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ON OPERATORS IN IDEAL MINIMAL SPACES

AHMAD AL-OMARI and TAKASHI NOIRI

Abstract. A collection mX of subsets of a nonempty set X is called a minimal
structure [6] on X if φ ∈ mX and X ∈ mX . As a generalization of the local
closure function Γ(A) [1] in an ideal topological space (X, τ, I), we introduce

and investigate an operator A∗
m(I,mX) in an ideal minimal space (X,mX , I),

where I is an ideal.
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1. INTRODUCTION AND PRELIMINARIES

Let (X, τ) be a topological space with no separation properties assumed. For
a subset A of a topological space (X, τ), Cl(A) and Int(A) denote the closure
and the interior of A in (X, τ), respectively. An ideal I on a topological space
(X, τ) is a non-empty collection of subsets of X which satisfies the following
properties:

(1) A ∈ I and B ⊆ A implies that B ∈ I.
(2) A ∈ I and B ∈ I implies A ∪B ∈ I.

An ideal topological space is a topological space (X, τ) with an ideal I on
X and is denoted by (X, τ, I). For a subset A ⊆ X, A∗(I, τ) = {x ∈ X :
A ∩ U /∈ I, for every open set U containing x} is called the local function of
A with respect to I and τ (see [2]). We simply write A∗ instead of A∗(I, τ),
in case there is no reason for confusion. For every ideal topological space
(X, τ, I), there exists a topology τ∗(I), finer than τ , generated by the base
β(I, τ) = {U − J : U ∈ τ and J ∈ I}. It is shown in Example 3.6 of [2]
that β(I, τ) is not always a topology. When there is no ambiguity, τ∗(I) is
denoted by τ∗. Recall that A is said to be ∗-dense in itself (resp., τ∗-closed, ∗-
perfect) if A ⊆ A∗ (resp., A∗ ⊆ A, A = A∗). For a subset A ⊆ X, Cl∗(A) and
Int∗(A) will denote the closure and the interior of A in (X, τ∗), respectively.
A subfamily mX of the power set P(X) of a nonempty set X is called a
minimal structure [6] on X if φ ∈ mX and X ∈ mX . By (X,mX), we denote
a nonempty set X with a minimal structure mX on X and call it a minimal
space. Set mX(x) = {U ∈ mX : x ∈ U}. For a subset A of X, the m-closure
of A and the m-interior of A in (X,mX) are defined in [7] as follows:

m− Int(A) = ∪{U : U ⊆ A,U ∈ mX},
m− Cl(A) = ∩{U : A ⊆ F,X − F ∈ mX}.
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Theorem 1.1. ([3]) Let (X,mX) be a space with a minimal structure mX

on X and A ⊆ X. Then:

(1) X = m− Int(X) and φ = m− Cl(φ).
(2) m− Int(A) ⊆ A and A ⊆ m− Cl(A).
(3) If A ∈ mX , then m − Int(A) = A and, if X − F ∈ mX , then m −

Cl(F ) = F .
(4) If A ⊆ B, then m−Int(A) ⊆ m−Int(B) and m−Cl(A) ⊆ m−Cl(B).
(5) m−Int(m−Int(A)) = m−Int(A) and m−Cl(m−Cl(A)) = m−Cl(A).
(6) m−Cl(X−A) = X−m−Int(A) and m−Int(X−A) = X−m−Cl(A).

Definition 1.2. A minimal structure mX on X is said to have

(1) property (B), if mX is closed under arbitrary unions,
(2) property [I], if mX is closed under finite intersections.

Lemma 1.3. ([7]) Let mX have property B. Then the following properties
hold:

(1) A ∈ mX if and only if mX − Int(A) = A,
(2) A is mX-closed if and only if mX − Cl(A) = A,
(3) mX − Int(A) ∈ mX and mX − Cl(A) is mX-closed.

2. LOCAL OPERATOR FUNCTIONS IN IDEAL MINIMAL SPACES

Definition 2.1. Let (X,mX , I) be an ideal minimal space. For a subset A
of X, we define the following set operators: A∗

m(I,mX) = {x ∈ X : A∩U /∈ I,
for every U ∈ mX(x)} (see [8]), A∗

m(I,mX) = {x ∈ X : A ∩m − Cl(U) /∈ I,
for every U ∈ mX(x)}. In the case there is no confusion, A∗

m(I, τ) (resp.,
A∗
m(I, τ)) is briefly denoted by A∗

m (resp. A∗
m) and is called the minimal local

closure (resp., minimal local) function of A with respect to I and mX .

