
MATHEMATICA, 61 (84), No 1, 2019, pp. 79–84

WIRTINGER TYPE INEQUALITIES
FOR CONFORMABLE FRACTIONAL INTEGRALS

MEHMET ZEKI SARIKAYA and CANDAN CAN BİLİŞİK
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1. INTRODUCTION

One of the most important issues in inequality theory is given by the inte-
gral inequalities involving a function and its derivative. Wirtinger’s inequality
has been attracting attention due to the close coupling of linear differential
equations and differential geometry. Wirtinger’s inequality compares the inte-
gral of a square of a function with that of a square of its first derivative. Over
the last twenty years, a large number of papers considered simpler proofs, var-
ious generalizations and discrete analogues of Wirtinger’s inequality and its
generalizations, see [2, 4, 5] and [10-14].

First of all, we recall the following inequality ascribed to Wirtinger.

Theorem 1.1. Let f be a real valued function with period 2π such that
2π∫
0

f(x)dx = 0 and f ′ ∈ L2 [0, 2π] . Then the following inequality holds

(1)

2π∫
0

f2(x)dx ≤
2π∫
0

(
f ′(x)

)2
dx,

with equality if and only if f(x) = A cosx+B sinx, A,B ∈ R.

Beesack obtained in [10] the following generalization of Wirtinger’s inequal-
ity: if p > 1, f ′ ∈ C

[
0, π2

]
, f(0) = 0, then

π
2∫

0

|f(x)|p dx ≤ 1

p− 1

(
p

2 sin(πp )

) π
2∫

0

∣∣f ′(x)
∣∣p dx.
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The purpose of this paper is to establish a generalization and a refinement of
Wirtinger’s inequality for conformable integrals. The structure of this paper is
as follows. In Section 2, we present the definitions for conformable derivatives
and conformable integral and we introduce several useful notations for our
main result. In Section 3, the main result is given.

2. DEFINITIONS AND PROPERTIES OF CONFORMABLE FRACTIONAL

DERIVATIVE AND INTEGRAL

The following definitions and theorems regarding conformable fractional
derivatives and integrals have been considered in [1, 3], [6]-[9].

Definition 2.1 (Conformable fractional derivative). Given a function f :
[0,∞) → R. Then the conformable fractional derivative of f of order α is
defined by

(2) Dα (f) (t) = lim
ε→0

f
(
t+ εt1−α

)
− f (t)

ε
,

for all t > 0, α ∈ (0, 1). If f is α-differentiable in some (0, a) , α > 0, and

lim
t→0+

f (α) (t) exists, then define

(3) f (α) (0) = lim
t→0+

f (α) (t) .

Let f (α) (t) for Dα (f) (t) denote the conformable fractional derivatives of f of
order α. In addition, if the conformable fractional derivative of f of order α
exists, then we simply say that f is α-differentiable.

Theorem 2.2. Let α ∈ (0, 1] and f, g be α-differentiable at a point t > 0.
Then:

i) Dα (af + bg) = aDα (f) + bDα (g) , for all a, b ∈ R;
ii) Dα (λ) = 0, for all constant functions f (t) = λ;
iii) Dα (fg) = fDα (g) + gDα (f);

iv) Dα

(
f

g

)
=
fDα (g)− gDα (f)

g2
.

If f is differentiable, then

(4) Dα (f) (t) = t1−α
df

dt
(t) .

Definition 2.3 (Conformable fractional integral). Let α ∈ (0, 1] and 0 ≤
a < b. A function f : [a, b] → R is α-fractional integrable on [a, b], if the
integral

(5)

∫ b

a
f (x) dαx :=

∫ b

a
f (x)xα−1dx

exists and is finite. The set of all α-fractional integrable functions on [a, b] is
denoted by L1

α ([a, b]) .
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Remark 2.4.

Iaα (f) (t) = Ia1
(
tα−1f

)
=

∫ t

a

f (x)

x1−α
dx,

where the integral is the usual Riemann improper integral, and α ∈ (0, 1].

Theorem 2.5. Let f : (a, b) → R be differentiable and 0 < α ≤ 1. Then,
for all t > a, we have

(6) IaαDαf (t) = f (t)− f (a) .

Theorem 2.6 (Integration by parts). Let f, g : [a, b]→ R be two functions
such that fg is differentiable. Then

(7)

∫ b

a
f (x)Dα (g) (x) dαx = fg|ba −

∫ b

a
g (x)Dα (f) (x) dαx.

