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CERTAIN CLASS OF ANALYTIC FUNCTIONS
WITH VARYING ARGUMENTS DEFINED BY
SALAGEAN AND RUSCHEWEYH DERIVATIVE
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Abstract. In this paper we derive some results for a certain new class of analytic
functions with varying arguments defined by using Salagean and Ruscheweyh
derivative.
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1. INTRODUCTION

Let A denote the class of functions of the form
D

(1) f2) =2+ Y apt,
k=2

which are analytic in the open unit disk U = {z € C: |z| < 1}.

DEerFINITION 1.1 ([2]). For f € A, A > 0 and n € N, the operator 27 : A —
A is defined by
Inf(z) = £(2),
Df(2) = (1 =N f(2) + Aaf' (2) = Daf (),
D f(2) = (=N ZRf (2) + A2 (23 f (2)) = DA (23 f(2)), 2 € U
REMARK 1.2 ([7]). For A = 1 in the above definition we obtain the Salagean
differential operator.

DEFINITION 1.3 ([6]). For f € A,n € N, the operator Z" : A — A is
defined by

BF(z) = (), ..,
(n+ 1) Z" T f(2) =2(Z"f () +nZ"f(2), z € U.
DEFINITION 1.4. Let y,A > 0 and n € N. Let .£" : A — A be the operator

given by
L) =1 =Z"f(2) +723f (2), z € U.

REMARK 1.5. If f € A and f(2) = 2 + Y oo, axz¥, then

.i””f(z):z+2{'y[l+(k—1))\]n+(1—7)W}akzk,zeU.
k=2
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DEFINITION 1.6 ([4]). Let f and g be analytic functions in U. We say
that the function f is subordinate to the function g, if there exists an analytic
function w on U with w(0) = 0 and |w(z)| < 1, z € U, such that f(z) =
g(w(z)), for all z € U. We denote by < the subordination relation.

DENFINITION 1.7. For \ >0, - 1<A<B<1,0<B<1andn € Ny, let
L(n,\, A, B) denote the subclass of A which contains the functions f = f(z)
of the form (1) that satisfy
1+ Az
1+ Bz
Attiya and Aouf defined in [3] the class Z(n, \, A, B), using a condition

similar to (2), where, instead of the operator .£", they used the Ruscheweyh
operator.

(2) (L=N)(L"f(2)) + ML f(2)) <

DEFINITION 1.8 ([9]). A function f = f(z) of the form (1) is said to be in
the class V(0g) if f € A and arg(ax) = 0y , for all k > 2. If there exists § € R
such that 0y + (k — 1)d = w(mod 2), for all k£ > 2, then f is said to be in the
class V (0, 0). The union of V(0,d), taken over all possible sequences {6y}
and all possible real numbers d, is denoted by V.

Let VL(n,X, A, B) denote the subclass of V' consisting of functions f €
L(n,\, A, B).
2. MAIN RESULTS
2.1. COEFFICIENT ESTIMATES

THEOREM 2.1. Let the function f = f(z) given by (1) be in V. Then f =
f(2) € VL(n,\, A, B) if and only if

o0
(3) T(f)=)_kCi(1+B)la| < B -4,

k=2
where

B n ~ (n+k—1)! ~k—1
Cr =71+ (k—1)A [1+)\)\(k 1)] g Y
Moreover, the extremal functions for (3) are
B—A
f(2) Ok k> 2.

BRI
Proof. Our arguments are based on the technique used in [5].
Suppose that f = f(z) € VL(n,\, A, B). Then

14 Aw(z)

() h(z) = (1 — N)(L"f(2)) + ML f(2)) = T4 Bu(z)’
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where w € H = {w analytic,w (0) =0 and |w (2)| < 1,z € U}. From this we
have w(z) = Bl&g)(f) . Therefore

h(z) =1 +§j {7[1 (k= DA [1 S - k)]
k=2

Hence h(z) = 1+ 3.7, Crkarz*~1 and thus |w (z)| < 1 implies
(5) S, Crkag2h1
(B - A) + B ZZO:Q C’kkakzk”
Since f = f(z) € V, f = f(2) lies in V (0, d) for some sequence {f;} and a
real number § with 0y + (kK — 1)0 = 7w(mod 27), for all £ > 2 .
Set z = rel in (5). Then az*~! = |ag|r*~! and
(6) 22022 Ckk ’ak’ Tkil
(B - A) - B 22022 Cik \ak\ rk-1
Since Re{w(z)} < |w(z)| < 1, we have

2 Ok Jag| 5!
= 1.
() Re{(B—A) T B, ekl 1

<1.

< 1.