Remark 2.2. If an mX -structure mX is a topology τ , then A∗
m = A∗ and

A∗
m = Γ(A) (see [1]).

Lemma 2.3. Let (X,mX , I) be an ideal minimal space. Then A∗
m(I,mX) ⊆

A∗
m(I,mX), for every subset A of X.

Proof. Let x ∈ A∗
m(I,mX). Then, A ∩ U /∈ I, for every m-open set U

containing x. Since A ∩ U ⊆ A ∩ m − cl(U), we have A ∩ m − cl(U) /∈ I,
therefore x ∈ A∗

m(I,mX).
�

Definition 2.4. ([7]) Let A a subset of (X,mX). A point x ∈ X is called

(1) an mθ-adherent point of A, if m−Cl(U)∩A 6= φ, for every U ∈ mX(x).
(2) an mθ-interior point of A, if m− Cl(U) ⊆ A, for every U ∈ mX(x).

The set of all mθ-adherent points of A is called the mθ-closure of A and
is denoted by m − Clθ(A). If A = m − Clθ(A), then A is said to be mθ-
closed. The complement of an mθ-closed set is said to be mθ-open. The set
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of all mθ-interior points of A is called the mθ-interior of A and is denoted by
m− Intθ(A).

Lemma 2.5. ([7]) Let (X,mX) be a minimal space and A be a subset of X.
Then:

(1) If A is m-open, then m− cl(A) = m− clθ(A).
(2) If A is m-closed, then m− Int(A) = m− Intθ(A).

Theorem 2.6. Let (X,mX) be a minimal space, I and J be two ideals on
X, and let A and B be subsets of X. Then the following properties hold:

(1) If A ⊆ B, then A∗
m ⊆ B∗

m.
(2) If I ⊆ J , then A∗

m(I) ⊇ A∗
m(J ).

(3) A∗
m = m − cl(A∗

m) ⊆ m − clθ(A) and A∗
m is m-closed, if mX has

property (B).
(4) If A ⊆ A∗

m and A∗
m is m-open, then A∗

m = m− clθ(A).
(5) If A ∈ I, then A∗

m = ∅.

Proof. (1) Suppose that x /∈ B∗
m. Then there exists U ∈ mX(x) such that

B ∩m− cl(U) ∈ I. Since A∩m− cl(U) ⊆ B ∩m− cl(U), A∩m− cl(U) ∈ I.
Hence x /∈ A∗

m. Thus X \B∗
m ⊆ X \A∗

m or A∗
m ⊆ B∗

m.
(2) Suppose that x /∈ A∗

m(I). There exists U ∈ mX(x) such that A ∩m −
cl(U) ∈ I. Since I ⊆ J , A ∩ m − cl(U) ∈ J and x /∈ A∗

m(J ). Therefore,
A∗
m(J ) ⊆ A∗

m(I).
(3) We have A∗

m ⊆ m − cl(A∗
m) in general. Let x ∈ m − cl(A∗

m). Then
A∗
m ∩ U 6= ∅, for every U ∈ mX(x). Therefore, there exists some y ∈ A∗

m ∩ U
and U ∈ mX(y). Since y ∈ A∗

m, A ∩ m − cl(U) /∈ I and hence x ∈ A∗
m.

Hence we have m − cl(A∗
m) ⊆ A∗

m and thus A∗
m = m − cl(A∗

m). Again, let
x ∈ m− cl(A∗

m) = A∗
m. Then A ∩m− cl(U) /∈ I, for every U ∈ mX(x). This

implies A ∩m− cl(U) 6= ∅, for every U ∈ mX(x). Therefore, x ∈ m− clθ(A).
This shows that A∗

m(I) = m− cl(A∗
m) ⊆ m− clθ(A).

(4) For any subset A of X, by (3) we have A∗
m = m− cl(A∗

m) ⊆ m− clθ(A).
Since A ⊆ A∗

m and A∗
m is m-open, by Lemma 2.5, we have m − clθ(A) ⊆

m− clθ(A∗
m) = m− cl(A∗

m) = A∗
m ⊆ m− clθ(A) and hence A∗

m = m− clθ(A).
(5) Suppose that x ∈ A∗

m. Then, for any U ∈ mX(x), A ∩m − cl(U) /∈ I.
But A∩m−cl(U) ⊆ A and A /∈ I. This is a contradiction. Hence A∗

m = ∅. �

Lemma 2.7. Let (X,mX , I) be an ideal minimal space. If mX has property
[I] and U is mθ-open, then U ∩ A∗

m = U ∩ (U ∩A)∗m ⊆ (U ∩A)∗m, for any
subset A of X.

