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LOCALIZATION OF THE EIGENVALUES
OF A MATRIX THROUGH ITS SPREAD

ABDELKADER FRAKIS

Abstract. The spread of a given matrix A is the largest distance between its
eigenvalues. We can localize the eigenvalues of the matrix A using its spread.
In the present work we propose a refinement of Samuelson’s inequality. Also, we
give some lower and upper bounds for the multiplication of the spread of two
different matrices A and B. In the particular case when A = B, we reobtain
some known results.
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1. INTRODUCTION

We assume throughout this paper that n > 3. Let A = (a;;) be an n x n
complex matrix with eigenvalues \i,...,A,. The spread of the matrix A is
defined as

sp(A) = max |\; — Aj].
0.
It was introduced for the first time by L. Mirsky — see [8]. We write spg.(A) =
max; j [Re(A;) — Re();)| and spp, (4) = max; j [Im(\;) — Im(A;)][. Let m =
trA/n, where trA is the trace of A.
In [8], L. Mirsky gave an upper bound for the spread of an arbitrary n x n
matrix A:

9 1/2
) sp(d) < {2141 - 2juap ]
where || A||r denotes the Frobenius norm. Also, he deduced from (1) that
(2) sp(4) < V2||A]|r.

E. Deutsch [5] and E. Jiang , X. Zhan [7] presented new proofs of inequality
(1). Different bounds for the spread of a matrix are given — for more details,
the reader should consult [7, 9]. We state some of these bounds. Let A be an
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2 Localization of the eigenvalues of a matrix 41

n x n Hermitian matrix. E.R. Barnes and A.J. Hoffman [2] gave the following
lower bound for the spread of A:

0 V2 (21 - Z(u(A))?f < sp(4).

A lower bound, better than (3), was given by A. Brauer and A.C. Mewborn —

see [3].

(4) \/> {23504 ( 2(’51"14)2}1/2 ; n even,
\/E {2 Zn 1(Ad) = %(tTA)2}1/2 , n odd,

where \; € R are the eigenvalues of A.
Samuelson [1] asserts that, for any real numbers x1, xo, ..., x,,

1
max\xz—x\<\/n— an — )2,

i.e.
n—1«
(5) (o =7 < =3 (s - 7P,
j=1
where 7 = =12
n
2. PRELIMINARY LEMMAS
LEMMA 2.1. If z1,22,..., 2, are complex numbers such that > ;" | z; = 0,
then
n—1«
2 — 2
(6) Al < 3 el

j=1
fori=1,2,...,n

Proof. For i =1,...,n, we have —z; = Z;‘:l#i zj. Applying the Cauchy-
Schwarz inequality, it follows that

n

m? < (n=1) Y |5 =(n-1) Z]z]]2 (n = Dlaf.

j=1j#i

Hence the result follows immediately. ([l

THEOREM 2.2. Let A be an n x n complex matriz. Then

) w2 (1) (agp - 12471
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Proof. Taking z; = (A\; —m) in (6) it follows that

n

n—1
Ni—ml < |30 Dy - mi,
i=1

Furthermore,
n
S i—mf =
i=1

(])\Z-|2 —mM\; — A\ + |m\2)

|trA|

n
|t7’A|2
nf2 - AT <y - AT

=

Hence |\; —m| < \/ (||A||F %) We have sp(A) = max; ; [\ — Aj| <

n

|)\i—m|+|)\j—m|§2|)\i—m|,andthussp(A)<2\/ (||A||F M) O

LEMMA 2.3 (Lagrange’s identity). Let a = (ai,ag,...,a,) € R™ and b =
(bl, by, ... ,bn) € R™. Then

n n n 2 n
<Z a?) (Z b?) - (Z aibi> = % > (aibj — a;bi).
i—1 i=1 =1

1,j=1

In the following theorem we extend the inequality of Samuelson. Let €2; =
{1,2,...,n}\ {i}, where i =1,...,n.

n .
THEOREM 2.4. Let x1,x9,...,2, be real numbers and let T = M .
n
Then
o 1 s n—1g .
(8) (z; — ) +%‘Z () —ar)” = — Z(%'j—w) ,
J.k€Q; Jj=1
fori=1,...,n
Proof. For i =1,...,n, we have
2
_ 1 _ 1
(xi—$)2+§ Z (j—xr)® = | - Z(mj — ) T3 Z (xj — x1)°.
Jk€Q; JEQ J,k€Q;
On the other hand, apply the identity of Lagrange, we get
2

S Z ja)?=(n—-1)> (5 -2)°—| ) (z;-7)