So

(8) > kCi(1+ B)lag|r* ' < B - A,
k=2
Letting r — 1, we get Y po 5 kCy, (1 + B) |ax| < B — A.
Conversely, assume that f = f(z) € V satisfies (3). Since 77! < 1, we
have

o
< klag|rtTCy
k=2

oo
Zk lag| 2F71Cy,
k=2

<(B—-A) - BZk |ak’7“k_lck

k=2
oo
< (B — A) + BZ kakzkfle ,
k=2
which gives (5) and hence it follows that
, 1+ Aw(z)

(=LY + XL C = 15 By

that is f = f(z) € VL(n, A, A, B).
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COROLLARY 2.2. Let the function f = f(2) given by (1) be in the class
VL(n,\, A,B). Then
B-A
<——— k>2.
ol < sear By k2
The result given by (3) is sharp for the functions
B—-A
1@ =24 10T B

2.2. DISTORTION THEOREMS

eia’“zk, k> 2.

THEOREM 2.3. Let the function f = f(z) given by (1) be in the class

VL(n,\, A, B). Then
B—-A B—-A 9

9 - —|2|".
©) -G arm Yk

Proof. Our arguments are based on the technique used by Silverman [9].
Let
(10) ®(k)=kCr,(1+B).

Then @ is an increasing function with respect to k (k > 2) and thus

o0 0
®(2) ) lag| <Y D(k) |ax| < B - 4,
k=2 k=2

2<|f@)] < el +

or, equivalently,

o0

B-A B-A4
11 < - .
(11) é‘“’“‘ = 3(2) 26, (1+B)

Hence, we have

o0 oo
k 2
FE)] < Jol+ Y lawl 121 < J2l + 1217 Y lax
k=2 k=2

and thus B_A
< S P T
FEI< 1 5o

Also, we have

o0 oo
k 2
@) 2 2l =Y lawl 2" = J2] = 217 Y lawl -
k=2 k=2

Therefore B_A
>z — —— 2|2,
£ = 1 - 3 g
The result is sharp for the function
B-A .
f(z) = el?222,

‘T3G04 B)
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at z = 4 |z e71%2,
U

COROLLARY 2.4. Let the function f = f(z) given by (1) be in the class

VL(n,X,A, B). Then f(z) € U(0,71), where 1y =1+ #ﬁfﬂ'

THEOREM 2.5. Let the function f = f(z) given by (1) be in the class
VL(n,\, A, B). Then
B-A
12 1l— —— <|f <1
(12) Gam @l

The result is sharp.

B—-A
Cy(1+ B)

K

Proof. Let % = Cj (1 + B). This is an increasing function with respect
to k (k> 2). According to Theorem 2.1, we have

Zk;ya y<2¢> )lag] < B — A,
or equivalently

ik|a|<B—A_ B-A
M=T90@) T (14 B)

Hence, we have

> B—A
/ < E < E——
So
> B-—A
! >1— E >1———"" _|4].

k=2
O

COROLLARY 2.6. Let the function f = f(z) given by (1) be in the class

VL(n,X,A,B). Then f'(z) € U(0,r2), where ro =1 + 02]?14;43)

2.3. EXTREME POINTS

THEOREM 2.7. Let the function f = f(z) given by (1) be in the class
VL(n,\ A, B), with arg(a) = 0y, where 0, + (k — 1)§ = w(mod 27), for
all k > 2. Define

filz) ==

and

fr(z) =2+ W—i‘)
Then f = f(z) € VL(n,X, A, B) if and only if f = f(2) can be expressed by

F(2) = 5 mfulz), where > 0 and 32 o = 1.
k=1 k=1

el F ,k>22€U.
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Proof. 1f f(z) = >~ pufu(2), pue > 0, and 3~ puy; = 1, then
k=1 k=1

> B A

(1 1)(B—A) < B-— A

Hence f = f(z) € VL(n,X,ALB). Conversely, let the function f = f(z) given
by (1) be in the class VL(n,\, A, B) and define

k‘Ck(l—l—B)
B—-A

oo
pr=1- Zﬂk~
k=2

o0
From Theorem 2.1, > ux < 1 and so pg > 0. Since pg fx(2) = prz + apz®, for
k=2

P = lag|, k> 2,

and

k > 2, we obtain

Z,ukfk(z) =z+ Zakzk = f(2).
k=1 k=2
O

REMARK. The operator I. in the following theorem is the well-known
Bernardi operator, see [8].

THEOREM 2.8. Let
1 z
F(z) = Lf(z) = / FOEtdL ¢ > 1.
z 0

If f € VL(n, X\, A, B), then F € VL(n, X, A*, B), where A* = BFACH) ~ 4,
The result is sharp.