Proof. Suppose that U is mθ-open and x ∈ U ∩ A∗
m. Then x ∈ U and

x ∈ A∗
m. Since U is mθ-open, then there exists W ∈ mX such that x ∈ W ⊆

m − cl(W ) ⊆ U . Let V be any m-open set containing x. Then V ∩ W ∈
mX(x) and m − cl(V ∩ W ) ∩ A /∈ I and hence m − cl(V ) ∩ (U ∩ A) /∈ I.
This shows that x ∈ (U ∩A)∗m and hence we obtain U ∩ A∗

m ⊆ (U ∩A)∗m.
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Moreover, U ∩A∗
m ⊆ U ∩ (U ∩A)∗m and, by Theorem 2.6, (U ∩A)∗m ⊆ A∗

m and
U ∩ (U ∩A)∗m ⊆ U ∩A∗

m. Therefore, U ∩A∗
m = U ∩ (U ∩A)∗m. �

Theorem 2.8. Let (X,mX , I) be an ideal minimal space. If mX has prop-
erty [I] and A, B are subsets of X, then the following properties hold:

(1) (∅)∗m = ∅.
(2) A∗

m ∪B∗
m = (A ∪B)∗m.

Proof. (1) The proof is obvious.
(2) It follows from Theorem 2.6 that (A ∪B)∗m ⊇ A∗

m ∪ B∗
m. To prove the

reverse inclusion, let x /∈ A∗
m ∪ B∗

m. Then x belongs neither to A∗
m nor to

B∗
m. Therefore there exist Ux, Vx ∈ mX(x) such that m− cl(Ux) ∩A ∈ I and

m−cl(Vx)∩B ∈ I. Since I is additive, (m−cl(Ux)∩A)∪(m−cl(Vx)∩B) ∈ I.
Moreover, since I is hereditary and

m− cl(Ux ∩ Vx) ∩ (A ∪B) =(mCl(Ux ∩ Vx) ∩A) ∪ (mCl(Ux ∩ Vx) ∩B)

⊆(m− cl(Ux) ∩A) ∪ (m− cl(Vx) ∩B),

m− cl(Ux ∩ Vx)∩ (A∪B) ∈ I. Since Ux ∩ Vx ∈ mX(x), x /∈ (A ∪B)∗m. Hence
(X \ A∗

m) ∩ (X \ B∗
m ⊆ X \ (A ∪B)∗m or (A ∪B)∗m ⊆ A∗

m ∪ B∗
m. Hence, we

obtain A∗
m ∪B∗

m = (A ∪B)∗m. �

Lemma 2.9. Let (X,mX , I) be an ideal minimal space. Let mX have prop-
erty [I] and A,B be subsets of X. Then A∗

m −B∗
m = (A−B)∗m −B∗

m.

Proof. We have, by Theorem 2.8, A∗
m = [(A−B) ∪(A∩B)]∗m = (A−B)∗m∪

(A ∩B)∗m ⊆ (A−B)∗m ∪ B∗
m. Thus A∗

m − B∗
m ⊆ (A−B)∗m − B∗

m. By The-
orem 2.6, we get (A−B)∗m ⊆ A∗

m and hence (A−B)∗m − B∗
m ⊆ A∗

m − B∗
m.

Hence A∗
m −B∗

m = (A−B)∗m −B∗
m. �

Corollary 2.10. Let (X,mX , I) be an ideal minimal space. Let mX have
property [I] and A,B be subsets of X with B ∈ I. Then (A ∪B)∗m = A∗

m =
(A−B)∗m.

Proof. Since B ∈ I, by Theorem 2.6, we have B∗
m = ∅. By Lemma 2.9, we

have A∗
m = (A−B)∗m and, by Theorem 2.8, (A ∪B)∗m = A∗

m ∪B∗
m = A∗

m. �

3. CLOSURE COMPATIBILITY OF MINIMAL SPACES

Definition 3.1. Let (X,mX , I) be an ideal minimal space. We say the
mX is closure m-compatible with the ideal I and we denote mX∼I, if the
following holds, for every A ⊆ X: if, for every x ∈ A, there exists U ∈ mX(x)
such that m− cl(U) ∩A ∈ I, then A ∈ I.

Remark 3.2. If mX is m-compatible with I, then mX is closure m-compa-
tible with I.

