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REFINING LAH-RIBARIC INTEGRAL INEQUALITY
FOR DIVISIONS OF MEASURABLE SPACE

SILVESTRU SEVER DRAGOMIR

Abstract. In this paper, we establish some refinements of Lah-Ribari¢ inequal-
ity for the general Lebesgue integral on divisions of measurable space. Applica-
tions for discrete inequalities and weighted means of positive numbers are also
given. Some examples related to Hermite-Hadamard inequality for convex func-
tions are provided as well.
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1. INTRODUCTION

Let (2,4, 1) be a measurable space consisting of a set 2, a o -algebra A
of parts of Q and a countably additive and positive measure u on A with
values in RU {oco} . For the p-integrable positive p-a.e. weight w consider the
Lebesgue space

Ly (Qu) :={f:Q—=R, fis y-measurable and /Q If ()] w(t)dp(t) < oo}

For simplicity of notation we write everywhere in the sequel fQ wdp instead
of [ w(t)du(t) etc.

We say that the family of measurable sets Fj, (€2) = {Qi};cqy ,y is a n-
division for Qif Q@ = (J;"; @; and Q;NQ; = D for any 4, j € {1,...,n} withi # j
and p (€;) > 0 for any ¢ € {1,...,n}. In this situation, if f € L,, (Q, ), then
f € Ly (Q, p) for any i € {1,..,n} and [, fwdp = 1", sz fwdp. Also,
Jowdp =370 sz wdp with fﬂz wdp > 0 for any ¢ € {1,....,n}.

For a given n > 2 we denote by ©,, () the set of all n-divisions of 2 and
consider the functional ¢ (®,w, f,-) : ©,, () — R defined by

n wd
0 @ o Fa () = Z@<W“> [ wan

- Jowdp — le wdp

The following result has been obtained in [14].
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THEOREM 1.1. Let ® : [m, M] — R be a convex function, f:Q — [m, M] a
pu-measurable function such that f, ® o f € Ly, (Q, ). Then for any F, () €
Dy (Q) with [, wdp >0 for any i € {1,...,n} we have

Jo (@0 f)wdn y Jo Fwd
) T s 0 g (@) > @ (2D,

where n > 2.

For a nonempty finite family of indices J and positive weights w;, j € J
we denote Wy := 3 . w;. If @ : [m,M] — R is a convex function and
xj € [m,M], j € J, then Jensen’s inequality states that

E :“’J E :w]x]

]EJ ]EJ

Assume that, for n > 2, the family J of indices containing more than n
elements and F, (J) = {Ji};cqq, ny is @ n-division for J, namely J = (L, J;
and J; N J; =0, for any 4, j € {1,...,n} with i # j.

For a given n > 2, we denote by ©,, (J) the set of all n-divisions of J and
consider the functional ¢ (P, f,+) : ©,, (J) — R defined by

(P, fyw, Fy ( —fZWJ Zw]mj

JEJ

From the inequality (2) for the discrete measure we have

WJZMJ :L'] >—ZWJZ Zw]x]

JjeJ jEJ

§ :wjac] )

jGJ

for any F,, (J) € D, (J).
The following reverse of Jensen’s inequality is known in the literature as
Lah-Ribarié inequality [20]:

o (@ 1) wd
(4) Jo Jop Srodu Jo Swdu
b (o o (Bt} o]

provided ® : [m,M] — R is a convex function, f : @ — [m,M] is a p-
measurable function and such that f, ® o f € L, (Q, u).
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For other results and applications related to Ky Fan’s inequality, the arith-
metic mean-geometric mean inequality, the generalized triangle inequality, the
f-Divergence measure etc., see [1], [3]-[16], [17]-[19] and [22, 23].

Motivated by the above results we establish in this paper some refinements
of Lah-Ribari¢ inequality for the general Lebesgue integral on divisions of
measurable space. Applications for discrete inequalities and weighted means of
positive numbers are also given. Some examples related to Hermite-Hadamard
inequality for convex functions are provided as well.

