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ON OPERATORS IN IDEAL MINIMAL SPACES

AHMAD AL-OMARI and TAKASHI NOIRI

Abstract. A collection mx of subsets of a nonempty set X is called a minimal
structure [6] on X if ¢ € mx and X € mx. As a generalization of the local
closure function I'(A) [1] in an ideal topological space (X, 7,Z), we introduce
and investigate an operator A%, (Z,mx) in an ideal minimal space (X, mx,T),
where Z is an ideal.
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1. INTRODUCTION AND PRELIMINARIES

Let (X, 7) be a topological space with no separation properties assumed. For
a subset A of a topological space (X, 7), CI(A) and Int(A) denote the closure
and the interior of A in (X, 7), respectively. An ideal Z on a topological space
(X, 7) is a non-empty collection of subsets of X which satisfies the following
properties:

(1) A€ T and B C A implies that B € 7.
(2) A€ T and B € 7 implies AUB € 7.

An ideal topological space is a topological space (X, 7) with an ideal Z on
X and is denoted by (X,7,Z). For a subset A C X, A*(Z,7) = {z € X :
ANU ¢ I, for every open set U containing z} is called the local function of
A with respect to Z and 7 (see [2]). We simply write A* instead of A*(Z, 1),
in case there is no reason for confusion. For every ideal topological space
(X, 7,7), there exists a topology 7*(Z), finer than 7, generated by the base
B(Z,7) ={U—-J:U € 7and J € Z}. It is shown in Example 3.6 of [2]
that 8(Z,7) is not always a topology. When there is no ambiguity, 7*(Z) is
denoted by 7*. Recall that A is said to be *-dense in itself (resp., 7*-closed, *-
perfect) if A C A* (resp., A* C A, A= A*). For a subset A C X, Cl*(A) and
Int*(A) will denote the closure and the interior of A in (X, 7*), respectively.
A subfamily mx of the power set P(X) of a nonempty set X is called a
minimal structure [6] on X if ¢ € mx and X € mx. By (X, mx), we denote
a nonempty set X with a minimal structure mx on X and call it a minimal
space. Set mx(x) = {U € mx : © € U}. For a subset A of X, the m-closure
of A and the m-interior of A in (X, mx) are defined in [7] as follows:

m—Int(A)= U{U:UCAUEemx},
m—Cl(A)= U:ACF,X—-Fecmx}.
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THEOREM 1.1. ([3]) Let (X,mx) be a space with a minimal structure mx
on X and A C X. Then:
(1) X =m—Int(X) and ¢ = m — Cl(¢).
(2) m—1Int(A) C A and ACm—CIl(A).
(3) If A € mx, then m — Int(A) = A and, if X — F € mx, then m —
CI(F)=F.

(4) If A C B, then m—Int(A) C m—Int(B) and m—Cl(A) C m—CIl(B).
(5) m—Int(m—Int(A)) = m—Int(A) and m—Cl(m—CIl(A)) = m—CI(A).
(6) m—ClUX—-A) = X—m—Int(A) andm—Int(X—A) = X—m—CIl(A).

DEFINITION 1.2. A minimal structure myx on X is said to have

(1) property (B), if mx is closed under arbitrary unions,
(2) property [I], if mx is closed under finite intersections.

LEMMA 1.3. ([7]) Let mx have property B. Then the following properties
hold:
(1) Aemx if and only if mx — Int(A) = A,
(2) A is mx-closed if and only if mx — Cl(A) = A,
(3) mx — Int(A) € mx and mx — Cl(A) is mx-closed.

2. LOCAL OPERATOR FUNCTIONS IN IDEAL MINIMAL SPACES

DEFINITION 2.1. Let (X, mx,Z) be an ideal minimal space. For a subset A
of X, we define the following set operators: A% (Z,mx)={zr e X : AnU ¢ Z,
for every U € mx(x)} (see [8]), AX (Z,mx)={r e X : Anm—CIlU) ¢ T,
for every U € mx(x)}. In the case there is no confusion, A% (Z,7) (resp.,
A (Z,7)) is briefly denoted by A, (resp. A%,) and is called the minimal local
closure (resp., minimal local) function of A with respect to Z and mx.