Theorem 3.3. Let (X,mX , I) be an ideal minimal space. Then the impli-
cations (1) ⇒ (2) ⇒ (3) ⇒ (4) and (5) ⇒ (1) hold. If mX has property [I],
then the following properties are equivalent:
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(1) mX∼I.
(2) If a subset A of X has a cover of m-open sets each of whose m-closure

intersection with A is in I, then A ∈ I.
(3) For every A ⊆ X, A ∩A∗

m = ∅ implies that A ∈ I.
(4) For every A ⊆ X, A−A∗

m ∈ I.
(5) For every A ⊆ X, if A contains no nonempty subset B with B ⊆ B∗

m,
then A ∈ I.

Proof. (1) ⇒ (2): The proof is obvious.
(2) ⇒ (3): Let A ⊆ X and x ∈ A. Then x /∈ A∗

m and there exists Vx ∈
mX(x) such that m− cl(Vx) ∩ A ∈ I. Therefore, we have A ⊆ ∪{Vx : x ∈ A}
and Vx ∈ mX(x) and, by (2), A ∈ I.

(3) ⇒ (4): For any A ⊆ X, A − A∗
m ⊆ A and (A − A∗

m) ∩ (A−A∗
m)∗m ⊆

(A−A∗
m) ∩A∗

m = ∅. By (3), A−A∗
m ∈ I.

(4) ⇒ (5): By (4), for every A ⊆ X, A − A∗
m ∈ I. Let A − A∗

m = J ∈ I.
Then A = J ∪ (A ∩ A∗

m) and, by Theorem 2.8 (2) and Theorem 2.6 (5),
A∗
m = J∗

m ∪ (A ∩A∗
m)∗m = (A ∩A∗

m)∗m. Therefore, we have A ∩ A∗
m = A ∩

(A ∩A∗
m)∗m ⊆ (A ∩A∗

m)∗m and A ∩ A∗
m ⊆ A. By the assumption A ∩ A∗

m = ∅,
we have A = A−A∗

m ∈ I.
(5) ⇒ (1): Let A ⊆ X and assume that, for every x ∈ A, there exists

U ∈ mX(x) such that m − cl(U) ∩ A ∈ I. Then A ∩ A∗
m = ∅. Suppose that

A contains some B such that B ⊆ B∗
m. Then B = B ∩ B∗

m ⊆ A ∩ A∗
m = ∅.

Therefore, A contains no nonempty subset B with B ⊆ B∗
m. Hence A ∈ I. �

Theorem 3.4. Let (X,mX , I) be an ideal minimal space. If mX is closure
m-compatible with I, then the implications (1) ⇒ (2) and (3) ⇒ (1) hold. If
mX has property [I], then the following properties are equivalent:

(1) For every A ⊆ X, A ∩A∗
m = ∅ implies that A∗

m = ∅.
(2) For every A ⊆ X, (A−A∗

m)∗m = ∅.
(3) For every A ⊆ X, (A ∩A∗

m)∗m = A∗
m.

Proof. First, we show that (1) holds, if mX is closure compatible with I.
Let A be any subset of X such that A∩A∗

m = ∅. By Theorem 3.3, A ∈ I and,
by Theorem 2.6 (5), A∗

m = ∅.
(1)⇒ (2): Assume that, for every A ⊆ X, A∩A∗

m = ∅ implies that A∗
m = ∅.

Let B = A−A∗
m. Then

B ∩B∗
m = (A−A∗

m) ∩ (A−A∗
m)∗m

= (A ∩ (X −A∗
m)) ∩ (A ∩ (X −A∗

m))∗m

⊆ [A ∩ (X −A∗
m)] ∩ [A∗

m ∩ ((X −A∗
m)∗m)] = ∅.

By (1), we have B∗
m = ∅. Hence (A−A∗

m)∗m = ∅.
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(2) ⇒ (3): Assume that, for every A ⊆ X, (A−A∗
m)∗m = ∅.

A = (A−A∗
m) ∪ (A ∩A∗

m)

A∗
m = [(A−A∗

m) ∪ (A ∩A∗
m)]∗m

= (A−A∗
m)∗m ∪ (A ∩A∗

m)∗m by Theorem 2.8

= (A ∩A∗
m)∗m.

(3) ⇒ (1): Assume that, for every A ⊆ X, A ∩ A∗
m = ∅ and (A ∩A∗

m)∗m =
A∗
m. This implies that ∅ = (∅)∗m = A∗

m. �

Theorem 3.5. Let (X,mX , I) be an ideal minimal space. Then the im-
plications (1) ⇒ (2) ⇒ (3) ⇒ (4) hold. If mX has property (B), then the
following properties are equivalent:

(1) For every m-clopen G, G ⊆ G∗
m.