],k:EQ JEQ; JEQ;
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Then
1
—\2 2 —\2
(i —2)" + 5 Z (xj —ak)” = (n—1) . (z; — @)
J,k€Q; JEQ;
n
= (-1 ;%) — (0 — 1)z, — 7)?
j=1
Hence the desired result is obtained. ]
LEMMA 2.5. Let zq, 29, ..., 2, be complex numbers. Then
n 1 n
(9) Zm—m\?:ﬁ Z |z — 2]
i=1 1<i<k<n

Proof. We have Y"1 ; p<p, 120 — 26* = n Y1 2> — [trA]>. On the other
hand, tr(A —mI) = 0 and thus the result follows immediately. O

n .
COROLLARY 2.6. Let x1,x2,...,x, be real numbers and let T = M .
n
Then
n—1 -
(10) (2 — )% < e Z () — @)%,
1<j<k<n
fori=1,...,n.
Proof. The result follows by (5) and (9). O

In the following two theorems we will see that we can localize the eigenvalues
of a matrix A, using its spread.
3. MAIN RESULT

THEOREM 3.1. Let A be an n X n matriz with real eigenvalues A1 < Ao <
<o+ < Ap. Then all the eigenvalues of A lie in the interior or on the boundary
of the circle with center m and radius R, where

1
R= 5\/(71 — Dsp(A4), if nis even and
—1
R= ”2 Vit 1sp(A), if nis odd.
n

Proof. From (10) we have n”—fl()\z -m)? < di<jcecn(Nj — A)? =0. Let ¢
be an integer such that 2 < ¢ <n — 1. Then

d’e d
- = QE Ao — A =2(n—1 .
J#e
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So ©, as function of A, attains its maximum on the boundary of the interval
A1, An]. Assume A\j = Ao ==X and Ay = Ao ==\, L <k <n.
Thus

n

O= > (N —X)?=kn—ksp’(A).

1<j<t<n

O attains the maximum value for £ = [g] and thus

. 1n2sp2(A), n even,
DR G V) e I ( )2
7(n® —=1)sp“(A), n odd.

1<j<t<n
Hence
2 1,22
n (i —m)? < iln Sp (A), ) n even,
n—1 7(n® —1)sp“(A), n odd.
Therefore,
1 2
9 7(n —1)sp*(4), n even
(i =m)” < {i("Ll)Q(n_l)spz(A) n odd
n )
This establishes the theorem. ]

THEOREM 3.2. Let A be an nxn normal matriz with eigenvalues A1, Ag, .. .,
An. Then all the eigenvalues of A lie in the interior or on the boundary of the
rectangle

- [Reu;(A)) _, Reltrta) M} ) [Im@;(A)) p Imnta) )
where
{a = 1(n—1)sp}.(A), n even,
a= %("2 1)( )spRe(A) n odd,
and
= 1(n —1)sp?_(A), n even,

Msp%m(/l), n odd.

b
Proof. Since A is normal, the eigenvalues of the Hermitian matrices %(A +
A*) and (A — A*) are Re(\1),...,Re(\,) and Im()\y),...,Im(\,), respec-

tively. Further we have tr(#) = Re(tr(A4)) and tr(A A*) = Im(tr(A)).
A+A )

e L

Also, we know that, if A is a normal matrix, then spr.(4) = sp(£52) and

Spi (A) = sp(AEA*). The real parts and imaginary parts of the complex
numbers (A\; —m), ¢=1,2,...,n satisfy condition (10). Hence,

Re(tr(A))>2 - {%(n — 1)sp3.(A), n even,
4

Re(\;) —
(e“ " SLEED e () odd,

n?
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and
<Im()\-) B Im(tr(A))> i(n — 1)sp? (A), n even,
' n = 2eENED g2 (1), noodd.

We now may write the previous inequalities as

Re(tr(A Im(tr(A
‘Rew_e(r()) <a and |tm(y) - O]y
n n
for i = 1,...,n. Hence the rectangle (11) contains all the eigenvalues of the
matrix A. O

THEOREM 3.3. Let A and B be n x n Hermitian matrices with eigenvalues
ap <ag << ap and B < PBo < - < B, respectively. Then

(12) (1 Z ;B — tr(A)th(B)) < isp(A)sp(B).

n < n
=1

Proof. We will use the well-known identity
n n n
n) aifi=) ) fi= ZZ a; = ;) (8 = ).
=1 =1 =1 i=1 j=1

We apply the Cauchy-Schwarz inequality to get

ZZ ai—a)(Bi—B) < DD (i —a)?| DD (8-

i=1 j=1 i=1 j=1 i=1 j=1

On the other hand, we have

ngag_ (;Q) I

11]1

N|=
(SIS

and similarly for ;. A simple calculation shows that
n n 2 n n
1 9 1 1 1
- — Z — Otl — Oéi).

