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NEW INTEGRAL RESULTS ON HOLDER TYPE INEQUALITIES

ABDELKADER BENZIDANE, HATICE YALDIZ, and ZOUBIR DAHMANTI

Abstract. In this paper, using fractional integration, we present new fractional
integral inequalities related to Holder inequality. We generalise a Wu’s sharpness
of Holder inequality for p,q integration. Then, as an application, we propose
another way to derive the Holder inequality which is already established by Z.
Dahmani on 2012 in General Math. Journal. Also, for our results, the classical
Holder inequality is deduced as a special case.
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1. INTRODUCTION

The fractional integral inequalities are of great importance in differential
equations, probability and applied sciences. For some applications, one can
consult the papers [1, 2, 4, 5, 6, 9, 10]. The idea to develop the present paper
is motivated by the well known “positive” Holder inequality which states that
if f and g are two functions defined on [a,b], such that f > 0,9 > 0,f €
LP([a,b]),g € LY([a,b]) and % + % =1, then

(1) / " Fag(o)ds < ( / ey / ()

It is also motivated by the fractional integration version of Holder inequality
proved in [3].

Another paper that motivates the present work is [11], where S.H. Wu
established a new (and a nice) sharp version of Holder inequality as follows:

THEOREM 1.1. Let f, g and e be three integrable functions defined on [a, b],
with f > 0,9 > 0,1 —e(x) +e(y) > 0, for all x,y € [a,b], and let p > q > 0
such that % + % < 1. Then

b

f(x)g(x)dz
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The aim of this paper is to establish new generalized versions of some results
in [11] by means of Riemann-Liouville fractional integral operator. Other
particular generalizations are also derived. Our results have some relationship
with those of [3, 11].

2. PRELIMINARIES
We recall the definition of Riemann-Liouville integral operator and some of
its properties [7].

DEFINITION 2.1. The Riemann-Liouville fractional integral operator of or-
der a > 0, for a continuous function f on [a,b] is defined as:
t

1
(3) TEUO1= 715 [t-ntsmanasoa<e<e,
For the convenience of establishing the results, we need the properties:
(4) JOIPf(t) = TP f(t), a2 0,8 2 0,
and
(5) JeTPf(t) = JPTf(1).

For more details on Riemann-Liouville fractional integration, we refer the
reader to [7].

3. MAIN RESULTS

In this section, we prove two main results. The first one generalises a
theorem in [11]. The second main result is another way to obtain the fractional
Holder inequality [3]. We begin by presenting the following auxiliary lemma

[8].

LEMMA 3.1. Let f and g be integrable functions defined on [a,b]. If f >0,
g>0and0<p<1, then

(6) /f dx</f dxlp/f

Proof. Let us introduce the functions u := (fg)? and v := f¢, with p+q = 1.
Then, thanks to (1), we can write

/ f(x)g?(z)dx = /ab u(x)v(x)de
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LEMMA 3.2. Let f; (1 =1,2,...,m) be integrable functions defined on [a, b)
such that f; >0, p; >0 (i =1,2,...,m) and p%—'_piz+”'+zi = 1. Then
we have:

(8) l[ﬁﬁ@@gﬁ([ﬁ%ﬁﬁ%

Our first main result is given by the following theorem.

THEOREM 3.3. Let f,g and e be three functions defined on |a,b] that satisfy
f>0,9g>01—e(x)+e(y) >0, for all x,y € [a,b], such that fP, g% e €
LY([a,b]),p > ¢ > 0, % + % < 1. Then, for any o > 0,t €la, b, we have:

@) < (- a) 575 (179707 [ (gt 7))
)

94 L

= (Jlg eI () — TGt (0[P (et)]) ] T

Proof. To prove this result, we proceed on two main steps:
(i): Suppose % + % = 1. So, we can write

[ (t— 7)o
! foy—/natr)dr
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Hence, it yields that

(7 (rg)) " = (

t
t—7)ot
11 = (
(1) | S frstryar
[ (= )"
t—p)*~ 1.1
< [ = 1)) (1= () + <) .
1 1 1 1 1 1
On the other hand, according to —+— =1 and < — > + —+4+— =1, thanks
p q qQ D p p

to Lemma 3.2, we get

S =
Q=

/ (O / (t — p)ot
a/ I'(a) f(T)g(T)dTa/ T(a) F(p)alp) (1 —e(r) +e(p))»Tadp

t 1

(M)g(r)dr / ((t - 8;—1)13%
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/\g\ﬁ_
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P

/ (t_T)a_l (t—p)a_l . -
SQ/ Ty T (o)dr (/ OB e<T>+e(p)>dp>

_ a—1
X ( (t F(FZ) gq(q-)gq(p)(le(¢)+e(p))dp>
: _ a—1 %
X ( (t F(Poz) fP(m)g%(p) (1 —e(1) + e(p)) dp) ]dT
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1
P

t ot (t _ T)afl (t _ p)afl
<\ [/ ey ) +e<p>>dpd7>

Q[
B =

D=

=t =,
/ I'(«) I( fP(1)g%(p) (1 —e(T) +e(p)) dpdT)

t ot _ -l (g -t
X( / T ) gq(T)gq(p)(lG(T)H(p))dmh)




6 New integral results on Holder type inequalities

27

Using (11) and the above inequality, we get (9).

1 1 1 1
(ii): Now, suppose — + — < 1. So, — + — =, and then — + — = 1.
. p q P q pr qr
In this case, we observe that

Lt _7_04—1 _ \a—1
R I e e e (Y
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Thanks to Holder inequality, we can write

/ (O (t— p)ot
a/ (o) f(T)g(T)dT/ (o) F(p)g(p) (1 = e() + e(p)) dp
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t t (t — p)afl (t _ T)afl § ” or
’ (/ / Do) Tl ()7 @) (1€(T)+€(P))dpd7) .

Using Lemma 3.1 together with 0 < r < 1, we find

t ot (t— p)a_l (t — 7_)oc—l o o ar  pr
(// () (o) (g(m)* (g(p)* (1 — e(7) +6(p))dpd7-)

3

e = e
/ Fa T O (e <1e<7>+e<p>>dpd7)

1
pr
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Y e

g ( / Ta)  T(a) )7 @)™ (4 —e) +e(p))dpd7)
P - (F—7)
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Q=
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[ (t—p)tt—r)t » .
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N (//(16(T)+6(P))dpd7) 1
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Thanks to (12), (13), we obtain (9). Theorem 3.3 is thus proved. O

><{ (@) (t))]2—[(Jo‘(gq(t)e(t)))(Jo‘fp(t))
-

REMARK 3.4. Taking t = b, « = 1, and under conditions of p, ¢ integrability,
Theorem 1.1 would follow as a special case of Theorem 3.3.

Another way to derive the fractional Holder inequality, which is already
established in [3], is given by the following result.

COROLLARY 3.5. Let f, g be two functions defined on [a,b] and f > 0,9 > 0,
such that fP, g9 € L'([a,b]),p > q > O,%+ % = 1. Then, for any a > 0,t €
la, b], we have:

1

(14) FU®e] < (1°9°0)" (7).

’tx\'—'

Proof. Applying Theorem 3.3 with =1 and e = 1 over [a, b], we obtain

F(0a0)] < (290) (g0 w) )]

O

REMARK 3.6. Applying Corollary 3.5 for t = b, @ = 1, we obtain the classical
inequality of Holder (1).
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