Y ;;(A) # T 5 (T% 5 (A)).

LEMMA 3.9. Let (X,m,Z) be an ideal m-space and A, B any subsets of X.
If m has property [F, then AY ; UB = (AUB) ;.

Proof. 1t follows from Lemma 2.9 that (AU B)? ,; 2 A ;UB? ;. To prove
the reverse inclusion, let « ¢ Ay , U B} ;. Then x belongs neither to Ay .
nor to B’ ;;. Therefore, there exist U, V,, € m(z) such that U, N A € T and
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V. N B € Z. Since 7 is additive, U, N A) U (V, N B) € Z. Moreover, since Z is
hereditary and

(Us N V) N (AUB) =((Uy N V,) N A) U ((Uy N V3) N B)
C(U,NA)U(V, N B),

(UNVy)N(AUB) € Z. Since U,NV, € m(z), x ¢ (AU B)?, ;. This shows that
(AUB)! g C Af yUB? ;. Hence, we obtain A , UB! ;= (AUB)! . O

LEMMA 3.10. Let (X, m,Z) be an ideal m-space. If m has property [F] and
A, B are subsets of X, then Ay — By =(A—B)! y— B!y

Proof. We have, by Lemma 3.9, A* ,=[(A— B)U(ANB)|} y=(A—B)! 4
U(ANB), g € (A= B),gUB g Thus, A%y — Bl y € (A= B)L gy — Bhy-
By Lemma 2.9, (A — B) ;; € A}y and hence (A— B)! ; — By C A —
B ;. Hence, A* , — B* , =(A—DB)! y— Bl - O

COROLLARY 3.11. Let (X,m,Z) be an ideal minimal space. If m has prop-
erty [F] and A, B are subsets of X with B € I, then (AUB)! ; = Ay =
(A= B)op-

Proof. Since B € Z, by Lemma 2.9, B ; = (. By Lemma 3.10, AF , =
(A—B)! ; and, by Lemma 3.9, (AUB)* ;= A yUB! , = A" O

THEOREM 3.12. Let (X, m,H) be a hereditary m-space and A C X. Then
the following properties hold:

1) I gA)=u{Uem:U—-AecH}.
Q) I yA)D2u{Uem: (U-A)U(A-U) e H}.

Proof. (1) This follows immediately from the definition of I}, ,;-operator.
(2) Since H is heredity, it is obvious that U{U € mx : (U —-A)U(A-U) €
H}CWH{Uem:U—-AeH} =T} 4(A) for every A C X. O

THEOREM 3.13. Let (X, m,H) be a hereditary m-space and o0 = {A C X :
ACT? 4 (A)}. Then the following properties hold:

(1) o is a minimal structure with property B,

(2) If H is an ideal and m has property [F], then o is a topology for X.

Proof. (1) By Lemma 3.5, ¢ = mj};. It is known from [12, Theorem 2.1]
that m7; is a minimal structure with property B.

(2) Let A,B € 0, then ANB C I ,(A) NI} ;(B). By Lemma 3.9, we
have

ma(ANB) =X — (X = (ANB))pg =X - [(X —A)U(X - B)l,u
=X — [(X = A)pg U (X — B)rml
(X = A N [X = (X = B)un]
=l m(A) NI 5 (B).

I g (A)NT g (B) =17 ;(ANB). Therefore, ANB C I'} (AN B) and hence
AN B € o. This shows that ¢ is a topology. O
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4. COMPATIBLITY OF M WITH H

DEFINITION 4.1. Let (X, m,H) be a hereditary m-space. We say that m is
m~compatible with a hereditary class ‘H, denoted m~ H, if the following holds:
for every A C X, A € H whenever for each = € A there exists U € m(zx) such
that UN A € H.

THEOREM 4.2. Let (X, m,H) be a hereditary m-space. Then the implica-
tions (1) = (2) = (3) = (4) = (5) hold. If m has property [F] and H is an
ideal, then the following properties are equivalent:

(1) Forevery A C X, if A contains no nonempty subset B with B C B,
then A € H;

(2) m~H;

(3) If a subset A of X has a cover of m-open sets whose intersection with
A isin H, then A € H;

(4) For every AC X, ANAY ;=0 implies that A € H;

(5) For every AC X, A— A, € H.

Proof. (1) = (2): Let A C X and assume that for every x € A, there exists
U € m(x) such that UN A € H. Then AN A’ ;; = 0. Suppose that A contains
B such that B C B} ;. Then B=BnNB! ,; C AN A}, = 0. Therefore, A
contains no nonempty subset B with B C B ;. Hence, A € H.

(2) = (3): The proof is obvious.

(3) = (4): Let A C X and v € A. Then z ¢ A}, and there exists
Vi € m(x) such that V; N A € H. Therefore, we have A C U{V, : x € A} and
Vy € m(z) and by (3) A € H.

