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Abstract. In this paper we derive some results for a certain new class of analytic
functions with varying arguments defined by using Sălăgean and Ruscheweyh
derivative.
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1. INTRODUCTION

Let A denote the class of functions of the form

(1) f(z) = z +
∞∑
k=2

akz
k,

which are analytic in the open unit disk U = {z ∈ C : |z| < 1}.

Definition 1.1 ([2]). For f ∈ A, λ ≥ 0 and n ∈ N, the operator Dn
λ : A →

A is defined by

D0
λf(z) = f(z),

D1
λf(z) = (1− λ) f (z) + λzf ′ (z) = Dλf(z), . . . ,

Dn+1
λ f(z) = (1− λ) Dn

λ f (z) + λz (Dn
λ f (z))′ = Dλ (Dn

λ f(z)) , z ∈ U.

Remark 1.2 ([7]). For λ = 1 in the above definition we obtain the Sălăgean
differential operator.

Definition 1.3 ([6]). For f ∈ A, n ∈ N, the operator Rn : A → A is
defined by

R0f(z) = f(z), . . . ,

(n+ 1) Rn+1f(z) = z (Rnf (z))′ + nRnf (z) , z ∈ U.

Definition 1.4. Let γ, λ ≥ 0 and n ∈ N. Let L n : A → A be the operator
given by

L nf (z) = (1− γ) Rnf (z) + γDn
λ f (z) , z ∈ U.

Remark 1.5. If f ∈ A and f(z) = z +
∑∞

k=2 akz
k, then

L nf (z) = z +

∞∑
k=2

{
γ [1 + (k − 1)λ]n + (1− γ)

(n+ k − 1)!

n! (k − 1)!

}
akz

k, z ∈ U.
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Definition 1.6 ([4]). Let f and g be analytic functions in U . We say
that the function f is subordinate to the function g, if there exists an analytic
function w on U with w(0) = 0 and |w(z)| < 1, z ∈ U , such that f(z) =
g(w(z)), for all z ∈ U. We denote by ≺ the subordination relation.

Definition 1.7. For λ̃ ≥ 0, −1 ≤ A < B ≤ 1, 0 < B ≤ 1 and n ∈ N0, let

L(n, λ̃, A,B) denote the subclass of A which contains the functions f = f(z)
of the form (1) that satisfy

(2) (1− λ̃)(L nf(z))′ + λ̃(L n+1f(z))′ ≺ 1 +Az

1 +Bz
.

Attiya and Aouf defined in [3] the class R(n, λ,A,B), using a condition
similar to (2), where, instead of the operator L n, they used the Ruscheweyh
operator.

Definition 1.8 ([9]). A function f = f(z) of the form (1) is said to be in
the class V (θk) if f ∈ A and arg(ak) = θk , for all k ≥ 2. If there exists δ ∈ R
such that θk + (k− 1)δ ≡ π(mod 2π), for all k ≥ 2, then f is said to be in the
class V (θk, δ). The union of V (θk, δ), taken over all possible sequences {θk}
and all possible real numbers δ, is denoted by V .

Let V L(n, λ̃, A,B) denote the subclass of V consisting of functions f ∈
L(n, λ̃, A,B).

2. MAIN RESULTS

2.1. Coefficient estimates

Theorem 2.1. Let the function f = f(z) given by (1) be in V. Then f =

f(z) ∈ V L(n, λ̃, A,B) if and only if

(3) T (f) =
∞∑
k=2

kCk (1 +B) |ak| ≤ B −A,

where

Ck = γ [1 + (k − 1)λ]n
[
1 + λ̃λ(k − 1)

]
+

(n+ k − 1)!

n! (k − 1)!
(1− γ)

[
1 + λ̃

k − 1

n+ 1

]
.

Moreover, the extremal functions for (3) are

f(z) = z +
B −A

kCk (1 +B)
eiθkzk, k ≥ 2.

Proof. Our arguments are based on the technique used in [5].

Suppose that f = f(z) ∈ V L(n, λ̃, A,B). Then

(4) h(z) = (1− λ̃)(L nf(z))′ + λ̃(L n+1f(z))′ =
1 +Aw(z)

1 +Bw(z)
,
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where w ∈ H = {w analytic, w (0) = 0 and |w (z)| < 1, z ∈ U} . From this we

have w(z) = 1−h(z)
Bh(z)−A . Therefore

h(z) = 1 +
∞∑
k=2

{
γ [1 + (k − 1)λ]n

[
1 + λ̃(1− k)

]
+

(n+ k − 1)!

n! (k − 1)!
(1− γ)

[
1 + λ̃

k − 1

n+ 1

]}
kakz

k−1.

