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FAVARD’S INEQUALITY FOR SEMINORMED FUZZY
INTEGRAL AND SEMICONORMED FUZZY INTEGRAL
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Abstract. The purpose of this paper is to generalize Favard’s inequality for
seminormed and semiconormed fuzzy integrals of non-negative concave (convex)
functions on a fuzzy measure space (X, X, pt), where p is the Lebesgue measure.
Moreover, for illustrating the theorems, several examples are given.
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1. INTRODUCTION

The theory of fuzzy measures and fuzzy integrals was introduced by Sugeno,
as a tool for modeling non-deterministic problems [6]. Many authors general-
ized the Sugeno integral, by using some other operators instead of the opera-
tors V(sup) and A(inf). Sudrez and Gil presented two generalizations of the
Sugeno integral: the seminormed fuzzy integral and the semiconormed fuzzy
integral [5]. Recently, some classical integral inequalities have been worked
for these integrals; for example, Ouyang et al. proved Chebyshev’s inequality
for the seminormed fuzzy integral [3] and Caballero et al. proved Markov’s
inequality for the seminormed fuzzy integral [1].

The following theorem expresses the classical Favard’s inequality.

THEOREM 1.1. ([2]) Let f be a concave non-negative function on [a,b] C R.
If ¢ > 1, then

(1) bfa/abf%xmxs qi“zl(bfa/abﬂm)dx)q.

If 0 < g < 1, then the reverse inequality holds in (1).

The aim of this paper is to present the above theorem for seminormed
and semiconormed fuzzy integrals. Moreover, we present some appropriate
examples to illustrate our results.

This paper is organized as follows. In Section 2, we introduce some notations
and concepts. In Section 3, we prove the main results and give some examples.
In Section 4, we express our conclusions.
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2. PRELIMINARY RESULTS

As usual, denote by R, the set of real numbers. Let X be a non-empty
set and let ¥ be a o-algebra of subsets of X. Throughout this paper, all the
considered subsets are supposed to belong to .

DEFINITION 2.1. ([4]) A set function p : ¥ — [0,400] is called a fuzzy
measure, if the following properties are satisfied:
(F1) u(0) = 0;
(F2) A,B € ¥ and A C B imply u(A) < u(B);
(F3) {Al} - E, A1 - A2 cC ... and U;ﬁl Az € X imply N(U;ﬁl AZ) =
lim 4u(4;);
(F4) {Az} - 2, A1 D) A2 DR M(Al) < oo and ﬂfilAz € X imply
p(MiZy Ai) = lim p(A;).
The triplet (X, 3, ) is called a fuzzy measure space.

We denote the set of all measurable functions from X to [0, 1], with respect
to X, by F4(X). Let f be a non-negative real-valued function defined on X.
Denote the set {z € X | f(z) > a} by F,, for a > 0.

DEFINITION 2.2. ([5]) A t-norm is a function T : [0,1] x [0,1] — [0,1]
satisfying the following conditions, for any z,y,z € [0, 1]:
(l) T(x7 1) = T(l,.l‘) =
(i) y < 2 = Ta,y) < T(x,2);
(iii) T(z,T(y,2)) = T(T(z,y),2);
(iv) T(z,y) = T(y, x).

ExaMPLE 2.3. The following are the most important t-norms:

TM (l’, y) = min(aj, y)7
TP(xa y) = zy,
Tr(x,y) = max(z+y—1,0),

{0 (my el
Tp(z,y) = {min(fLyy) (z,y) ¢ 10, 1)2 '

DEFINITION 2.4. ([5]) A function S : [0,1] x [0,1] — [0,1] is called a t¢-
conorm (s-norm), if there is a t-norm T such that S(z,y) = 1-T(1—z,1—y).
A t-conorm satisfies:

(i") S(x,0) = S(0,x) = z, for any z € [0, 1],

and the conditions (ii)-(iv) of the t-norms.

ExXAMPLE 2.5. The following are four important ¢-conorms.

SM(£7 y) = Hla.X(l', y)7
SP(IE,Q) = T+y—ay,
Sp(x,y) = min(z+y—1,0),

B 1 (z,y) € (0,1]?
Sp(z,y) = {max(x,y) (z,y) ¢ (0, 1]2 ‘
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REMARK 2.6. If a binary operator 7'(S) satisfies the conditions (i) and (ii)
of Definition 2.2 ((i’) and (ii) of Definition 2.4), then it is called a t-seminorm
(t-semiconorm).

Suarez and Gil proposed the following two families of fuzzy integrals.

DEFINITION 2.7. Let T be a t-seminorm. The seminormed fuzzy integral
of a function f € Fy(X) over A € ¥, with respect to a fuzzy measure p, is
defined as

fdu="\/ T(a, (AN Fy)).