'REMARK 2.2. If an mx-structure mx is a topology 7, then A7, = A* and
Ar, =T(A) (see [1]).

LEMMA 2.3. Let (X,mx,Z) be an ideal minimal space. Then A}, (Z,mx) C
A¥ (Z,mx), for every subset A of X.

Proof. Let x € Af (Z,mx). Then, ANU ¢ Z, for every m-open set U
containing z. Since ANU C ANm — cl(U), we have ANm — cl(U) ¢ T,
therefore z € A% (Z,mx).

0

DEFINITION 2.4. ([7]) Let A a subset of (X, mx). A point x € X is called
(1) an mg-adherent point of A, if m—Cl(U)NA # ¢, for every U € mx(x).
(2) an mg-interior point of A, ift m — Cl(U) C A, for every U € mx(z).

The set of all mg-adherent points of A is called the mg-closure of A and
is denoted by m — Clp(A). If A = m — Clp(A), then A is said to be mgp-
closed. The complement of an mg-closed set is said to be mg-open. The set
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of all mg-interior points of A is called the mg-interior of A and is denoted by
m — Intg(A).

LEMMA 2.5. ([7]) Let (X, mx) be a minimal space and A be a subset of X.
Then:
(1) If A is m-open, then m — cl(A) = m — clp(A).
(2) If A is m-closed, then m — Int(A) = m — Intg(A).

THEOREM 2.6. Let (X, mx) be a minimal space, T and J be two ideals on
X, and let A and B be subsets of X. Then the following properties hold:
(1) If A C B, then A, C BF,.
(2) If T C J, then A% (T) D AX ().
(3) AZ, = m — cl(A%) C m — clg(A) and A%, is m-closed, if mx has
property (B).
(4) If A C A% and A%, is m-open, then AT =m — clg(A).
(5) If A€ Z, then A%, = 0.

Proof. (1) Suppose that = ¢ B,. Then there exists U € mx(z) such that
Bnm—cl(U)€eZ. Since ANm—cl(U) CBNnm—c(U), Anm—cl(U) € L.
Hence z ¢ AF,. Thus X \ Bf, C X\ A}, or A}, C B},.

(2) Suppose that z ¢ A% (Z). There exists U € mx(z) such that A Nm —
cd(U) eI SinceZ CJ,Anm—cl(U) € J and z ¢ A%, (J). Therefore,
£,(T) € 45,(@). ) )

(3) We have A}, € m — cl(A},) in general. Let z € m — cl(A},). Then
AF MU # 0, for every U € mx(x). Therefore, there exists some y € AF NU
and U € mx(y). Since y € A5, ANm —cl(U) ¢ T and hence z € A%,.
Hence we have m — cl(Af) C A? and thus A%, = m — cl(A%,). Again, let
v em—cl(A;,) = A%, Then AnNm — cl(U) ¢ Z, for every U € mx(x). This
implies ANm — cl(U) # 0, for every U € mx(x). Therefore, z € m — clg(A).
This shows that A% (Z) = m — cl(AF,) € m — clg(A).

)

Since A C A}, and A¥, is m-open, by Lemma 2.5, we have m — clg(A) C
m — clg(A%) = m — cl(AF) = A%, Cm — clg(A) and hence AF = m — clg(A).
(5) Suppose that # € A%,. Then, for any U € mx(z), ANm —cl(U) ¢ .
But Anm—cl(U) C Aand A ¢ Z. This is a contradiction. Hence A% = . O

LEMMA 2.7. Let (X, mx,Z) be an ideal minimal space. If mx has property
[I] and U is mg-open, then UNAY, = UN(UNA)E C (UNA), for any
subset A of X.