Hence h(z) = 1 +
∑∞

k=2Ckkakz
k−1 and thus |w (z)| < 1 implies

(5)

∣∣∣∣ ∑∞
k=2Ckkakz

k−1

(B −A) +B
∑∞

k=2Ckkakz
k−1

∣∣∣∣ < 1.

Since f = f(z) ∈ V , f = f(z) lies in V (θk, δ) for some sequence {θk} and a
real number δ with θk + (k − 1)δ ≡ π(mod 2π), for all k ≥ 2 .

Set z = reiδ in (5). Then akz
k−1 = |ak| rk−1 and

(6)

∣∣∣∣ ∑∞
k=2Ckk |ak| rk−1

(B −A)−B
∑∞

k=2Ckk |ak| rk−1

∣∣∣∣ < 1.

Since Re {w(z)} < |w(z)| < 1, we have

(7) Re

{ ∑∞
k=2Ckk |ak| rk−1

(B −A)−B
∑∞

k=2Ckk |ak| rk−1

}
< 1.

So

(8)

∞∑
k=2

kCk (1 +B) |ak| rk−1 ≤ B −A.

Letting r → 1, we get
∑∞

k=2 kCk (1 +B) |ak| ≤ B −A.
Conversely, assume that f = f(z) ∈ V satisfies (3). Since rk−1 < 1, we

have ∣∣∣∣∣
∞∑
k=2

k |ak| zk−1Ck

∣∣∣∣∣ ≤
∞∑
k=2

k |ak| rk−1Ck

≤ (B −A)−B
∞∑
k=2

k |ak| rk−1Ck

≤

∣∣∣∣∣(B −A) +B

∞∑
k=2

kakz
k−1Ck

∣∣∣∣∣ ,
which gives (5) and hence it follows that

(1− λ̃)(L nf(z))′ + λ̃(L n+1f(z))′ =
1 +Aw(z)

1 +Bw(z)
,

that is f = f(z) ∈ V L(n, λ̃, A,B).
�
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Corollary 2.2. Let the function f = f(z) given by (1) be in the class

V L(n, λ̃, A,B). Then

|ak| ≤
B −A

kCk (1 +B)
, k ≥ 2.

The result given by (3) is sharp for the functions

f(z) = z +
B −A

kCk (1 +B)
eiθkzk, k ≥ 2.

2.2. Distortion theorems

Theorem 2.3. Let the function f = f(z) given by (1) be in the class

V L(n, λ̃, A,B). Then

(9) |z| − B −A
2C2 (1 +B)

|z|2 ≤ |f(z)| ≤ |z|+ B −A
2C2 (1 +B)

|z|2 .

Proof. Our arguments are based on the technique used by Silverman [9].
Let

(10) Φ (k) = kCk (1 +B) .

Then Φ is an increasing function with respect to k (k ≥ 2) and thus

Φ(2)

∞∑
k=2

|ak| ≤
∞∑
k=2

Φ(k) |ak| ≤ B −A,

or, equivalently,

(11)
∞∑
k=2

|ak| ≤
B −A
Φ(2)

=
B −A

2C2 (1 +B)
.

Hence, we have

|f(z)| ≤ |z|+
∞∑
k=2

|ak| |z|k ≤ |z|+ |z|2
∞∑
k=2

|ak|

and thus

|f(z)| ≤ |z|+ B −A
2C2 (1 +B)

|z|2 .

Also, we have

|f(z)| ≥ |z| −
∞∑
k=2

|ak| |z|k ≥ |z| − |z|2
∞∑
k=2

|ak| .

Therefore

|f(z)| ≥ |z| − B −A
2C2 (1 +B)

|z|2 .

The result is sharp for the function

f(z) = z +
B −A

2C2 (1 +B)
eiθ2z2,
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at z = ± |z| e−iθ2 .
�

Corollary 2.4. Let the function f = f(z) given by (1) be in the class

V L(n, λ̃, A,B). Then f(z) ∈ U(0, r1), where r1 = 1 + B−A
2C2(1+B) .