Proof. Let f € VL(n,X, A, B) and suppose it has the form (1). Then

c+1 (7 >
F(z) = — /0 (t+Zaktk> telat

k=2

OOC+1 oo
:z+zc+kakzk:z+2bkzk.

k=2 k=2

Since f € VL(n,X, A, B), we have Y 12, kC, (1 + B) |ag| < B — A or, equiva-
lently,

> kCy (1 + B) |ag|
k=2 < 1.
B—A -
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We know, from Theorem 2.1, that F' € VL(n,X, A*, B) if and only if

) c+1
kC.(1+ B
122 ke (1 + )c+k\ak\

<
B — A* -

(13)
Next, we show that

kCM1+BM§ﬁm4<ch1+BH%|

>
(14) B A <=0 k22
and we note that (14) implies (13). The inequalities in (14) follow from
c+1 1

(c+R)(B—4") “B—4’
(c+1)(B—A) < (c+k)(B—A%), k>2,
A* < B(k—1)+A(c+1)7 L9

- (c+k) -

B(z—1)+A(c+1)
xT+c

> 0, hence E = E(x) is an increasing function. For

Let us consider the function given by E(z) = . Its derivative

iS E/(.'I)) — (B*A)(C‘Fl)
(z+c)?
our case, we need A* < FE(k), for all k& > 2. For this reason, we choose

A*=FE(2) = %(gﬂ). We note that A* > A, because

B+ A(c+1)> A(c+2) < B > A.
The result is sharp,~ because, if fo(z) = 2z + %ew?zj, then Fy =
I.fs belongs to VL(n, A\, A*, B) and its coefficients satisfy the corresponding
inequality in (3) with equality. Indeed, we have

h(z) Z+2C’2(1+B)c+26 z z+202(1+B)e z
and
B — A*
T(Fy)=2C(1+B) —— =B — A*.
(F2) 2(1+ )202(1+B)

0

If A=2a—1,4A* =28 — 1, then, from Theorem 2.8, we get the following
particular case.

COROLLARY 2.9. If f € VL(n,\,2a— 1, B), then F € VL(n,\,28 — 1, B),
where

B _ B+1+2a(c+1)
B =ple) = 2(c+2) =@

The result is sharp.
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THEOREM 2.10. If f € VL(n, A\, A, B), then F € VL(n, X, A, B*),where

. AQ+B)(c+2)+(B—-A)(c+1)
B = 0 B e+ - B-A et 7

The result is sharp.
Proof. Let [ € VL(n,X, A, B) and suppose it has the form (1). Since f €

VL(n,\ A, B), we have > 7, kCy |lag| < B — A or, equivalently,

o0

> kCy (1 + B) |a]

k=2 <1.

B-A -

We know, from Theorem 2.1, that F' € VL(n,X, A, B*) if and only if

o0
> kCp (14 B*)|by| < B* - A
k=2

or

o0
];2 kCy (1+ B*) & |ay|

<1.

(15) B A =

We note that
KO (14 BY) S5 orl _ KCi (1 + B)
B*— A - B—-A
implies (15). The inequalities in (16) follow from
(c+1)(1+ B*) < 1+ B
(c+k)(B*—A) — B-A’
A(1+B)(c+k)+(B-A)(c+1)
(14+B)(c+k)—(B—A)(c+1)

(16) s k>2

< B*, k>2.

Let
Al+B)(c+z)+(B—-A)(c+1)

(1+B)(c+x)—(B—A)(c+1)

E(x) =

Its derivative is
F(x) = —(A+1)(c+1)(B—A)(1+ B)
[(1+B)(c+xz)— (B—A)(c+1)]

Hence E = E(x) is a decreasing function. For our case, we need E(k) < B*.
For this reason, we choose

A(1+B)(c+2)+ (B—A)(c+1)
1+B)(c+2)—(B—A)(c+1)

B* = B(2) =

and we note that

B*<B& (B-A)(c+1)(1+B)<(1+B)(c+2)(B-A) ec+l<c+2.
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The result is sharp, because, if
B—-A 4, »

f2(2)22+me z7,

then Fy = I.fo belongs to V L(n, X, A, B*) and its coefficients satisfy the cor-
responding inequality in (3) with equality. Indeed, we have

B-A c+1 0o 2 B*— A 62 2
F p— 12 pr— 712
22) =2t s i B2t ¢ T ar By
and B _ A
T(Fy) =2C,(1+ B*) ————— = B*— A.
(F2) = 2G: 1+ BY) 55 05 5
O
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