Proof. Suppose that U is mg-open and z € U N A;,. Then z € U and
x € A%, Since U is mg-open, then there exists W € my such that z € W C
m — cl(W) C U. Let V be any m-open set containing x. Then V NW €
mx(x) and m —c(VNW)NA ¢ Z and hence m — cl(V) N (UNA) ¢ T.
This shows that € (UN A)¥, and hence we obtain U N AX, C (UN A)F,.
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Moreover, U N Ay, € UN(U N A)f, and, by Theorem 2.6, (U N A);, € Aj, and
UNUNA);, CUNA;,. Therefore, UNAY, =UN(UNA),. O

THEOREM 2.8. Let (X, mx,Z) be an ideal minimal space. If mx has prop-

erty [I] and A, B are subsets of X, then the following properties hold:
(1) (@);, = 0. B
(2) Ay, UB:, =(AUB)},.

Proof. (1) The proof is obvious.

(2) Tt follows from Theorem 2.6 that (AU B)¥, D A} U B},. To prove the
reverse inclusion, let z ¢ AF U B . Then x belongs neither to A%, nor to
Bi,. Therefore there exist U,, V, € mx(z) such that m — cl(U,) N A € T and
m—cl(Vz)NB € Z. Since 7 is additive, (m—cl(Uz)NA)U(m—cl(Vy)NB) € T.
Moreover, since Z is hereditary and

m—cl(UzNVy) N (AU B) =(mCl{U, N Vy)NA)U(mCl(U; NVz) N B)
C(m —c(Uy)NA)U (m —cl(Vy) N B),

m —cl(U, NV,)N(AUB) € Z. Since U, NV, € mx(x), z ¢ (AU B)¥,. Hence
(X\45)N(X\ By, € X\ (AUB);, or (AUB);, € A}, UB;,. Hence, we
obtain A U B = (AU B) O

LEMMA 2.9. Let (X, mx,Z) be an ideal minimal space. Let mx have prop-
erty [I] and A, B be subsets of X. Then A%, — B, = (A— B)}, — Bf,.

Proof. We have, by Theorem 2.8, A% = [(A—B) U(ANB)];, = (A — B);,,U
(ANB)i, C (A— B)j, U Bj,. Thus A% — B, C (A— B)S, — Bi,. By The-
orem 2.6, we get (A — B);, C A}, and hence (A — B);, — B, C A}, — By,.
Hence A%, — B}, = (A— B)), — B},. O

COROLLARY 2.10. Let (X, mx,Z) be an ideal minimal space. Let myx have

property [I] and A, B be subsets of X with B € Z. Then (AU B);, = A =
(A- B,

Proof. Since B € Z, by Theorem 2.6, we have B}, = (). By Lemma 2.9, we
have AY, = (A — B)¥, and, by Theorem 2.8, (AU B);, = A% UB} = A% . O

*
m*

3. CLOSURE COMPATIBILITY OF MINIMAL SPACES

DEFINITION 3.1. Let (X,mx,Z) be an ideal minimal space. We say the
my is closure m-compatible with the ideal Z and we denote mx~Z, if the
following holds, for every A C X: if, for every x € A, there exists U € mx(x)
such that m —cl(U)NA € Z, then A € 7.

REMARK 3.2. If my is m-compatible with Z, then m x is closure m-compa-
tible with Z.

THEOREM 3.3. Let (X, mx,T) be an ideal minimal space. Then the impli-
cations (1) = (2) = (3) = (4) and (5) = (1) hold. If mx has property [I],
then the following properties are equivalent:
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(1) mx~1ZI.

(2) If a subset A of X has a cover of m-open sets each of whose m-closure
intersection with A is in L, then A € T.

(3) For every AC X, AN A%, = 0 implies that A € T.

(4) For every AC X, A— A €T.

(5) For every A C X, if A contains no nonempty subset B with B C B,
then A € T.

Proof. (1) = (2): The proof is obvious.

(2) = (3): Let AC X and x € A. Then = ¢ A}, and there exists V, €
mx (x) such that m — cl(V;) N A € Z. Therefore, we have A C U{V, : x € A}
and V, € mx(x) and, by (2), A € Z.

(3) = (4): For any A C X, AfAi@ CAand (A—-A7)N(A- A7) C
(A—Aﬁb)ﬁflI =0. By (3), A— A}, €

(4) = (5): B ()foreveryACXA Af €T Let A- A5, =J €l
Then A = J U (A N A%) and, by Theorem 2.8 (2) and Theorem 2.6 (5),
Ar = J5 U(ANAR)E = (AN AL)E. Therefore, we have AN A% = AN
(A N Afn)fn C (AN A%, and AN A7 C A. By the assumption AN AF, = 0,
we have A = A — A €.