T.A a€l0,1]

DEFINITION 2.8. Let S be a t-semiconorm. The semiconormed fuzzy integral
of a function f € F4(X) over A € ¥, with respect to a fuzzy measure p, is
defined as

fdu="J\ S(a,u(ANF,)).

5,4 a€l0,1]

The following properties for the seminormed fuzzy integral can be found in
[5].
PROPOSITION 2.9. Let f,g € F1(X) and A, B € ¥. Then we have:
() f<g= [pafdu< [ ,9dn,
(b) ACB= fTAfdM = fTdeM7
(c) VA, 0 <k <1, [, kdp= T(k u(A)),
(@) p(A) = 0= [, Fdu=
() JpafAgdu< fTAfduA Jr.a 9dp,
(f) JoafV9du> [y, fAuV [y odu,
) fTAuB fdp = fTA fduv fTB fdp,
fT,AmB fdp < fT,A fdpn fT,B gdp.

REMARK 2.10. All the above properties, except (c), also hold for the semi-
conormed fuzzy integral. The following property replaces (c):

() VE,0 < k <1, fS,A kdp = S(k,u(A")), where A’ is the complement of
A.

3. MAIN RESULT

In this section, we prove Favard’s inequality for the seminormed and semi-
conormed fuzzy integrals. We present this inequality for the seminormed fuzzy
integral of the concave functions and the semiconormed fuzzy integral of the
convex functions. Throughout this section, we suppose that X C [0, 1].

THEOREM 3.1. Let f : [a,b] — [0,1] be a concave function and p be the
Lebesgue measure on R. Then for any q > 0, we have:
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(a) if f(b) > f(a), then

Cfidp = T< Tl ( i -
(b) if f(b) = f(a), then

fidu > T(f%a),b—a).
(c) if f(a) > f(b), then

¢ 2:h)7fdu+ af(b) - bf(a)
du)’sb = 70— f(a) )

Lo 2 1 \a bf(a) = af(b) = 2(;k)7 fdp
e 1 () ~a)

Proof. Assume that x € [a,b]. Set x = Z:—ia + $=2b, then, by the concavity
of f, we have

f(a:)>b_$ T —a

> = f(a) + 5o f(b) = hz).

By Proposition 2.9 (a), we obtain f2du > h%dpu.
(a) If f(b) > f(a), then

fidp > hidp
= \/ T(a,,u([a, b N {x|h(z) > 0431}))

a€l0,1]

= \/ T(oz,,u([a, bl N {z|z > a

e F0) -~ 1@
_ oy Qi(b—a)+af(b) ~bf(a)
- QE\[/WT( o o)

Assume that o = 2: (3% fdp)?, then « € [0,1] and thus

1
ad(b—a)+af(b)—bf(a
\/ae[o,l] T<a, (b— ( f()b)—f((a)) : )})> >

9(—L)4 fdp-+af(b)—bf(a)
T<q+1(b e (ORI () )>'

It follows that

1
. q 2(7) 4 fdp+af(b)—bf(a)
f"du>T(q+1(bafd“) R (ON 0 )

On the other hand, since b — a < 1, we get

1
fldp > fidp,
b—a
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hence,
a 2(511 )i fdu+ af(b) — bf(a)
biachmz < 11( ) - f(/;)—f(a) )

(b) If f(a) = f(b), then h(x) = f(a) = f(b) and, using Proposition 2.9 (a),
(c), one has

fldp > hidp = fi(a)dp =T(f(a),b — a).
(c) If f(a) > f(b), then
fidp > hidp

=V T<a w(la, b] N {z|h(z )>a3})>

a€l0,1]

_ e oL o b@ = af(k) —at (b~ a)
A G e e )
_ (M@ =af) —ai—a)

- VT(’( T(a) — 70) ))

a€l0,1]

Again, if we assume that o = 2 (biafdu)q, then

1
bf(@)—af(b)—ai (b—a)
Vaepo T (0‘7 ( Fla)—f®) B “)) =
. bf(a)—af(b)~2(7)7 fdu
r (q2+1(b1afdu)q’ ( ORI a>> '

The latter implies that

2 bf(@) — af(b) — 2117 £
fqd”ZT(qilelfd )" F@ =70 M‘“)'

—a

Consequently,
| 0 0 bf(a) = af(b) = 2(zk)7 fap
b_afqd“ZT< i) Fla)— F0) ‘“)’

which completes the proof. O

The following examples illustrate the validity of Theorem 3.1.