(2) X = X∗
m.

(3) m− cl(mX) ∩ I = ∅, where m− cl(mX) = {m− cl(V ) : V ∈ mX}.
(4) If I ∈ I, then m− Intθ(I) = ∅.

Proof. (1)⇒ (2): Since X is m-clopen, then X = X∗
m.

(2)⇒ (3): X = X∗
m = {x ∈ X : m − cl(U) ∩X = m − cl(U) /∈ I, for each

m-open set U containing x}. Hence m− cl(mX) ∩ I = ∅.
(3)⇒ (4): Let m−cl(mX)∩I = ∅ and I ∈ I. Suppose that x ∈ m−Intθ(I).

Then there exists an m-open set U such that x ∈ U ⊆ m − cl(U) ⊆ I. Since
I ∈ I, ∅ 6= {x} ⊆ m− cl(U) ∈ m− cl(mX) ∩ I. This is in contradiction with
m− cl(mX) ∩ I = ∅. Therefore, m− Intθ(I) = ∅.

(4)⇒ (1): Let x ∈ G. Assume x /∈ G∗
m. Then there exists Ux ∈ mX(x) such

that G ∩m− cl(Ux) ∈ I and hence G ∩ Ux ∈ I. Since G is m-clopen, by (4)
and Lemma 2.5, x ∈ G∩Ux = m− Int(G∩Ux) ⊆ m− Int(G∩m− cl(Ux)) =
m − Intθ(G ∩m − cl(Ux)) = ∅. This is a contradiction. Hence x ∈ G∗

m and
G ⊆ G∗

m. �

Theorem 3.6. Let (X,mX , I) be an ideal minimal space, mX be closure
m-compatible with I. Then, for every mθ-open set G and any subset A of X,
m− cl((G ∩A)∗m) = (G ∩A)∗m ⊆ (G ∩A∗

m)∗m ⊆ m− clθ(G ∩A∗
m).

Proof. By Theorem 3.4(3) and Theorem 2.6, we have (G ∩A)∗m = ((G∩A)
∩(G ∩A)∗m)∗m ⊆ (G ∩A∗

m)∗m. Moreover, by Theorem 2.6, we have that m −
cl((G ∩A)∗m) = (G ∩A)∗m ⊆ (G ∩A∗

m)∗m ⊆ m− clθ(G ∩A∗
m). �

4. THE Ψ−Ψ−Ψ−OPERATOR

Definition 4.1. Let (X,mX , I) be an ideal minimal space. The operator
Ψ : P(X) → mX is defined as follows: for every A ∈ X, Ψ(A) = {x ∈ X :
there exists U ∈ mX(x) such that m− cl(U)−A ∈ I}. Observe that Ψ(A) =
X − (X −A)∗m.
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Several basic facts concerning the behavior of the operator Ψ are included
in the following theorem.

Theorem 4.2. Let (X,mX , I) be an ideal minimal space. Then the follow-
ing properties hold:

(1) If A ⊆ X and mX has property (B), then Ψ(A) is m-open.
(2) If A ⊆ B, then Ψ(A) ⊆ Ψ(B).
(3) If A ⊆ X, then Ψ(A) = Ψ(Ψ(A)) if and only if

(X −A)∗m = ((X −A)∗m)∗m.

Proof. (1) This follows from Theorem 2.6 (3).
(2) This follows from Theorem 2.6 (1).
(3) This follows from the below facts:

i) Ψ(A) = X − (X −A)∗m.
ii) Ψ(Ψ(A)) = X − [X − (X − (X −A)∗m)]∗m = X − ((X −A)∗m)∗m.

�

Theorem 4.3. Let (X,mX , I) be an ideal minimal space and mX have
property [I]. Then the following properties hold:

(1) If A,B ∈ P(X), then Ψ(A ∩B) = Ψ(A) ∩Ψ(B).
(2) If A ∈ I, then Ψ(A) = X −X∗

m.
(3) If A ⊆ X, I ∈ I, then Ψ(A− I) = Ψ(A).
(4) If A ⊆ X, I ∈ I, then Ψ(A ∪ I) = Ψ(A).
(5) If (A−B) ∪ (B −A) ∈ I, then Ψ(A) = Ψ(B).

Proof.

(1) Ψ(A ∩B) =X − (X − (A ∩B))∗m = X − [(X −A) ∪ (X −B)]∗m

=X − [(X −A)∗m ∪ (X −B)∗m]

=[X − (X −A)∗m ∩ [X − (X −B)∗m]

=Ψ(A) ∩Ψ(B).