(5) = (1): Let A C X and assume that, for every x € A, there exists
U € mx(z) such that m — cl(U) N A € Z. Then AN AF, = (). Suppose that
A contains some B such that B C Bf,. Then B = BN B}, C An A}, = 0.
Therefore, A contains no nonempty subset B with B C Bf,. Hence A € Z. [

THEOREM 3.4. Let (X, mx,Z) be an ideal minimal space. If mx is closure
m-compatible with T, then the implications (1) = (2) and (3) = (1) hold. If
mx has property [I], then the following properties are equivalent:

(1) For every AC X, ANAY, =1 z'mplz'es that A%, = ().

(2) For every AC X, (A— A* )
(3) For every AC X, (AN AL)E

*\S *|

Proof. First, we show that (1) holds, if mx is closure compatible with Z.
Let A be any subset of X such that AN A}, = (. By Theorem 3.3, A € T and,
by Theorem 2.6 (5), AF, = 0.

(1) = (2): Assume that, for every A C X, ANA¥, = 0 implies that A%, = (.
Let B= A — A},. Then

BN B, = (A— A3) N (A— ALY,
— (AN (X — A3)) N (AN (X - A3))
C AN (X — A N AL, N (X = A5)5)] = 0.

3

5

By (1), we have Bfn = (). Hence (A — Afn)fn = 0.
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(2) = (3): Assume that, for every A C X, (A — A% = 0.
A:(A—A;) (AN AF)

=[(A- A7) U(An A7)

=(A- A7) U(ANAL)

= (

5

*|

by Theorem 2.8

ANA .
(3) = (1): Assume that, for every A C X, ANAF, =0 and (AN A;,)5 =
A . This implies that § = (0)}, = A},. O

THEOREM 3.5. Let (X,mx,Z) be an ideal minimal space. Then the im-
plications (1) = (2) = (3) = (4) hold. If mx has property (B), then the
following properties are equivalent:

(1) For every m-clopen G, G C Gi,.

(2) X =X,

(3) m—cl(mx)NZ =0, where m —cl(mx) ={m —cl(V):V € mx}.
(4) If I € Z, then m — Inty(I) = 0.

Proof. (1)= (2): Since X is m-clopen, then X = X7 .

2)=0B): X=X, ={zreX:m-—cdU)NX =m—cl(U) ¢ Z, for each
m-open set U containing x}. Hence m — cl(mx)NZ = 0.

(3) = (4): Let m—cl(mx)NZ = and I € Z. Suppose that z € m—Inty(I).
Then there exists an m-open set U such that z € U Cm — ¢l(U) C I. Since
Ie€Z, 0#{z} Cm—c(U)em—climx)NZ. This is in contradiction with
m — cl(mx) NZ = (). Therefore, m — Inty(I) = 0.

(4)= (1): Let z € G. Assume x ¢ G5,. Then there exists U, € mx () such
that GNm — cl(Uy) € T and hence G N U, € Z. Since G is m-clopen, by (4)
and Lemma 2.5, x € GNU, = m—Int(GNU,) Cm—Int(GNm —cl(U,)) =
m — Intg(G Nm — cl(U,)) = 0. This is a contradiction. Hence x € G, and
G CGr,. O

THEOREM 3.6. Let (X,mx,Z) be an ideal minimal space, mx be closure
m- compatz’ble with Z. Then, for every mg-open set G and any subset A of X,

—d((GNA)E) = (GNA)E, C(GNAE)E Cm—clp(GNAE).
Proof. By Theorem 3.4(3) and Theorem 2.6, we have (G N A)F, = ((GN A)
NG NA)L)E C (GNAL)E. Moreover, by Theorem 2.6, we have that m —

m

A(GNA)E) = (GNA)E C(GNAL)E Cm—clg(GN AL). O

4. THE W—OPERATOR

DEFINITION 4.1. Let (X, mx,Z) be an ideal minimal space. The operator
U : P(X) — mx is defined as follows: for every A € X, U(A) = {z € X :
there exists U € my (z) such that m — cl(U) — A € Z}. Observe that W(A) =
X — (X - A,
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Several basic facts concerning the behavior of the operator ¥ are included
in the following theorem.