EXAMPLE 3.2. Suppose that f(x) = /x, [a,b] = [0,1] and ¢ = 0.5. Then,
f(1) > f(0).
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i) If T'(x,y) = min(z,y), then we have

/ zidy ~ 0.7245,

0.5 \/§
1 ( o \qu> ~ ﬁ\/0.6180 ~ 0.7412,
1 2
<5) o Vazdp~1— 355 X 0.6180 ~ 0.4507.
And thus

/ widp ~0.7245 > 0.4507
7,00,1)

0.5

V2 1\?

~T Vardu ,1-2 <) Vadp
05 + 1 T7[0’1} 15 T,[O,l]

ii) If T'(z,y) = xy, then we have

/ zidp=\/ a(l-a')~0.5350,
T,[0,1]
0.5

0.5
2 2 2
v2 ( \/:Edu> v2 Vo el-0?) ] = V2 /53550 ~ 0.5850,
7,01 a€l0,1] L5

05+ 1 15
YR Vadp AT — —2 % 0.3850 ~ 0.3422.
15) Jrpon VT T 225 =

And consequently

/ widp ~ 0.5350 > 0.2002
T,[0,1]

0.5
() ()
xd ,1—2 xd
0.5+ 1 \Jr Vady L5/ Jrjoa vy

Q
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ExAMPLE 3.3. Let f(z) = v/z, [a,b] = [0, %], g=4and T(z,y) = zy. In

this case, we have f(1) > £(0) and

1
4/ Pdp=4|\/ « < — ﬁ) ~ 4 x 0.0023 = 0.0092,
T,[0,1] 4

a€0,1]
4

16<4 ) 4096 a(l_QQ) _4096( 1 )4
g 0,3 a€f0,1] 4 5 \12v3

~ 0.0044,
1
1 fT [0 1 2(%)4(121/3)
- — - — ——=¥2 ~(.1213.
4 4 1
2
Therefore,

4/ xdp = 0.0092 > 0.0005
T,[0,1]
4 1 1
1 1 $)1 (0,1 VEdu)
~T 16 4/ Vadp | = — 5 T[O
5 7,0,3] 4 3

In the next example, we show that the concavity of the function f in The-

orem 3.1 is necessary.

EXAMPLE 3.4. Suppose that f(z) = 22, [a,b] = [0,1], ¢ = % and T'(z,y) =

xy. In this case, we have: f(1) > f(0) and

/ zidp=\/ a(l-a2)~0.3257,

Wl

\375 2 %_3\3/i . ~ %
(/T[Ol]xdu> = \V e(l-va)| = o (0.1481)3 ~ 0.5,

1
1+1

Consequently,

/ zidu ~ 0.3257 # 0.4375
7,[0,1]

/2
~T 1\[ / z2dp
3+ 1 \Jr o

ol

3\ 3
,1—2 <> / z2dp
4] Jrjoa
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THEOREM 3.5. Let f : [a,b] — [0,1] be a concave function and p be the
Lebesgue measure on R. Then, for any q > 0, the following implications hold:

(a) if f(b) > f(a), then

ﬁfqd <q;ql (b i a
(b) if f(b) = f(a), then

Fidu > T(f%a),b— a),
(c) if f(a) > f(b), then

)

(q+1)%
o WD Rk af(b) — bf(a)
du)b 70) — /() >

+1
1afquZT<q+1<f >q bf(a) —af(b) — (g+1)9 fdu a)

b— 2 fla)—f (b)
Proof. Considering o = %ql(ﬁfdu)q, the proof is the same as in the
previous theorem. O

In the sequel, we prove Favard’s inequality for the semiconormed fuzzy
integral of a convex function.

THEOREM 3.6. Let f : [a,b] — [0,1] be a convex function and u be the
Lebesgue measure on R. Then, for any q > 0, the following implications hold:

(a) if f(b) > f(a), then

a ¢ 2k fdu+ af(b) - bf(a)
_biaS<qi—1<biafd'u> b= f(llj)—f(a) )’

b—a
(b) if f(b) = f(a), then
fldp < S(f¥a), (X) —b+a),
(c) if f(a) > f(b), then

bf(a) — af(b) — 2(-L) fd
i< 5( (G paw) o) = a/10) = 2 ) “—a>.

“b-a" \g+1 ’ f(a) = f(b)

Proof. Assume that z € [a,b]. Set z = 2=2q+2=2b. Then, by the convexity
of f, we have
b—=x T —a

F@) < T @)+ T2 £ () = h(a).

By Proposition 2.9 (a), we have fidu < hidp.