2. THE RESULTS

Let ® : I C R — R and for a,b € I with a < b consider the function
A (®;a,b,-) : R — R defined by
b—t)®(a)+ (t —a)P (D)
b—a ’
This is the straight line that connects the points (a, ® (a)) and (b, ® (b)) .
The following lemma holds:

A(P;a,b,t) =

LEMMA 2.1. Let ® : I C R — R be a convex function and a,b,c,d € I with
a<c<d<b. Then

(5) P (t) <A(Psc,d,t) < A(Psa,b,t)
for any t € [c,d].
Proof. By the convexity of ® we have for any ¢ € [c, d] that

(d=t)®(c)+(t—c)@(d)

A (P;c,d,t) — D (t) = . ® (1)
(d=t)®(c)+ (t—c) P (d) (d—t)c+(t—c)d
- —c _(I)< d—c )ZO.

We observe that for ¢ € [a, ],

b—t)®(a)+ (t —a)P(b)
b—a

y:

is the equation of the segment joining the points (a, ® (a)) and (b, ® (b)) while

) = (d—t)@(cc)li—(ct—c)fb(d)’ Le [ed]

is the equation of the segment joining the points (¢, ® (¢)) and (d, ® (d)) .
Since the function ® is convex on I the segment on the smaller interval [c, d]
is under the segment on the larger interval [a, b] containing [c, d] .
These prove the desired inequality (5). O
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For a division Fj, (2) = {Qi};cq1, 1 € Dn (©2) and the measurable essen-
tially bounded function f: Q — R we denote M; := essup,cq, f (z) < oo and
m; := essinfyeq, f () > —oo. We also consider

M :=essup f () < oo and m := essinf f (z) > —o0.
e e

Obviously, M > M; and m < m; for any i € {1,...,n}.
We assume in what follows that M; > m; for any i € {1,...,n}.
We define the functional

o (D, f,w, Fr (Q2))

1 Jq, fwdp
—_— A ) A [ @my, a2
Jowdp ; </QZ b M> ( ' Jo, wdp >

n

= a2 () i

i=1 - sz wdp
fQi fwdp
+ (W — m1> P (Mz)
Observe also that
' fQ fwdp
A (fb,m, M, W)
1 Jo fwdp Jo fwdp
T M-m [(M— Jo wdn > 2 m)+ ( Jo wdn _m> (P(M)] '

We have the following refinement of Lah-Ribarié¢ inequality:

THEOREM 2.2. Let ® : [m, M| — R be a convex function, f : Q — [m, M] a
p-measurable function such that f, ® o f € Ly, (2, 1). Then for any F, () =
[ ety € D () we have

Jow (o f)dpu

M e

SO'((I))fawaFN(Q)) §A<@7m’M7W> '

Proof. From the second inequality (5) we have for

‘o Jo, fwdp

- ivMi ) ' 17"'7 )
fQinﬂ e m ], ie{ n}



36 S.S. Dragomir 5

that
®;m; fQ fudy
i M, fQ wdp
Jo, fwdp 1 Jo, fwdp
(8) (q)mM fQTUdM == M—W ® (m)

fQi fwdp
+<f9iwdu —m | @ M),
for any i € {1,...,n}.

If we multiply by fQ wdp > 0 and sum over ¢ from 1 to n we get

n

; (/g wd’“‘) A (‘P;mi,Mi, m>
/Y RS g P

+ (;:;/Qifwdu—mg/ﬂiwdu> @(M)]

that is equivalent to the second inequality in (7).
For p-almost every = € Q; we have f (z) € [m;, M;] and then by the first
inequality in (5) we have

@ (f (x)) < A(D;my, My, f ()

namely,
9) B (@) < T (M~ f ()@ (i) + (7 (2) — o) (M)

(2 ml
p-almost every z € €; and for any i € {1,...,n}.
If we multiply by w > 0 u-almost everywhere and integrate on €); we get

w(®o f)du

Q;

o o
(10) " </Q fuedye = mi /Q wdu> ’ (Mi)]
N (fﬂwf“’d“

fQ. wdp B mz> 2 (M)
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for any ¢ € {1,...,n}.
Now, if we sum the inequality (10) over ¢ from 1 to n we get the first
inequality in (7). O

The following lemma holds:

LEMMA 2.3. Let ® : I C R — R be a conver function and a,b,c,d € I with
a<c<d<b. Then

(11) 0 <[A(P;c,d,t) — D (t)](d—c) < [A(P;a,b,t) — P (t)] (b—a)
for any t € [c,d].