THEOREM 4.2. Let (X, mx,Z) be an ideal minimal space. Then the follow-
ing properties hold:
(1) If AC X and mx has property (B), then W(A) is m-open.
(2) If AC B, then V(A) C ¥(B).
(3) If AC X, then W(A) = U (¥ (A)) if and only if
(X

A = (X = A));

Proof. (1) This follows from Theorem 2.6 (3).
(2) This follows from Theorem 2.6 (1).
(3) This follows from the below facts:
i) T(A) = X — (X~ A)}, o -
i) W(W(A) =X - [X = (X = (X = A)p)l5 = X = (X = A)5)r
O

THEOREM 4.3. Let (X,mx,Z) be an ideal minimal space and mx have
property [I]. Then the following properties hold:
(1) If A, B € P(X), then (AN B) = VU(A)NU(B).
(2) IfA€Z, then V(A) =X — X
B3) fACX, €1, then@(A—I) U(A).
(4)
(5)

IfFACX,I€Z, then U(AUI) = VU(A).
5) If (A— B)U (B — A) € T, then ¥(A) = ¥(B).
Proof.
(1) ¥(ANB) =X — (X = (AN B));, =X — [(X - A)U(X - B)];,

=X - [(X = A);, U(X = B);]
=[X — (X = A);,N[X - (X - B);]
—T(A)NT(B).

(2) By Corollary 2.10, we obtain that (X — A)f, = X}, if A€ T.

(3) This follows from Corollary 2.10 and $(A—1) =X —[X — (A= 1D)]}, =
X—[(X-AUI, =X — (X - A}, =T(A).

(4) This follows from Corollary 2.10 and $(AUI) = X —
X—[(X=A) =I5, = X — (X = A);, = ¥(A).

(5) Assume (A—B)U(B—-A) €Z. Let A—-B=1and B—A = J.
Observe that I,J € Z, by heredity. Also observe that B = (A — 1)U J. Thus
T(A) = T(A—T) = W[(A— 1) UJ] = B(B), by (3) and (4). 0

_ COROLLARY 4.4. Let (X,mx,Z) be an ideal minimal space. Then U C
U (U), for every mg-open set U C X.

X~ (AUD;, =
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Proof. We know that U(U) = X — (X —U)},. Now (X —U);, C m —
cg(X-U) = X —U, since X —U is my-closed. Therefore, U = X — (X-U)C
X — (X U, = T(U). 0

THEOREM 4.5. Let (X, mx,Z) be an ideal minimal space and A C X. Then
the following properties hold:

(1) V(A) =u{U emx :m—cl(U)—AecT}.

(2) V(A) DU{U emyx:(m—cU)—A)UA-m-—cl(U)) €L}
Proof. (1) This follows immediately from the definition of the W-operator.
(2) By the heredity of Z, it is obvious that U{U € mx : (m — cl(U) — A) U
(A—m—cU)) eI} CU{Uemyxy :m—c(U)—AecZ}=V(A), for every
ACX. O

THEOREM 4.6. Let (X, mx,Z) be an ideal minimal space and assume that
mx has property [I]. Ifc ={AC X : AC V(A)}, then o is a topology for X.

Proof. Let 0 = {A C X : A C U(A)}. Since ¢ € Z, by Theorem 2.6
(5), (9)5, = ¢ and ¥(X) = X — (X — X))}, = X — (¢);, = X. Moreover,
U(p) = X — (X —¢)f, 2 X — X = ¢. Therefore, we obtain that ¢ C ¥(¢)
and X C ¥(X) = X, and thus ¢ and X € 0. Now if A, B € o, then by
Theorem 4.3 (1) AN B C W(A) N ¥(B) = V(AN B), which implies that
ANBeo. If {Ay: a € A} Co, then A, C U(4,) C U(UA,), for every a,
and hence UA, C W(UA,). This shows that o is a topology. O

By Theorem 4.3 and Corollary 4.4 the following relations hold:

mg-open —— m-open

|

o-open

THEOREM 4.7. Let (X, mx,Z) be an ideal minimal space. Then mx~ZT if
and only if W(A) — A€ T, for every A C X.

