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NEW RIEMANN-LIOUVILLE FRACTIONAL INTEGRAL
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Abstract. In this paper, using the Riemann-Liouville integral operator, we es-
tablish several fractional refinements of the Aczél inequality. Some classical
results on this famous inequality can be deduced as some special cases of our
results.
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1. INTRODUCTION

The integral inequality theory is an important field of research. This theory
plays a crucial role in differential equations, probability theory and applied sci-
ence. For more details, we refer to [7, 11, 12, 13, 14, 15, 19] and the references
therein. Moreover, the fractional integral inequalities are also of great impor-
tance. For some applications, one can consult the papers [2, 3, 4, 5, 6, 9, 10, 16].
The idea that we develop in the present paper is motivated by the work of
J. Tian and S. Wu [17], where the authors established the following theorems
related to the well known Aczél inequality [1].

THEOREM 1.1. Let a,; > 0 (r = 1,2,...,n, j = 1,2,...,m) and A\ <
Ao <... A\ be such that ai\; — Zajjj. >0((G=12,...,m). Also, let m > 2,
r=2

n
n22and7':max{z>\1 } Then,
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The inequality (1) is also valid for Ay, >0, A1 < XAg < ... < A1 <0.
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THEOREM 1.2. Letarj>0(r—1 2,...,n,7=1,2,....m) and \; > Ao >
> A >Obesuchthatai‘ Zam>0( 1,2,...,m). Also, let m > 2,

m
n > 2, andp:min{z /\lj,l}. Then
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In the same paper [18], the authors proved the following important theo-
rems.

THEOREM 1.3. Let B; > 0, (j =1,2,...,m), Ay, >0, (A1 < A < ... <
Am—1 < 0) and let f; (7 =1,2,...,m) be positive integrable functions defined

on [a,b] such that le =1,m>2, and Bj ff u)du > 0. Then
j=1
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THEOREM 1.4. Let B; >0, (j=1,2,...,m), \{ > X2 > ... > Ay, > 0 and
let fj (j = 1,2,...,m) be positive mtegmble functions defined on [a,b] such

that /\i:l m > 2, andB ff w)du > 0. Then,
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In this paper, using the Riemann-Liouville integral operator, we present
recent, fractional integral results related to the Aczél inequality. Our results
are related to the interesting paper [18]. Theorems 3.1 and 3.2 in [18] can be
deduced as particular cases of our results.
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2. RIEMANN-LIOUVILLE INTEGRATION

In this section, we recall the Riemann-Liouville integral operator with some
of its properties that will be used throughout this paper.

DEFINITION 2.1. The Riemann-Liouville fractional integral operator of or-
der a > 0, for a continuous function h on [a, b], is defined by

T [h(8)] = F<1a) /t(t _ e h(r)dr a > 0a<t<b,
Jo[h(t)] = h(t),
where T'(a) := [ e e vy 1du.

For t = b, we have:

b
Jo[h(b)] = F(la) / (b— 1) h(r)dr.

We present the following properties:
JU )] = T h(#)] e > 0,8 > 0,
and
JJP[R(t)] = JP T h(t)).
For more details on fractional integration, we refer to [§].
3. MAIN RESULTS
We begin by proving the following theorem.

THEOREM 3.1. Fori =1,...,m, we consider B; > 0, \,, > 0, A1 < Ay <
< Apme1 <0, (md we suppose that f; are m positive continuous functions

on [a b] such that Z 5 =1and B)‘ Jgfl)‘z(b) > 0. Then, for every a > 0,
the following mequal@ty holds:

fise s >»ﬂ>n3-p<nf@>

j=1 ,
o)

1 m m—1

Ty H By e

i=1 i+1
Proof. To prove this theorem, we use some ideas inspired from Theorem
1.3. For every positive integer n, we consider (zj)g=0,1,.n, such that zo <
T < T9 < Lo < 2 < ool < Ty < Tp, where, 2, = a+k( a) , for all
k=0,1,...,n. Thanks to the second hypothesis on B;, for every ¢ = 1 ..o,m,

we can write:

b
A b—u)*t
Bi)‘z - / (Fu)fi’\’ (u)du > 0.
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b
Hence B} — [ h)(u)du > 0, with

a

@) hifu) = [“’;("2)} " f

Therefore

)\ —
JLH;OZh ) >Oz 1,2,...,m.
So, we can state that there exists N € N such that, for all n > N and
i =1,2,...,m, we have B;"' - > h;\’(xk)(b;—“) > 0. Theorem 1.3 yields
that
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Therefore
1
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Consequently,
H Bl)\i _ /hg\z(u)du > HBZ' - /th(u)du
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b 1
m m -(b . u)a_l v
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_ i HBz Z S 1 /(b )O‘_lf;”(u)du
M I | BT
L b )
_ b _ u)a z+1( )du
i ( i+1
BY{'T(a) /
Hence
b 1
m 1 m 11 m
a e Y (b u)a i
H (B/\ - J; fi)‘ (b)) Yoo HBi - /H Hfl(u)du
=1 i=1 )=l I(a) -1
_ . 2
L R [T R )
o H i N Nit1
i = B; B