Theorem 2.5. Let the function f = f(z) given by (1) be in the class

V L(n, λ̃, A,B). Then

(12) 1− B −A
C2 (1 +B)

|z| ≤
∣∣f ′(z)∣∣ ≤ 1 +

B −A
C2 (1 +B)

|z| .

The result is sharp.

Proof. Let Φ(k)
k = Ck (1 +B) . This is an increasing function with respect

to k (k ≥ 2). According to Theorem 2.1, we have

Φ(2)

2

∞∑
k=2

k |ak| ≤
∞∑
k=2

Φ(k) |ak| ≤ B −A,

or equivalently
∞∑
k=2

k |ak| ≤
B −A
Φ(2)

=
B −A

C2 (1 +B)
.

Hence, we have∣∣f ′(z)∣∣ ≤ 1 + |z|
∞∑
k=2

k |ak| ≤ 1 +
B −A

C2 (1 +B)
|z| .

So ∣∣f ′(z)∣∣ ≥ 1− |z|
∞∑
k=2

k |ak| ≥ 1− B −A
C2 (1 +B)

|z| .

�

Corollary 2.6. Let the function f = f(z) given by (1) be in the class

V L(n, λ̃, A,B). Then f ′(z) ∈ U(0, r2), where r2 = 1 + B−A
C2(1+B) .

2.3. Extreme points

Theorem 2.7. Let the function f = f(z) given by (1) be in the class

V L(n, λ̃, A,B), with arg(ak) = θk, where θk + (k − 1)δ ≡ π(mod 2π), for
all k ≥ 2. Define

f1(z) = z

and

fk(z) = z +
B −A

kCk (1 +B)
eiθkzk, k ≥ 2, z ∈ U.

Then f = f(z) ∈ V L(n, λ̃, A,B) if and only if f = f(z) can be expressed by

f(z) =
∞∑
k=1

µkfk(z), where µk ≥ 0 and
∞∑
k=1

µk = 1.
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Proof. If f(z) =
∞∑
k=1

µkfk(z), µk ≥ 0, and
∞∑
k=1

µk = 1, then

∞∑
k=2

kCk (1 +B)
B −A

kCk (1 +B)
µk =

∞∑
k=2

(B −A)µk

= (1− µ1)(B −A) ≤ B −A.

Hence f = f(z) ∈ V L(n, λ̃, A,B). Conversely, let the function f = f(z) given

by (1) be in the class V L(n, λ̃, A,B) and define

µk =
kCk (1 +B)

B −A
|ak| , k ≥ 2,

and

µ1 = 1−
∞∑
k=2

µk.

From Theorem 2.1,
∞∑
k=2

µk ≤ 1 and so µ1 ≥ 0. Since µkfk(z) = µkz+akz
k, for

k ≥ 2, we obtain
∞∑
k=1

µkfk(z) = z +
∞∑
k=2

akz
k = f(z).

�

Remark. The operator Ic in the following theorem is the well-known
Bernardi operator, see [8].

Theorem 2.8. Let

F (z) = Icf(z) =
c+ 1

zc

∫ z

0
f(t)tc−1dt, c > −1.

If f ∈ V L(n, λ̃, A,B), then F ∈ V L(n, λ̃, A∗, B), where A∗ = B+A(c+1)
c+2 > A.

The result is sharp.

Proof. Let f ∈ V L(n, λ̃, A,B) and suppose it has the form (1). Then

F (z) =
c+ 1

zc

∫ z

0

(
t+

∞∑
k=2

akt
k

)
tc−1dt

= z +
∞∑
k=2

c+ 1

c+ k
akz

k = z +
∞∑
k=2

bkz
k.

Since f ∈ V L(n, λ̃, A,B), we have
∑∞

k=2 kCk (1 +B) |ak| ≤ B −A or, equiva-
lently,

∞∑
k=2

kCk (1 +B) |ak|

B −A
≤ 1.
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We know, from Theorem 2.1, that F ∈ V L(n, λ̃, A∗, B) if and only if

(13)

∞∑
k=2

kCk (1 +B)
c+ 1

c+ k
|ak|

B −A∗
≤ 1.

Next, we show that

(14)
kCk (1 +B) c+1

c+k |ak|
B −A∗

≤ kCk (1 +B) |ak|
B −A

, k ≥ 2,

and we note that (14) implies (13). The inequalities in (14) follow from

c+ 1

(c+ k)(B −A∗)
≤ 1

B −A
,

(c+ 1)(B −A) ≤ (c+ k)(B −A∗), k ≥ 2,

A∗ ≤ B(k − 1) +A(c+ 1)

(c+ k)
, k ≥ 2.