Proof. Necessity. Assume mx~Z and let A C X. Observe that x € U(A) —
A if and only if z ¢ A and = ¢ (X — A)F, if and only if x ¢ A and there
exists U, € mx(z) such that m — ¢l(U,) — A € Z if and only if there exists
U, € mx(x) such that x € m — cl(U,) — A € Z. Now, for each x € U(A) — A
and U, € mx(z), m — cl(U;) N (Y(A) — A) € Z, by heredity, and hence
W(A) — A € Z, by the assumption that mx~Z.

Sufficiency. Let A C X and assume that, for each x € A, there exists
U, € mx(x) such that m—cl(U;)NA € Z. Observe that U(X —A)— (X —A) =
A — A% = {z : there exists U, € mx(x) such that z € m — cl(U,) N A € T}.
Thus we have A C U(X — A) — (X — A) € Z and hence A € Z, by the heredity
of Z. g
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PROPOSITION 4.8. Let (X, mx,Z) be an ideal minimal space with mx~Z,
A C X. If N is a nonempty m-open subset of A¥, NW(A), then N - A €T
andm —cl(N)NA¢T.

Proof. It N C A7, N'W(A), then N — A C U(A) — A € T by Theorem 4.7
and hence N — A € T by heredity. Since N € mx — {¢} and N C A7, we
have m — cl(N) N A ¢ T by the definition of A7, . O

In [4], Newcomb defines A = B [mod Z] if (A — B)U (B — A) € T and
observes that = [mod Z] is an equivalence relation. By Theorem 4.3(5), we
have that if A = B [mod Z], then ¥(A) = ¥(B).

DEFINITION 4.9. Let (X,mx,Z) be an ideal minimal space. A subset A
of X is called an m-Baire set with respect to myx and Z (we denote A €
B.(X,mx,T)), if there exists an mg-open set U such that A = U [mod Z].

LEMMA 4.10. Let (X, mx,Z) be an ideal minimal space with mx~Z. If U
and V' are mg-open sets and W(U) = W(V), then U =V [mod I].

Proof. Since U is mg-open, by Corollary 4.4, we have U C W(U) and hence
U-V CU(U)-V =Y¥(V)-V €I, by Theorem 4.7. Therefore, U —V € Z.
Similarly V —U € Z. Now (U -V )U(V —U) € Z, by additivity. Hence U =V
[mod Z]. O

THEOREM 4.11. Let (X, mx,Z) be an ideal minimal space with mx~ZI. If
mx has property [I|, A, B € B,(X,mx,Z) and V(A) = ¥(B), then A =B
[mod Z].

Proof. Let U and V' be my-open sets such that A =U [mod Z] and B =V
[mod Z]. Now W(A) = U(U) and ¥(B) = ¥(V), by Theorem 4.3 (5). Since

V(A) = ¥(B), ¥(U) = ¥(V) and hence U = V [mod Z], by Lemma 4.10.
Hence A = B [mod Z], by transitivity. O

PROPOSITION 4.12. Let (X, mx,Z) be an ideal minimal space.
(1) If B € B,(X,mx,T) — I, then there exists nonempty my-open set A
such that B = A [mod Z].
(2) Let m — cl(mx)NZ = ¢. Then B € B.(X,mx,Z) — T if and only if
there exists a nonempty mg-open set A such that B = A [mod Z].

Proof. (1) Assume that B € B,.(X,mx,Z) —Z. Then B € B.(X,mx,Z).
Hence there exists mg-open set A such that B = A [mod Z]. If A = ¢, then
we have B = ¢ [mod Z|. This implies that B € Z, which is a contradiction.