(2) By Corollary 2.10, we obtain that (X −A)∗m = X∗
m if A ∈ I.

(3) This follows from Corollary 2.10 and Ψ(A− I) = X− [X − (A− I)]∗m =
X − [(X −A) ∪ I]∗m = X − (X −A)∗m = Ψ(A).

(4) This follows from Corollary 2.10 and Ψ(A∪ I) = X − [X − (A ∪ I)]∗m =
X − [(X −A)− I]∗m = X − (X −A)∗m = Ψ(A).

(5) Assume (A − B) ∪ (B − A) ∈ I. Let A − B = I and B − A = J .
Observe that I, J ∈ I, by heredity. Also observe that B = (A− I) ∪ J . Thus
Ψ(A) = Ψ(A− I) = Ψ[(A− I) ∪ J ] = Ψ(B), by (3) and (4). �

Corollary 4.4. Let (X,mX , I) be an ideal minimal space. Then U ⊆
Ψ(U), for every mθ-open set U ⊆ X.
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Proof. We know that Ψ(U) = X − (X − U)∗m. Now (X − U)∗m ⊆ m −
clθ(X−U) = X−U , since X−U is mθ-closed. Therefore, U = X−(X−U) ⊆
X − (X − U)∗m = Ψ(U). �

Theorem 4.5. Let (X,mX , I) be an ideal minimal space and A ⊆ X. Then
the following properties hold:

(1) Ψ(A) = ∪{U ∈ mX : m− cl(U)−A ∈ I}.
(2) Ψ(A) ⊇ ∪{U ∈ mX : (m− cl(U)−A) ∪ (A−m− cl(U)) ∈ I}.

Proof. (1) This follows immediately from the definition of the Ψ-operator.
(2) By the heredity of I, it is obvious that ∪{U ∈ mX : (m− cl(U)−A) ∪

(A −m − cl(U)) ∈ I} ⊆ ∪{U ∈ mX : m − cl(U) − A ∈ I} = Ψ(A), for every
A ⊆ X. �

Theorem 4.6. Let (X,mX , I) be an ideal minimal space and assume that
mX has property [I]. If σ = {A ⊆ X : A ⊆ Ψ(A)}, then σ is a topology for X.

Proof. Let σ = {A ⊆ X : A ⊆ Ψ(A)}. Since φ ∈ I, by Theorem 2.6
(5), (φ)∗m = φ and Ψ(X) = X − (X −X)∗m = X − (φ)∗m = X. Moreover,
Ψ(φ) = X − (X − φ)∗m ⊇ X − X = φ. Therefore, we obtain that φ ⊆ Ψ(φ)
and X ⊆ Ψ(X) = X, and thus φ and X ∈ σ. Now if A,B ∈ σ, then by
Theorem 4.3 (1) A ∩ B ⊆ Ψ(A) ∩ Ψ(B) = Ψ(A ∩ B), which implies that
A ∩ B ∈ σ. If {Aα : α ∈ ∆} ⊆ σ, then Aα ⊆ Ψ(Aα) ⊆ Ψ(∪Aα), for every α,
and hence ∪Aα ⊆ Ψ(∪Aα). This shows that σ is a topology. �

By Theorem 4.3 and Corollary 4.4 the following relations hold:

mθ-open

��

// m-open

σ-open

Theorem 4.7. Let (X,mX , I) be an ideal minimal space. Then mX∼I if
and only if Ψ(A)−A ∈ I, for every A ⊆ X.

Proof. Necessity. Assume mX∼I and let A ⊆ X. Observe that x ∈ Ψ(A)−
A if and only if x /∈ A and x /∈ (X −A)∗m if and only if x /∈ A and there
exists Ux ∈ mX(x) such that m − cl(Ux) − A ∈ I if and only if there exists
Ux ∈ mX(x) such that x ∈ m− cl(Ux)− A ∈ I. Now, for each x ∈ Ψ(A)− A
and Ux ∈ mX(x), m − cl(Ux) ∩ (Ψ(A) − A) ∈ I, by heredity, and hence
Ψ(A)−A ∈ I, by the assumption that mX∼I.

Sufficiency. Let A ⊆ X and assume that, for each x ∈ A, there exists
Ux ∈ mX(x) such that m−cl(Ux)∩A ∈ I. Observe that Ψ(X−A)−(X−A) =
A − A∗

m = {x : there exists Ux ∈ mX(x) such that x ∈ m − cl(Ux) ∩ A ∈ I}.
Thus we have A ⊆ Ψ(X −A)− (X −A) ∈ I and hence A ∈ I, by the heredity
of I. �
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Proposition 4.8. Let (X,mX , I) be an ideal minimal space with mX∼I,
A ⊆ X. If N is a nonempty m-open subset of A∗

m ∩ Ψ(A), then N − A ∈ I
and m− cl(N) ∩A /∈ I.

