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WITT OVERGROUPS FOR UNIPOTENT ELEMENTS
IN EXCEPTIONAL ALGEBRAIC GROUPS

OF BAD CHARACTERISTIC

IULIAN I. SIMION

Abstract. Let G be a simple exceptional algebraic group defined over an alge-
braically closed field of bad characteristic. The decompositions as a product of
Witt groups of the connected component of the double centralizer Z(CG(u))◦

for unipotent elements u is given up to isogeny. For type G2, F4 and E6 minimal
dimensional connected overgroups for unipotent elements are constructed in G
whenever u ∈ CG(u)◦.
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1. INTRODUCTION

Let G be a simple algebraic group defined over an algebraically closed field
k of characteristic p and let g = Lie(G) be its Lie algebra. The characteristic
is called bad for G if it equals 2 when G is not of type An, 3 when G is of
exceptional type or 5 when G is of type E8. In all other cases of positive
characteristic we say that p is good for G.

The problems addressed in this article originate from the Jacobson-Morozov
theorem, a fundamental result in the theory of complex semisimple Lie alge-
bras. The theorem states that, when k = C, any nilpotent element e ∈ g lies
in an sl2-subalgebra a ⊆ g. For each e, the subalgebra a was shown to be
unique up to conjugation by the stabilizer CG(e) in the adjoint action of G on
g [5]. The extent to which these results go through when p > 0 is described
in [18].

In the general case of positive characteristic much work has been done on
generalizing different aspects of the aforementioned results. If p = 0 then a is
the Lie algebra of a subgroup A ⊆ G and the maximal torus of A gives a useful
grading on g. These aspects were extended to good positive characteristic by
A. Premet [8] (see also [3, §5.1]).

From a different perspective, the correspondence between nilpotent orbits
in g and unipotent conjugacy classes in G raises the question of the existence
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and properties of A1-type overgroups for unipotent elements u ∈ G. These
problems were investigated when p is good for G in [17, 10]. The order of
u is an obvious obstruction for the existence of such overgroups. If up = 1
then there exists a subgroup A 3 u of type A1 [17] and in particular a 1-
dimensional unipotent group u ∈ U ⊆ A (the unipotent radical of a Borel
subgroup of A). Moreover A and U have several good properties, e.g. if u 6= 1
then CG(u) = CG(U) = CG(Lie(U)) [10].

It is natural to ask if there exist overgroups W for u when up 6= 1 with
similar properties. This led to the analysis of minimal closed connected abelian
subgroups W ⊆ G containing u. The structure of commutative connected
unipotent groups [12, VII§2] shows that the smallest candidate for such a
subgroup containing u is isogenous to a Witt group (definitions given in §2)
and has dimension d where the order of u is pd.

If each non-trivial unipotent element u has order p then the 1-dimensional
subgroup containing it is sometimes called ‘the saturation’ of u. Loosely speak-
ing, there are unipotent elements of order greater than p if ‘the group absorbs
the additive structure of the ground field’.

R. Proud showed that in good characteristic there exists a subgroup W of
G containing u isomorphic to a Witt group of minimal possible dimension [9].
However there are several choices for these overgroups and no canonical one
is known. Without the condition of minimality, a canonical choice for W is
the connected component of the double centralizer CG(CG(u)) = Z(CG(u)).
In [11] it is shown that Z(CG(u))◦ decomposes as a direct sum of Witt groups
where one of the summands contains u. Properties of the double centralizers
are obtained in [6] where in particular a dimension formula is deduced.

In bad characteristic the situation changes dramatically since most tools
used for the above mentioned results are not available (a short survey on this
is given in [15]). Since in this setting there exist unipotent elements u with
u 6∈ CG(u)◦, it is clear that there will not always exist connected abelian
overgroups for unipotent elements. In this paper we consider the case where
G is a simple exceptional algebraic group and p is bad for G. We are interested
in the following questions concerning Witt subgroups of G. For a unipotent
element u ∈ G:

(1) What is the decomposition of Z(CG(u))◦ as a product of Witt groups
(up to isogeny)?

(2) Does there exist a Witt subgroup W ⊆ G containing u?