(2) Assume there exists a nonempty mg-open set A such that B = A [mod
Z]. Hence, by Definition 4.9, B € B.(X,mx,Z). Then A = (B — J) U I,
where / = B— A, I = A— B € Z. If B € Z, then A € Z, by heredity
and additivity. Since A € My — {¢}, A # ¢ and there exists U € mx such
that ¢ # U € m — cl(U) € A. Since A € Z, m — cl(U) € T and thus
m —cl(U) € m — cl(mx) NZ. This contradicts m — cl(mx) NZ = ¢. O
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PROPOSITION 4.13. Let (X, mx,Z) be an ideal minimal space with mx~T.
If B € B.(X,mx,Z)—Z and mx has property [I], then ¥(B)Nm—Inty(B},) #
}.

Proof. Assume that B € B, (X, mx,Z) —Z. Then, by Proposition 4.12(1),
there exists A € My — {¢} such that B = A [mod Z]. By Theorem 3.5 and
Lemma 2.7, A = ANX = AN X}, C (ANnX)?, = A% . This implies that
¢p#AC A =(B-J)UIl)i, =B}, where J=B—- A I=A—-BcZTIhy

Corollary 2.10. Since A is mg-open set, A C m — Inty(BF). Also, ¢ # A C

V(A) = V(B), by Corollary 4.4 and Theorem 4.3(5). Consequently, we obtain
ACY(B)Nm — Inty(By)). O

Given an ideal minimal space (X, mx,Z), let U(X, mx,Z) denote {A C X :
there exists B € B,(X,mx,Z) —Z such that B C A}.

PROPOSITION 4.14. Let (X, mx,Z) be an ideal minimal space with mx~Z.
If every m-open set is mg-open, then the following statements are equivalent:
(1) AcU(X,mx,T);
(2) ¥(A) Nm — Inte(A,) # ¢;
(3) W(A) N AL, # o
(4) There exists N € mx — {¢} such that N—Ae€Z and NNA¢T.

Proof. (1) = (2): Let A € U(X, mx,T). Then there exists B € B,(X,mx,
T) —Z such that B C A. Then m — Intg(B},) € m — Inte(A},) and ¥(B) C
W(A) and hence m—Inty(B},)N¥(B) C m—Inty(AL,)NT¥(A). By Proposition
4.13, we have W(A) N'm — Inty(AL,) # ¢.

(2) = (3): The proof is obvious.

(3) = (4): Suppose that W(A) N A%, # ¢. Then there exists a point x € X
such that z € W(A) and x € A7,. Since x € W(A), there exists U € mx(z)
such that m — Cl(U) — A € . Furthermore, since x € A%, m—CI(V)NA ¢ T,
for every V€ mx(z). By our assumption, we deduce that U € mx(x) and
myx = My and there exists N € my such that x € N € m — CI(N) C U.
Hence UN A ¢ Z. On the other hand, U — A C m — Cl(U) — A € Z and hence
U — A € I. Therefore, (4) holds.

(4) = (1): Let B= NNA ¢ Z with N nonempty mg-open set and N—A € Z.
Then B € B.(X,mx,Z)—Z,since B¢ ZTand (B—N)U(N—-—B)=N-Ac¢c
7. U

THEOREM 4.15. Let (X, mx,T) be an ideal minimal space with mx~T, if
mx has property [I], where m—cl(mx)NZ = ¢. Then for A C X, W(A) C A},.

Proof. Suppose # € W(A) and = ¢ Af,. Then there exists a nonempty
neighborhood U, € mx(z) such that m — cl(U,;) N A € Z. Since z € W(A),
by Theorem 4.5 we deduce that z € U{U € mx : m — cl(U) — A € 1}
and that there exists V' € mx(z) such that m — cl(V) — A € Z. Now we have
U,NV € mx(x), m—cl(U,NV)NA € Z and m—cl(U,NV)—A € Z, by heredity.
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Hence, by finite additivity, we have (m—cl(U,NV)NA)U(m—cl(U;NV)—A) =
m — (U, NV) e Z. Since (U, NV) € mx(z), this is in contradiction with
m — cl(mx) NZ = ¢. Therefore, z € A},. This implies that W(A) C A¥. O
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