Proof. We observe that for any t € (¢, d) we also have
(d=t)@(c)+ (t—c)P(d)

A (P;e,d,t) — P (t) = T e —® (1)
_ (d=t)P(c)+(t—c)P(d) — (d—c) P (1)
d—c
_ d=t)P(c)+(t—c)P(d)—(d—t+t—1c)P(t)
d—c
_ (=) (®(d) =2 @) = (d—1) (2 (t) — P(c))
d—c
_ (t—-c)(d—t) (@(d)—d)(t) _(ID(t)—(D(c))
d—c d—t t—c

giving that

(12)

Similarly we have
[A(q);a,b,t)—q)(t)]é)bb—a)q) o o
(13) :(t—a)(b—t)< (>_ (t)_ (t)_ (a)>’

b—t t—a

for any ¢ € I.
It is know that, since ® : I C R — R is a convex function, then for any
a € I the function ¢ : I'\ {a} — R,

is monotonic nondecreasing on I \ {«a} .
Then for ¢ € (¢, d) we have

o (d) — D (t)
d—t b—t
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and
P(t)—P(c)  P(c)—2(t)

a) =@ () _ 2(t) —P(a)

t—c c—1 a—1 t—a
giving that
O(d)—@(t) () =P(c) _ 2(b)-2(t) @(t)—®(a)
d—t t—c b—t t—a
for any t € (¢,d).
We also have
(15) 0<(t—c)(d—t)<(t—a)(b—1)
for any t € (¢, d).
Therefore, by (14) and (15) we get
oo (2080 20810
<(t—a)(b—1) (@(b)—@(t) B (P(t)—(b(a))

b—t t—a

v

(14)

IN

(16)

for any t € (¢,d).
If t = ¢ then (11) becomes
0<A(P;a,b,c)—P(c)
namely
(b—c)®(a)+ (c—a)D(b)
b—a
that is also obvious by the convexity of .
The case t = d is similar and the details are omitted.

0< —®(c)

The following result also holds:

THEOREM 2.4. Let ® : [m, M] — R be a convex function, f : Q — [m, M] a
p-measurable function such that f, ® o f € Ly, (Q, ). Then for any F, (Q) =
{Qiticqr,. 0y € Dn () we have

1 n
0<

< e [Zl(/m<Mif>wdu><1><mi>
+z<// (7 = mi) win ) @ (3

_ZM " (ffgffdiLM)/ v
WU @ g 00),

where Y (@, f,w, F, (Q)) is defined by (1).

SA(@;m,M,
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Proof. From the inequality (11) we have for

d
- W € i, My, i€ {1,..n},
Q;
that
0< A (‘P;mi,Mi,W) o <J}2 dedM)] (M; — my)
(18) o o
. Jo, Fwdp Jo, fwdp

for any i € {1,...,n}.
This inequality is equivalent to

0< (Mz - W) ® (my;) + (W —mi> D (M)

Jo, wdp Jo, wdn

fQ fwdp ,
- ( Jo, wdp ) (M; =)
fQi fwdp fQifU’dl‘_
< (M—W><I>(m)+ <Mu m) o (M)
— (M —m)® (fQ fwd”)

(19)

Jo, wdn

for any ¢ € {1,...,n}.
If we multiply this inequality by sz wdp > 0 we get

0< (/Q (M; f)wdu> ® (m;)
+ (/Q (f —mi)wdu> © (M;)
— (M; —m;) @ (W) /Q wdps
< <M/ wdp — /wadu> (m)
([ )

fQi Jwdp
— (M — m)/Q wdp® (fgl o )

3

for any i € {1,...,n}.
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Now, if we sum the inequality (20) over i from 1 to n we get

O<Z</ (M; — fwdu> (m;)
+§:<Ai(f—mi)WdH>¢(Mi)

- Jo, fwdp
(21) _(M_m)Z/.de(I)(findu)

(M —m) (B, fow, Fy () / wip,

Q
which is equivalent to the desired result (17). O

The following result also holds.