Theorem 2.7. Assume that f : [a,∞)→ R such that f (α)(t) is continuous
and α ∈ (n, n+ 1]. Then, for all t > a, we have

Dαf (t) Iaα = f (t) .

We can give the Hölder’s inequality with conformable integrals as follows.

Lemma 2.8. If f, g ∈ C [a, b] , p, q > 1 with 1
p + 1

q = 1, then

b∫
a

|f(x)g(x)|dαx ≤

 b∫
a

|f(x)|p dαx


1
p
 b∫
a

|g(x)|q dαx


1
q

.

Remark 2.9. If we take p = q = 2 in Lemma 2.8 , the we have the Cauchy-
Schwartz inequality with conformable integrals.

3. WIRTINGER TYPE INEQUALITIES FOR CONFORMABLE FRACTIONAL

INTEGRAL

Now, we present the main results.

Theorem 3.1. Let α ∈ (0, 1], u : [0, h]→ R be an α- fractional differentiable
function, p ≥ 1, u(0) = 0. Then we have the following inequality

h∫
0

|u(t)|p dαt ≤
1

p

(
hα

α

)p h∫
0

|Dαu(t)|p dαt.

Proof. From Hölder’s inequality with indices p and p
p−1 , and using the par-

tial integration method, we get

h∫
0

|u(x)|p dαx ≤
h∫

0

 x∫
0

|Dαu(t)| dαt

p

dαx
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≤
h∫

0

(
xα

α

)p−1 x∫
0

|Dαu(t)|p dαt

 dαx

=
hαp

pαp

h∫
0

|Dαu(t)|p dαt−
1

pαp

h∫
0

xαp |Dαu(x)|p dαx

≤ hαp

pαp

h∫
0

|Dαu(t)|p dαt,

which is the desired inequality. �

Corollary 3.2. Under assumption of Theorem 3.1 with p = 2, we get

h∫
0

|u(t)|2 dαt ≤
h2α

2α2

h∫
0

|Dαu(t)|2 dαt.

Theorem 3.3. Let α ∈ (0, 1], u : [0, h]→ R be an α-fractional differentiable
function with u(0) = u(h) = 0, p ≥ 1. Further, let g(x) be a non-negative and
continuous function on [0, h]. Then the following inequality holds:

h∫
0

g(x) |u(x)|p dαx ≤
1

2

 h∫
0

(
xα(hα − xα)

α

) p−1
2

g(x)dαx


×

 h∫
0

|Dαu(x)|p dαx

 .

(8)

Proof. We have

(9) u(x) =

x∫
0

Dαu(t)dαt, u(x) = −
h∫
x

Dαu(t)dαt

and hence, from Hölder’s inequality with indices p and p
p−1 , it follows that

(10) |u(x)|
p
2 ≤

 x∫
0

|Dαu(t)| dαt

p
1
2

≤
(
xα

α

) p−1
2

 x∫
0

|Dαu(t)|p dαt

 1
2

and similarly

(11) |u(x)|
p
2 ≤

(
hα − xα

α

) p−1
2

 h∫
x

|Dαu(t)|p dαt


1
2

.
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Now, multiplying (10) and (11) and using the elementary inequality
√
mn ≤

1
2(m+ n), m, n ≥ 0, we get

|u(x)|p ≤ 1

2

(
xα(hα − xα)

α

) p−1
2

 x∫
0

|Dαu(t)|p dαt+

h∫
x

|Dαu(t)|p dαt



=
1

2

(
xα(hα − xα)

α

) p−1
2

h∫
0

|Dαu(t)|p dαt,

which is the same as (8). This completes the proof. �

Corollary 3.4. Under the conditions of Theorem 3.3, we have the follow-
ing inequality

(12)

h∫
0

g(x) |u(x)|p dαx ≤
1

2

(
hα

2α

)p−1 h∫
0

g(x)dαx

 h∫
0

|Dαu(x)|p dαx

 .

Proof. From (9), it is clear that

|u(x)| ≤ 1

2

h∫
0

|Dαu(t)| dαt

and hence, from Hölder’s inequality with indices p and p
p−1 , we have

|u(x)|p ≤ 1

2p

 h∫
0

|Dαu(t)| dαt

p

≤ 1

2p

(
hα

α

)p−1 h∫
0

|Dαu(t)|p dαt



=
1

2

(
hα

2α

)p−1 h∫
0

|Dαu(t)|p dαt

 .

Now multiplying both sides of the above inequality by g(x) and integrating
the resulted inequality from 0 to h, we obtain (12). �
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