Let us consider the function given by E(x) = B(x−1)+A(c+1)
x+c . Its derivative

is E′(x) = (B−A)(c+1)
(x+c)2

> 0, hence E = E(x) is an increasing function. For

our case, we need A∗ ≤ E(k), for all k ≥ 2. For this reason, we choose

A∗ = E(2) = B+A(c+1)
c+2 . We note that A∗ > A, because

B +A(c+ 1) > A(c+ 2)⇔ B > A.

The result is sharp, because, if f2(z) = z + B−A
2C2(1+B)eiθ2z2, then F2 =

Icf2 belongs to V L(n, λ̃, A∗, B) and its coefficients satisfy the corresponding
inequality in (3) with equality. Indeed, we have

F2(z) = z +
B −A

2C2 (1 +B)

c+ 1

c+ 2
eiθ2z2 = z +

B −A∗

2C2 (1 +B)
eiθ2z2

and

T (F2) = 2C2 (1 +B)
B −A∗

2C2 (1 +B)
= B −A∗.

�

If A = 2α − 1, A∗ = 2β − 1, then, from Theorem 2.8, we get the following
particular case.

Corollary 2.9. If f ∈ V L(n, λ̃, 2α− 1, B), then F ∈ V L(n, λ̃, 2β − 1, B),
where

β = β(α) =
B + 1 + 2α(c+ 1)

2(c+ 2)
≥ α.

The result is sharp.
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Theorem 2.10. If f ∈ V L(n, λ̃, A,B), then F ∈ V L(n, λ̃, A,B∗),where

B∗ =
A (1 +B) (c+ 2) + (B −A) (c+ 1)

(1 +B) (c+ 2)− (B −A) (c+ 1)
< B.

The result is sharp.

Proof. Let f ∈ V L(n, λ̃, A,B) and suppose it has the form (1). Since f ∈
V L(n, λ̃, A,B), we have

∑∞
k=2 kCk |ak| ≤ B −A or, equivalently,

∞∑
k=2

kCk (1 +B) |ak|

B −A
≤ 1.

We know, from Theorem 2.1, that F ∈ V L(n, λ̃, A,B∗) if and only if

∞∑
k=2

kCk (1 +B∗) |bk| ≤ B∗ −A

or

(15)

∞∑
k=2

kCk (1 +B∗) c+1
c+k |ak|

B∗ −A
≤ 1.

We note that

(16)
kCk (1 +B∗) c+1

c+k |ak|
B∗ −A

≤ kCk (1 +B) |ak|
B −A

, k ≥ 2

implies (15). The inequalities in (16) follow from

(c+ 1) (1 +B∗)

(c+ k)(B∗ −A)
≤ 1 +B

B −A
,

A (1 +B) (c+ k) + (B −A) (c+ 1)

(1 +B) (c+ k)− (B −A) (c+ 1)
≤ B∗, k ≥ 2.

Let

E(x) =
A (1 +B) (c+ x) + (B −A) (c+ 1)

(1 +B) (c+ x)− (B −A) (c+ 1)
.

Its derivative is

E′(x) =
− (A+ 1) (c+ 1) (B −A) (1 +B)

[(1 +B) (c+ x)− (B −A) (c+ 1)]2
< 0.

Hence E = E(x) is a decreasing function. For our case, we need E(k) ≤ B∗.
For this reason, we choose

B∗ = E(2) =
A (1 +B) (c+ 2) + (B −A) (c+ 1)

(1 +B) (c+ 2)− (B −A) (c+ 1)

and we note that

B∗ < B ⇔ (B −A) (c+ 1) (1 +B) < (1 +B) (c+ 2) (B −A)⇔ c+ 1 < c+ 2.
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The result is sharp, because, if

f2(z) = z +
B −A

2C2 (1 +B)
eiθ2z2,

then F2 = Icf2 belongs to V L(n, λ̃, A,B∗) and its coefficients satisfy the cor-
responding inequality in (3) with equality. Indeed, we have

F2(z) = z +
B −A

2C2 (1 +B)

c+ 1

c+ 2
eiθ2z2 = z +

B∗ −A
2C2 (1 +B∗)

eiθ2z2

and

T (F2) = 2C2 (1 +B∗)
B∗ −A

2C2 (1 +B∗)
= B∗ −A.

�
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