—a
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(a) If £(b) > f(a), then
fldp < hqdu

_ < N {z|h(z) > aé}))

aEOl

_ sl > (0= 0) +af(®) ~bi(a)
iy 01 1) = f(a)

_ +af(b) —bf(a)
aem >— fla) |

If we assume that a = ﬁ—l(ﬁfd )9, then « € [0, 1] and thus

1
a@ (b—a)+af (b)=bf(a)
Nacio) S <0‘7 <b— 7O F(@) >> <
1
2(-11)7 fdu+af(b)—bf(a)
5<q+1 (b afdp ) ’(b_ B OB 0)

It follows that

20 1 ¢ 2)7 fdut af(b) - bf(a)
pans s () - = )
Consequently,
1 24 1 ¢ 2Agg)e s fdu+af(b) = bf(a)
e < S<q+1(b—afd“)’b‘ R @ )

(b) If f(a) = f(b), then h(z) = f(a) = f(b) and, using Remark 2.10 (c’),

we have
F9dp < Wdu = f9(a)dp = S(f(a), u(X) — (b a).
(¢) If f(a) > f(b), then
fidp < Ridp
- A s<a, u(la, ] {zfh(z) > a5}>)

a€l0,1]

_ @) —af () —at ()
- A s( ,u<[,bm{ o < @)= 700) }))

a€l0,1]

_ f(@) = af(b) —ai(b-a)
- AS( ( Fla)— F®) ))

a€(0,1
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Again, if we assume that o = %(ﬁfd,u)q, then

bf(a) —af(b) —ai(b—a)
A% (O‘( Fla)— 1) ))

a€l0,1]

2 [ 1 v (bf(a) - af(b) - 2(;) 7 fdu
<S(q+1<bafd“> ( F(@) — F0) ))

It follows that

, 2(b—a); 1 4 bf(a) — af(b) —2(55%)s fdu
rans (S o) g o)

and, consequently,

1
AT
1 20(b—a)/ 1 g bf(a) —af(b) —%%ﬁfd#
Sb—aS< q+1 <b a d,u), f(@)—f(bq) a>.
This completes the proof. ]

For illustrating the last theorem, we present an example.

EXAMPLE 3.7. Suppose that f(x) = 22, [a,b] = [0,1], ¢ = 0.5 and S(x,y) =
x +y—xy. Then f(1) > f(0) and simple calculations show that

/S[Ol]xdﬂz /\ S(a,1—a) = /\ (a+1—a—a(l—a))=0.75,

a€l0,1] o€l0,1]

\/i 2 % \/5 1 3 1
1_5(/5’[071]95 dﬂ) = ﬁ( A (1-a +a2)) 15(0 .6151)2 ~ 0.7394,

a€l0,1]

1 2
1-2 () / 2dp~1— 8 L 0.6151 ~ 0.4532.
15) Jsp 9

\ =

Therefore,

2 1
/ wdp ~ 0.75 < 0.8575 ~ S(f(/ 22dp)5 1 — 2(—)? / 22dp).
5,00,1] 1.5"/5,0,1] L.5% Js o1

The following example shows that the convexity of the function f in Theo-
rem 3.6 is necessary.



11 Favard’s inequality for seminormed fuzzy integral 49

ExXAMPLE 3.8. Let f(x) = +/z, [a,b] =[0,1], ¢ = 0.5 and S(z,y) =z +y —
xy. Then f(1) > (0) and we have

/ widy = N\ S1-a')= A (1-a*+0a°) ~ 09180,
5,[0,1] acl0,1] ac[0,1]
1

2
V2 ( \/Edu> = @( N (1-a?+a%)7 ~ 2(0.8519)% ~ 0.8701,
S,[0,1] .

)—KS
(G201 )

1.5 1.5
a€l0,1]

1

2
1-2 <> / Vadu~1— 8 x 0.8519 ~ 0.2427.
1.5 5,00,1] 9

Consequently,

/ zidp ~ 0.9180 £ 0.9016
5,00,1]

V2 1 1
~ S ( Vadp)2,1-2(—)? Vadp).
1.5 Js 0,1 L5% Js o)
THEOREM 3.9. Let f : [a,b] — [0,1] be a convex function and p be the
Lebesgue measure on R. Then, for any q > 0, we have:

(a) if f(b) > f(a), then

o< s (L () e b))
(b) if f(b) = f(a), then
fldp < S(f¥a), m(X) = b+ a),
(c) if f(a) > f(b), then
s (MO s
Proof. Take a = S (L= fdu)? in the proof of the previous theorem. [

4. CONCLUSION

In this note, we have proved Favard’s inequality for the seminormed and
semiconormed fuzzy integrals. Moreover, by some examples, it is shown that
the assumptions of concavity and convexity for the functions in the fuzzy
version of Favard’s inequality are necessary.
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