Since Y i 4 (a; — ar) (o —ag) >0, it follows that

1 n (1 n 1 n 1 n

2
— E a; — | — E ozi> < (an— ai) < E ai—oz1>
n i—1 n i1 n i—1 n i—1

IA
=
| — |
VR
Q
3
|

3|
INNgE
—

8
~
_|_
VR

3|
=

8

|

o}

s
~_—
| I

Do
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1

= (A,

where we have used the arithmetic-geometric mean. Hence

2

o 2| < i)

=1 j=1

A similar reasoning for §; yields

S Bi- 8| < %sp(B»

(NI

=1 j=1
Therefore,
n Z i — Z Q; Z Bi < ZSP(A)SP(B)-
=1 =1 =1
O
REMARK 3.4. If we take sp(A) = sp(B) in (12) and we use the fact that if
A is a Hermitian matrix, then Y 1 | a? = ||A||%, we obtain (3).

COROLLARY 3.5. Let A be an n x n normal matriz with eigenvalues A1, Ao,
.oy An. Then

: Z Re(u () — PRI ¢ 2y (A2A0) (4240,

n? 4 2 2i

Proof. The eigenvalues of the Hermitian matrices $(A + A*) and (A —
A*) are Re(A1),...,Re(A,) and Im(Aq),...,Im(),), respectively. Further
tr(44A0) = Re(tr(A)) and tr(454°) = Im(tr(A)). Hence, the desired result is
obtained. O

COROLLARY 3.6. Let A be an n x n normal matrixz with eigenvalues A1, Ao,
.oy An. Then

% Z Re()\Z)I - — Z Re Z IIIl 7SpRe(A)SpIm(A)'
=1

Proof. Since A is a normal matrix, spg.(4) = sp(AJrA ) and spp,(A) =
sp(

In the following theorem we provide a refinement of inequality (12).

A;ZA* ). Hence the result follows immediately. ]

THEOREM 3.7. Let A and B be n x n Hermitian matrices with eigenvalues
ap <ag << ay and B < By < - < By, respectively. Then

1 - o - tr(A)tr(B) 18p(A)sp(B), n even,
(13) n; ifi n? <{ 1 (1= 5)sp(A)sp(B), n odd.
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Proof. We shall use the well-known identity
n n n 1 n n
nY =Y oy Bi= 3 DD (ai—ay)(Bi - B)).
i=1 i=1 =1 i=1 j=1

We apply the Cauchy-Schwarz inequality to get

2 [ n n 2
)B) DI S)9) SRR INDS) SRS
=1 j=1 i=1 j=1 i=1 j=1

Let Zl§i<j§n(ai —;)? =0 and Zl§i<j§n(ﬁi — Bj)* = ©2. We have

1,22
0, < len sp (A), ) n even,
7(n® —1)sp“(A), n odd,
and
1,22
0, < %n Sp (B),2 n even,
7(n® —=1)sp*(B), n odd.
Hence the assertion now follows immediately. U

REMARK 3.8. If we take A = B in (13) we obtain inequality (4), given by
A. Brauer and A.C. Mewborn.

THEOREM 3.9. Let A and B be n X n matrices with eigenvalues ay, s, ...
an and B, Ba, ..., Bn, respectively. Then

)

(14) sp(A)sp(B) < [|Al|[|Bl[r +

n
> aiBil.
i=1

Proof. We shall use M.L. Buzano’s inequality [4, 6], which states that, for
any vectors a, b, e in C", where ||e|]| = 1, we have

(15) [{a, e) (e, b)| < (Ilallllbll + [{a, b)]),

where ||| is the spectral norm. Assume without loss of generality that sp(A) =

|, —aq | and sp(B) = |8, —B1|. Next, we choose in (15) a = (a1, ..., a,)t, b=

(B1,...,Bn)t, and e = %(—1,0, . ,0, 1)t to get

n n n
sp(A)sp(B) < | S laal2 | Y182+ |3 B
i=1 i=1 i=1
< JAlFIBIF+ |3 aifi .

i=1

REMARK 3.10. If we take A = B in (14), we obtain inequality (2).
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THEOREM 3.11. Let A and B be n X n matrices with eigenvalues aq, s, . . .,

an and B, Ba, ..., Bn, respectively. Then

tr(A)tr(B)

(16)  sp(A)sp(B) < VM(A)M(B) + > a;ffi — —————|
=1

n

where M(A) = (||A|]% - W) .

n

Proof. First we note that sp(A) = sp(A — mI), since the spectrum of (A —

mlI) is obtained by a translation of the spectrum of A. On the other hand,

n

1A =mI|[z =" | lai —m* + > lal
i=1 ik
& tr(A)|? tr(A)|?
= 33 fauel? = AL - UL,
i=1 k=1
Further,
- tr(A — tr(B " tr(A)tr(B
(- ) (5 B 5 D)
i=1 n n i=1 n
This completes the proof. O

REMARK 3.12. If we take A = B in (16), we obtain inequality (1).
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