THEOREM 2.5. Let ® : [m, M] — R be a convex function, f : Q — [m, M] a
p-measurable function such that f, ® o f € Ly, (, ). Then for any F, (Q) =
{Qiticqr,.ny € Dn () we have

1
(M —m) [owdp

0<

Zn:q’(mz‘) </Q (Mz‘—f)UJdM>

(22) + 5” o (M) | (f —my)wd E (M; —m;) | w(®of)d ]
i=1 / a i=1 /Ql 8

;m 7fﬂfwd,u — [ w(®o
§A<<I>7 M, fﬂwdu> [w@os)a

Proof. For p-almost every = € €Q; we have f (z) € [m;, M;], i € {1,...,n}
and then by the inequality (11) we get
0 < [A (®;mi, M;, ] () — ® (/ (2))] (M; — m)

(23) < [A (@5 m, M, f (2)) - ® (f (2))] (M —m)
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for pu-almost every x € §2;.
This is equivalent to

0 (M; = f () @ (mi) + (f (x) —mi) @ (M) — @ (f (2)) (M; —mi)
(M — f(2)) @ (m) + (f () —m)® (M) — @ (f(2)) (M —m)

for p-almost every x € Q; and every i € {1,...,n}.
If we multiply by w > 0 u-almost everywhere and integrate on €); we get

0<® (mi) (/ini—f)wdu) w0 ) [ (f=mwiy

<
<

—(Mi—mi)/gl.w(<f[)of)du

S(M/indu—/ﬂzf’wd@ (/ pud—m [ win ) @ (1

—(M—m)/ w(@o f)du

Q;
for every i € {1,...,n}.
If we sum over ¢ from 1 to n we get

O<zn:<I> (m;) (/ (M; — fwd,u) Zq) /f m;) wdpy
Q; Q;

n

S | o
S(MZ/indu—i/mfde@(m)

which is equivalent to (22). O

3. DISCRETE INEQUALITIES

Assume that, for n > 2, we have a family J of indices containing more than
n elements and Fy, (J) = {Ji};cq1, 18 a n-division for J, namely J = (J;L; J;
and J; N J; =0 for any 4, j € {1,...,n} with ¢ # j.

Let @ : I C R — R be a convex function, {z;},.; C I and put m :=
minjey {z;} and M := max;jecs{x;}. Also let mj, := minjc; {z;} and M, =
max;ey; {x;} and assume that mj < My, for i € {1,...,n}. For a nonempty
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finite family of indices J and positive weights w;, j € J we denote W, :=
2jes Wi
Consider the discrete version of the functional (6)

o (®,z,w, F, (J))

1 < > jed; Wity

= — E Wi A | ®; M, =SS T
WJ < J; < g, Jis WJZv

(24) 1 " Wy,
W Zi:l M, —my,
> ieg, Wity 2 jet; Wit
M, — =385 T ) p ; geds I N® (M.
| (b0, = =D Y g (S ) )

If we write the inequality (7) for the discrete measure we get

1 1
(25) W, > wi® () < o (B, a,w, Fy (J) <A | @3m, M, o > wjz;
i€l jeJ

From (17) we have

3

1

0< ———~— Y (Mg, —aj)w; | @ (my,)
(M =m)W; | = jed;
+Z Z(wj—mJ)wj ®(My,)
(26) =1 jEJi
- (M —sz)‘I’<Z]€JZ : ]> i
=1 WJZ
<A | ®;m, M, ijwj — Y (P, z,w, F, (J)),
jeJ
where
@ o Fa () = LS W [ S
n = — . pe—— Wi 5
,J, W, WJ - Ji WJ- 7
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From (22) we also have

(27) +Z¢ M) (g —my)wy =Y (Mg, —my,) Y w® ()

J€J; =1 J€J;