(4) = (5): Forany A C X, A—-A' ; CAand (A—A ;) N(A— A )iy €
(A—Af g )NAS ,=0. By (4), A— A%, € H.

(5) = (1): By (5), for every A C X, A — A" , € H. Let A— Al =
J € H, then A=JU(ANA} ;) and, by lemma 3.9 and Lemma 2.9, A? ,, =
S UANA g = (ANA)E . Therefore, we have AN AY , = AN
(ANA )iy € (ANAS )y and AN AY , C A By the assumption,
ANAf y =0and hence A=A— A, € H. O

COROLLARY 4.3. Let (X,m,H) be a hereditary m-space and m~H. If
ANAL =0 for AC X, then Al =0.

THEOREM 4.4. Let (X, m,H) be a hereditary m-space. Then m~H if and
only if It 7 (A) — A e H for every A C X.

Proof. Necessity. Assume m~H and let A C X. Observe that z €
I'" y(A) — Aif and only if ¢ A and x ¢ (X — A)F ; if and only if x ¢ A
and there exists U, € m(x) such that U, — A € H if and only if there exists
U, € m(x) such that + € U, — A € H. Now, for each x € I'} ;;(A) — A and
Uz € m(x), UpN(T, 4y (A) — A) € H, by heredity, and hence I'} ,;(A) —A € H,
by the assumption that m~%H.
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Sufficiency. Let A C X and assume that for each x € A there exists
U, € m(z) such that U, N A € H. Observe that I} (X —A) — (X — A4) =
A— Ay o = {x : there exists U, € m(x) such that z € U, N A € H}. Thus we
have A C I (X —A)— (X —A) € H and hence A € H by heredity of H. [

PROPOSITION 4.5. Let (X, m,H) be a hereditary m-space with m~H, A C
X. If N is a nonempty m-open subset of A", NI'% ;(A), then N — A e H
and NNA¢H.

Proof. t N C A ;NI ;(A), then N—A CT% ,(A)—A € H, by Theorem
4.4, and hence N — A € H, by heredity. Since N € m — {0} and N C A* .,
we have N N A ¢ H, by the definition of A .. O

5. STRONGLY M-CODENSE HEREDITARY CLASSES

DEFINITION 5.1. Let (X, m,#H) be a hereditary m-space. The hereditary
class H is said to be

(1) m-codense if m N'H = {0},

(2) strongly m-codense if U,V € m and UNV € H implies UNV =,

(3) (%)-strongly m-codenseif for U,V € m, (UNV)NA € Hand (UNV)—-A €
H implies U NV = () for every subset A of X.

LEMMA 5.2. Let (X, m,H) be a hereditary m-space. Then, for the hereditary
class H, the following properties hold:

(1) If H is (*)-strongly m-codense, then it is strongly m-codense,

(2) If H is strongly m-codense, then it is m-codense.

Proof. (1)U, V € mand UNV € H, then (UNV)NP € Hand (UNV)—0 €
‘H and, by hypothesis, UNV = ().

(2) Let H be strongly m-codense. Suppose that m NH # {@}. There
exists U € m N H such that U # (). Since x € U € m and U € H, for any
Vem(z),VNUCUeHand VNU € H. Since z € U NV, this is contrary
to the hypothesis. ]

REMARK 5.3. The following example due to Kim and Min [9] shows that
the converse of (1) in Lemma 5.2 is not always true. And also [12, Example
2.1] shows that the converse of (2) in Lemma 5.2 is not always true.

ExAMPLE 5.4. (1) Let X ={a,b,c},m={0,{a, c}, X} and H={0, {a}, {c}}.
Then H is strongly m-codense. Let U = {a,c} and V = X. Then for A =
{b,c}, UNV)NA={c} eHand (UNV)—A={a} e Hbut UNV =U # .
Hence, H is not (*)-strongly m-codense.

(2) Let X = {a,b,c},m = {0,{a,b},{a,c}, X} and H = {0,{a}}. Then H
is m-codense. Let U = {a,b} and V = {a,c}, then UNV = {a} € H and H
is not strongly m-codense.

THEOREM 5.5. Let (X, m,H) be a hereditary m-space. Then, the following
properties hold:
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(1) If H is an ideal and strongly m-codense, then it is (x)-strongly m-
codense,
(2) If m has property [F| and H is m-codense, then H is strongly m-codense.

Proof. (1) Let U,V € mand (UNV)NA € H and (UNV)— A € H. Then,
since H is an ideal, UNV = (UNV)NA)U((UNV)— A) € H. Since H is
strongly m-codense, U NV = () and hence H is (*)-strongly m-codense.

(2) Let U,V € m and (U NV) € H. Since m has property [F], UNV € m
and (UNV)emNnH. Hence UNV = (. O

COROLLARY 5.6. Let (X, m,H) be an ideal m-space and m have property
[F]. Then the following properties are equivalent: (1) m-codense, (2) strongly
m-codense and (3) (x)-strongly m-codense.