Proof. If N ⊆ A∗
m ∩ Ψ(A), then N − A ⊆ Ψ(A) − A ∈ I by Theorem 4.7

and hence N − A ∈ I by heredity. Since N ∈ mX − {φ} and N ⊆ A∗
m, we

have m− cl(N) ∩A /∈ I by the definition of A∗
m. �

In [4], Newcomb defines A = B [mod I] if (A − B) ∪ (B − A) ∈ I and
observes that = [mod I] is an equivalence relation. By Theorem 4.3(5), we
have that if A = B [mod I], then Ψ(A) = Ψ(B).

Definition 4.9. Let (X,mX , I) be an ideal minimal space. A subset A
of X is called an m-Baire set with respect to mX and I (we denote A ∈
Br(X,mX , I)), if there exists an mθ-open set U such that A = U [mod I].

Lemma 4.10. Let (X,mX , I) be an ideal minimal space with mX∼I. If U
and V are mθ-open sets and Ψ(U) = Ψ(V ), then U = V [mod I].

Proof. Since U is mθ-open, by Corollary 4.4, we have U ⊆ Ψ(U) and hence
U − V ⊆ Ψ(U)− V = Ψ(V )− V ∈ I, by Theorem 4.7. Therefore, U − V ∈ I.
Similarly V −U ∈ I. Now (U−V )∪ (V −U) ∈ I, by additivity. Hence U = V
[mod I]. �

Theorem 4.11. Let (X,mX , I) be an ideal minimal space with mX∼I. If
mX has property [I], A, B ∈ Br(X,mX , I) and Ψ(A) = Ψ(B), then A = B
[mod I].

Proof. Let U and V be mθ-open sets such that A = U [mod I] and B = V
[mod I]. Now Ψ(A) = Ψ(U) and Ψ(B) = Ψ(V ), by Theorem 4.3 (5). Since
Ψ(A) = Ψ(B), Ψ(U) = Ψ(V ) and hence U = V [mod I], by Lemma 4.10.
Hence A = B [mod I], by transitivity. �

Proposition 4.12. Let (X,mX , I) be an ideal minimal space.

(1) If B ∈ Br(X,mX , I) − I, then there exists nonempty mθ-open set A
such that B = A [mod I].

(2) Let m − cl(mX) ∩ I = φ. Then B ∈ Br(X,mX , I) − I if and only if
there exists a nonempty mθ-open set A such that B = A [mod I].

Proof. (1) Assume that B ∈ Br(X,mX , I) − I. Then B ∈ Br(X,mX , I).
Hence there exists mθ-open set A such that B = A [mod I]. If A = φ, then
we have B = φ [mod I]. This implies that B ∈ I, which is a contradiction.

(2) Assume there exists a nonempty mθ-open set A such that B = A [mod
I]. Hence, by Definition 4.9, B ∈ Br(X,mX , I). Then A = (B − J) ∪ I,
where J = B − A, I = A − B ∈ I. If B ∈ I, then A ∈ I, by heredity
and additivity. Since A ∈ Mθ − {φ}, A 6= φ and there exists U ∈ mX such
that φ 6= U ⊆ m − cl(U) ⊆ A. Since A ∈ I, m − cl(U) ∈ I and thus
m− cl(U) ∈ m− cl(mX) ∩ I. This contradicts m− cl(mX) ∩ I = φ. �
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Proposition 4.13. Let (X,mX , I) be an ideal minimal space with mX∼I.
If B ∈ Br(X,mX , I)−I and mX has property [I], then Ψ(B)∩m−Intθ(B∗

m) 6=
φ.

Proof. Assume that B ∈ Br(X,mX , I) − I. Then, by Proposition 4.12(1),
there exists A ∈ Mθ − {φ} such that B = A [mod I]. By Theorem 3.5 and
Lemma 2.7, A = A ∩ X = A ∩ X∗

m ⊆ (A ∩X)∗m = A∗
m. This implies that

φ 6= A ⊆ A∗
m = ((B − J) ∪ I)∗m = B∗

m, where J = B − A, I = A − B ∈ I by
Corollary 2.10. Since A is mθ-open set, A ⊆ m − Intθ(B∗

m). Also, φ 6= A ⊆
Ψ(A) = Ψ(B), by Corollary 4.4 and Theorem 4.3(5). Consequently, we obtain
A ⊆ Ψ(B) ∩m− Intθ(B∗

m). �

Given an ideal minimal space (X,mX , I), let U(X,mX , I) denote {A ⊆ X :
there exists B ∈ Br(X,mX , I)− I such that B ⊆ A}.