<A|P;m, M, — Zw]x] — ij

JEJ ]GJ

If we write the above inequalities for the positive numbers z; > 0,4 € {1,...,n}
and the convex power function ® (¢) =¥, p € (—00,0) U (1,00) we have

n

) = g 3 g [ (-
WJJEJ T WJ My, —my, Wy,

(28) 1 1
SM—m M——Jijx] mP
JjeJ
1 P
+ WJZw]x]—m MP
jeJ

=1 Jj€J;
n
+ Z(xj—mj)w] Mf’;l
i=1 \jeJ;
n p
1—
(29) - Z (Mji - mji) Z LW WJL- g
i=1 JE€J;
< ! M—lzwx mP + iZwaz—m MP
-~ M—m w 777 W] 77
JjeJ jeJ
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and
(M -m)Wy | &= i
=1 ]EJ—L
n n
+ZM§1 Z (xj - mJi)wj - Z(MJZ - mJi) Z ’wj:C?
(30) = ged i=1 jedi
<! M= =S way | mo+ oS wyay —m | M
“M-m W 4 I W 4 gt
JjeJ JjeJ
1
_ 2P
WJZw]x]
jeJ

4. SOME INEQUALITIES RELATED TO HH-INEQUALITY

It is clear that all inequalities from Section 2 can be written for univariate
functions f : [a,b] C R — [m, M| and the functional defined in (6).

We are, however, interested here in the particular case that is related to the
celebrated Hermite-Hadamard inequality

() <52 o L0120

where @ : [a,b] — R is a convex function on |[a, b].
Let ® : [m,M] — R be a convex function and f : [a,b] — [m, M] an
integrable function. Consider the division of the interval [a, b] given by

dn:0=29 < Tic... < Tp_1 < Tp=0b n>2.

If we take Q = [a,b] and Q1 = [a, x1], Q; = (24, xi41] for i € {1,...,n — 1} then
Q=U",Q and Q;NQ; =0 for any 4, j € {1,...,n} with ¢ # j.

By making use of (6) for this division and f : [a,b] C R —[a,b], f(z) =z,
we can consider the functional

(31) o (@dn) = S (g — ) DT 2 LT),

b—a“ 2
=1

If we use the inequality (7) we have

This inequality was obtained by the author in 1994 in [2], see also [15, p. 22].
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From (17) we have

. _a)2 Z ) [cp(m) +2<1> (wi1) (x“; x>]

<I> (a) + @ (b R i + Ti-1
< — g O ——— i — T
>~ 2 b—a - ( 2 (xz Ty 1) ’

while from (22) we have

(33)

n

= b—a)QZ :Ezl

=1

(@) +P(aiy) 1 /“M)dx]

34
(34) 2 T — Tj—1

§¢(a);‘¢(b)_bia/b@(7ﬁ)dt.

If we take in (33) and (34) ®(t) = 1, t € [a,b] C (0,00) then we get the
inequalities

T 4 a+b 2 " —
35 1—1 < . 7 z—l’
(35) _ 221’:621.1‘@4-1‘2 1) = 2ab b—a;xﬁ-xi_l

and
Z |:L (xial‘ifl) —H (l‘i,l’il)]
- o (I 2 i=1 L(xiuxi—l)H(l'i,l’i_l)

(36) L(a,b) — H (a,b)
~ L(a,b)H (a,b) ’
where 5
Hap)= 2
is the harmonic mean while
Lp) =20 axp,
Ina — lnﬁ

is the logarithmic mean.
If we take in (33) and (34) ® (t) = —1Int, t € [a,b] C (0,00) then we get the
inequalities

(wi—zi_1)? (zi—z4—1)

(37) §ﬁ( i hm) e gHél:l(A(xi*hxi)) b=a

xz 15 xz G (a, b) ’
and
n I( ) (%*%’721)2 I( b)
Ti—1,T; (b—a) a,
1< _ <
(38) =11 (G(xz‘—l,xz‘)> ~ G(a,b)’
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where

is the geometric mean while

=
HaB) =2 () azs

e\ a®

is the identric mean.
Now, consider the p-logarithmic mean defined by

B grHl _ gptl 1/p
s = (4 50g)

where p € R\ {—1,0}.
From (33) and (34) we have for p € (—o0,0) U (1,00) \ {—1}

1 n
0< 7@)2 Z (a:z — xi_1)2 [A (:L‘f, xf_l) — AP (.%’i_l, xl)]
=1

= o
(39) "
1
< A(a?,bP) — b—a ;AP (im1,24) (25 — xi—1)
and
1 " )
(40) 0< (b— a)Q ; (@i — @i-1) [A (:Uf,:nf_l) - L (%*1’5”1)]
< A (ap’ bp) - LII; (a? b)
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