LEMMA 5.7. Let (X,m,H) be a hereditary m-space. Then the following
properties are equivalent:

(1) H is m-codense;

(2) X = X0

(3) Thm (0) = 0.

Proof. (1) = (2): Suppose that H is m-codense. For any point z € X and
any U e m(z), UNX =U ¢ H. Hence, z € X, ;; and X C X ;;. Therefore,
X=Xy

(2) = (3): Since I} ;(0) = X — X% 5, T 1 (0) = 0.

(3) = (1): Suppose that m NH # {0}. Then there exists U € m N H such
that U # ). There exists x € U € mand UNX = U € H and hence = ¢ X .
Hence, z € X — X, =T ;({0}). This is contrary to I'} ,,(0) = 0. O

LEMMA 5.8. Let (X, m,H) be a hereditary m-space and m have property B.
Then H is m-codense if and only if Int(H) =0 for every H € H.

Proof. Let H be m-codense. Since m has property B, for every H € H,
Int(H) € m. Since Int(H) C H € H, Int(H) € H and hence Int(H) €
m N H = {0}. Therefore, Int(H) = {).

Conversely, suppose that H is not m-codense. Then there exists U € mNH
such that U # ). Since U € m, Int(U) =U # () for U € H. O

THEOREM 5.9. Let (X, m,H) be a hereditary m-space and m have property
[F']. The following properties are equivalent:
) H is m-codense;
) If A is m-closed, then T’} ;(A) — A = 0;
) If U is m-open, then U C U} ;
) H is strongly m-codense.

Proof. (1) = (2): Suppose that A is m-closed and x € I'}, ;;(A) — A. Then
reX — (X —A) yand hence x ¢ (X — A)r ;. There exists U € m(z) such
that U N (X — A) € H. Since A is m-closed, U N (X — A) € m and hence
UN(X —A) e mnH ={0}. This is contrary to x € U N (X — A). Hence,
I g(A)—A=0.
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(2) = (3): Let U € m. Then X — U is m-closed and by (2) ) =T (X —
U)-(X-U)=(X-Uy)NU=U-U} . Hence U C U} ;.

(3) = (4): Suppose that U,V € mand (UNV) € H. If x € UNV, then by
(3) x € U C U}y and hence VNU ¢ H. This is a contradiction.

(4) = (1): This follows from Lemma 5.2 (2). O

THEOREM 5.10. Let (X, m,H) be a hereditary m-space. If H is (x)-strongly
m-codense, then for a subset A of X the following properties hold:

(1) T (A4) € Az, € mOI(A),

(2) [T, (A) NIT (X — A) = 0.

Proof. (1) Suppose there exists an element « € I'? ;(A) such that = ¢ A* ;.
For x € T ,;(A), since x ¢ (X — A)¥ ;;, there exists U € m(x) such that
UN(X —A)eH. Forx ¢ A’ j, there exists V € m(x) such that VN A € H.
Since H is (x)-strongly m-codense, for U,V € m, (UNV)N A € H and
(UNV)— A € H implies U NV = (). But this contradicts the fact that both
U and V are containing x. Hence, we have I'} ,,(A) C A* ;. It follows from
Lemma 2.9(2) that A* ,, € mCI(A).

(2) Assume that z € I'} ,(A) NI} (X — A) for some z € X. Then there
exist U,V € m(z) such that UN A € H and VN (X — A) € H. Hence,
(UNV)—AeHand (UNV)NA € H. Since H is (x)-strongly m-codense, for
UV em, UNV)NA € Hand (UNV)—A € H implies UNV = () and we have
UNV =0. This is contrary to z € UNV. Hence, I'! ;(A)NT} ;(X —A) =
0. O

COROLLARY 5.11. Let (X,m,H) be a hereditary m-space. If H is (x)-
strongly m-codense, then for a subset A of X the following properties hold:

(1) I g (A) €AY C Aif Ais m-closed in X,

(2) AL g U (X —A) yg=X,

(3) If A€ H, then T ,(A) =0,

(4) If X — A€ H, then A? ;= X.

Proof. (1) This is obvious by Theorem 5.10(1).

(2) By Theorem 5.10 (2), 0 =T ,(A)NT: (X —A) = [X—(X—-A) 4N
(X —Ar ) =X —-[(X—-A); g UAr ). Hence AY ;U (X — A)) = X.

(3) By Theorem 5.10 (1), I'} ,;(A) € A}, . Since A € H, by Lemma 2.9
(5), Ar,;y = 0 and hence '}, (A) = 0.

(4) I X—-AecH, by (3),0=IF ,(X—A)=X—-Ar . Hence, A;, ,=X. O
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