Using the fact that

ﬁ [(b - u)a—l] N [(b— u)a—l}%i (b— u)o?
L )
we deduce that

(B sep ) = ﬁ&—m(ﬁﬁyw

m
=1

i =1 =1
-1 . A 2
S [ s
i i
2)\1 i=1 i=1 Bz Bi++11
Theorem 3.1 is thus proved. [l

REMARK 3.2. In the above theorem, if we take o = 1, we obtain Theorem
1.3 (see [18, Theorem 3.1]).

Changing the conditions on B;, we present to the reader the following the-
orem.

THEOREM 3.3. Fori=1,...,m, we consider B; > 0,A\1 > X o > ... >\, >
0. Suppose also that f; are m positive continuous functions on |a,b] such that
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NJE

/\% 1, m>2.If Bi)‘i — Jg‘“f?i(b) > 0, then, for every a > 0, we have

ﬁ( Jf ))”sﬁBi—Js (ﬁf) (b)
=1 =1

=1

1

7

JoFN () TJeFNT (b >r

.)‘i i1
B'L Bi+1

Proof. We use the same arguments as in the proof of Theorem 3.1. O

The third main result is the following.

THEOREM 3.4. Let \y > Ao > ...>2 Ay, >0 and let f;, i1 =1,...,m, bem
m
positive continuous functions on |a,b] with > )\i = 1. Then the inequality

i=1""

m m 1

) bW
Jg (H fz-) ) <TT [ser>®)]
i=1 i=1

holds for all a > 0.

1
Proof. Taking B; = [QJg‘fi’\i (b)] Y fori=1,2,...,m, in Theorem 3.1, we
obtain

(o) < AT (e o) - (1) o
i=1 i=1 =1 i=1
= 2ﬁ(J“f ); (ﬁf)
Therefore . o . -
o (I15) o < T (e 0)
This ends the proof. - - O

REMARK 3.5. In the above theorem, if we take o = 1, we obtain Theorem
1.4 (see [18, Theorem 3.3]).

We also present to the reader the following result.
THEOREM 3.6. Let A\py >0, A1 < Ao <. .. <A1 <0.Iff;,i=1,2,....m

)

m

are m positive continuous functions on [a,b] such that > + = 1. Then, for
i=1""

all o > 0, we have

7 (ﬁ fi) =[] [r2rmo] .
=1 ;
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Proof. The proof of this theorem is similar to the proof of Theorem 3.2. [
Based on Theorems 3.2 and 3.4, we prove the following result.

THEOREM 3.7. Let m > 2, \y > Xy > ... > Xy, > 0 and let f;, i =
..,m —1 be m — 1 positive continuous functions defined on [a,b] with

1,2,
m—1

>+ <land (b—a)®*>T(a+1),a>0. Then
i=1 "

(e o

=1

1
Ag

> 1.

m
Proof. Let 0 < \; < X\_1,i = 2,...,m, such that Z/\% = 1 and let

fis-+, fm—1 be positive continuous function defined on [a, b]. Thanks to 3.4,
for Ay > A9 > ... > A\, > 0, we have

(3) Je (ﬁ ﬁ) f[l e, }5

If we take p; = =\; (i =1,2,...,m —1) and p,, = 2/\/:17"11, we can observe
that

m—1
1 2\,—-1 1 1
J— 7:—E — 2 - — =1.

m—1
ALso, we have u1 < ps < ... < pm_1 and )% =1- > )\i €]0,1[. Hence
m 121 1

Am > 1 and p, €]0,1].
Hence, by Theorem 3.4, it yields that

(4) T (f[f) mﬂl[ ] o)

Combining (3) and (4), we can state that
11 1[J“f )™ e s ) < ﬁ er o).

Therefore B B

"ﬁl e )™ e ) < H erm] [z o)™
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Taking f,,, = 1, we obtain

e f )]
m—1
2(1- (b—a)>]? 2%
1 ( Am /) = ! >1
(JaLu=s) [I‘(a+1)] =
m—1 L
Consequently, [] [Jg‘fz_A’(b)Jgff‘z(b)} Yo>1 O
i=1
COROLLARY 3.8. Letn > 1, Ay > X > ... > X\, >0 and gi and h;
(i =1,2,...,n) be positive continuous functions on [a,b] with Z <1 and
1=1

(b—a)*>T(a+1). Then

f[ Ja<hi>xi(b) JC“ gz 8 r

i=1 9i

Proof. We apply Theorem 3.5 with n=m — 1, f ;"L— ]
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