Proposition 4.14. Let (X,mX , I) be an ideal minimal space with mX∼I.
If every m-open set is mθ-open, then the following statements are equivalent:

(1) A ∈ U(X,mX , I);
(2) Ψ(A) ∩m− Intθ(A∗

m) 6= φ;
(3) Ψ(A) ∩A∗

m 6= φ;
(4) There exists N ∈ mX − {φ} such that N −A ∈ I and N ∩A /∈ I.

Proof. (1) ⇒ (2): Let A ∈ U(X,mX , I). Then there exists B ∈ Br(X,mX ,
I) −I such that B ⊆ A. Then m − Intθ(B∗

m) ⊆ m − Intθ(A∗
m) and Ψ(B) ⊆

Ψ(A) and hence m−Intθ(B∗
m)∩Ψ(B) ⊆ m−Intθ(A∗

m)∩Ψ(A). By Proposition
4.13, we have Ψ(A) ∩m− Intθ(A∗

m) 6= φ.
(2) ⇒ (3): The proof is obvious.
(3) ⇒ (4): Suppose that Ψ(A) ∩A∗

m 6= φ. Then there exists a point x ∈ X
such that x ∈ Ψ(A) and x ∈ A∗

m. Since x ∈ Ψ(A), there exists U ∈ mX(x)
such that m−Cl(U)−A ∈ I. Furthermore, since x ∈ A∗

m, m−Cl(V )∩A /∈ I,
for every V ∈ mX(x). By our assumption, we deduce that U ∈ mX(x) and
mX = Mθ and there exists N ∈ mX such that x ∈ N ⊂ m − Cl(N) ⊂ U .
Hence U ∩A /∈ I. On the other hand, U −A ⊂ m−Cl(U)−A ∈ I and hence
U −A ∈ I. Therefore, (4) holds.

(4)⇒ (1): Let B = N∩A /∈ I withN nonemptymθ-open set andN−A ∈ I.
Then B ∈ Br(X,mX , I)− I, since B /∈ I and (B −N) ∪ (N −B) = N −A ∈
I. �

Theorem 4.15. Let (X,mX , I) be an ideal minimal space with mX∼I, if
mX has property [I], where m−cl(mX)∩I = φ. Then for A ⊆ X, Ψ(A) ⊆ A∗

m.

Proof. Suppose x ∈ Ψ(A) and x /∈ A∗
m. Then there exists a nonempty

neighborhood Ux ∈ mX(x) such that m − cl(Ux) ∩ A ∈ I. Since x ∈ Ψ(A),
by Theorem 4.5 we deduce that x ∈ ∪{U ∈ mX : m − cl(U) − A ∈ I}
and that there exists V ∈ mX(x) such that m− cl(V )−A ∈ I. Now we have
Ux∩V ∈ mX(x), m−cl(Ux∩V )∩A ∈ I and m−cl(Ux∩V )−A ∈ I, by heredity.
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Hence, by finite additivity, we have (m−cl(Ux∩V )∩A)∪(m−cl(Ux∩V )−A) =
m − cl(Ux ∩ V ) ∈ I. Since (Ux ∩ V ) ∈ mX(x), this is in contradiction with
m− cl(mX) ∩ I = φ. Therefore, x ∈ A∗

m. This implies that Ψ(A) ⊆ A∗
m. �
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Galaţi. Ser. Mat. Fiz. Mec. Teor., Fasc. II, 18 (2000), 31–41.

[7] Popa, V. and Noiri, T., A unified theory of weak continuity for functions, Rend. Circ.
Mat. Palermo (2), 51 (2002), 439–464.

[8] Ozbakir, O.B. and Yildirim, E.D., On some closed sets in ideal minimal spaces, Acta
Math. Hungar., 125 (2009), 227–235.

Received June 16, 2016

Accepted April 20, 2017

Al al-Bayt University

Faculty of Sciences, Department of Mathematics

P.O. Box 130095, Mafraq 25113, Jordan

E-mail: omarimutah1@yahoo.com

2949-1 Shiokita-cho, Hinagu, Yatsushiro-shi

Kumamoto-ken, 869-5142, Japan

E-mail: t.noiri@nifty.com