A description of double centralizers of unipotent elements for exceptional
algebraic groups in bad characteristic is given in [13, 14]. The methods there
allow for an explicit calculation of CG(CG(u))◦. More precisely, for each unipo-
tent conjugacy class represented by an element u, a parametrization of a max-
imal connected unipotent subgroup of CG(u) was calculated (with one excep-
tion: when G is of type F4 and u is in the unipotent class C3(a1)) as well as
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parametrizations of Z(CG(u))◦ in all cases. These parametrizations are topo-
logical embeddings which can be used together with Lemma 3.1 (see §3) to
give an answer to the first question for all exceptional algebraic groups in bad
characteristic – see Theorem 3.1. This extends the analysis in [11].

That the results in [11] do not extend to our setting can be seen for example
from the unipotent class A2 in E6 if p = 2. In this case a representative u is
distinguished in an A2 subsystem subgroup so by [9] there exists a connected
abelian overgroup W for u (in H and therefore in G). However since by
[13] u 6∈ Z(CG(u))◦ it follows that W 6⊂ Z(CG(u))◦. So there might exist a
Witt subgroup W containing u even if u /∈ Z(CG(u))◦ and one cannot expect
in general that minimal dimensional overgroups W of u have the property
CG(u) = CG(W ). In addition, since Witt groups are connected abelian it
is clear that if u /∈ CG(u)◦ then no Witt overgroup of u exists in G. All
cases for which u /∈ CG(u)◦ are given in [7, Corollary 4] or [13, 14]. For all
other unipotent classes, methods similar to the ones in [9] for handling the
exceptional type groups can be used to construct Witt overgroups W ⊆ G (up
to isogeny) for certain representatives u. We use [1] for such calculations and
obtain the desired subgroups when G is of type G2, F4 and E6 in Proposition
4.2.

2. PRELIMINARIES

The ring of Witt vectors was first described in [19]. We will only be con-
cerned with the additive structure of this ring which we recall here.

Definition 2.1. Let p be a prime. For m-tuples a = (a0, . . . , am−1), b =
(b0, . . . , bm−1) ∈ Zm the Witt sum a⊕ b = (c0, . . . , cm−1) is defined as follows

c0 = a0 + b0, ck = ak + bk +
1

pk

[
k−1∑
i=0

pi(ap
k−i

i + bp
k−i

i − cp
k−i

i )

]
.

One checks that the ck’s are polynomials in the ai’s and bi’s with coefficients
in Z (see for example [2] or [4]).

Let k be a field of characteristic p. The m-dimensional Witt group is the
algebraic group Wm(k) = (km,⊕), where the group structure is given by the
above polynomials and as algebraic varieties km is the affine space Am(k). If
it is clear what the field k is then we write Wm for Wm(k).

Example 2.1. For W2 we have

(a1, a2)⊕ (b1, b2) = (a1 + b1, a2 + b2 +
1

p
[ap1 + bp1 − (a1 + b1)p])
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and it is easy to realize these groups as subgroups of GLp+1(k). If

φ(a1, a2) =



1 a1
a21
2! . . .

ap−1
1

(p−1)! a2

0 1 a1
a21
2! . . .

ap−1
1

(p−1)!

0 0
. . .

. . .
...

...
. . .

. . .
...

... 1 a1

0 0 0 . . . 0 1


,

one checks that φ(a1, a2)φ(b1, b2) = (a1 + b1, a2 + b2 +
∑p−1

i=1
ai1
i!

bp−i
1

(p−i)!). Since

(p− 1)! = −1 in k (of characteristic p) we recover the Witt sum.

An exposition on Witt groups (as algebraic groups) can be found in [12,
Chapter VII] from where we take the following definitions and result.

Definition 2.2. An isogeny is a surjective algebraic group homomorphism
with finite kernel. For commutative connected unipotent groups G1 and G2

the existence of an isogeny G1 → G2 is equivalent to the existence of an
isogeny G2 → G1 by [12, Theorem VII.10.1]. If these equivalent conditions
are satisfied we call the two groups isogenous.

Theorem 2.1. [12, Theorem VII.10.1] Every commutative connected unipo-
tent group is isogenous to a product of Witt groups.

In what follows we use additive notation for Witt groups and for connected
abelian unipotent groups. Following the discussion in [12, pg. 172] we identify
the subgroup of elements of order less than or equal to pi of Wn with Wi =
pn−iWn.

Definition 2.3. For a commutative unipotent group H the period of H is
defined to be the smallest power of p such that pnH = 1. It is the exponent
of H. We denote it by per(H). In particular, per(Wn) = pdim(Wn).

Since Witt groups are connected and unipotent any subgroup W ⊆ G isoge-
nous to a Witt group lies in U , the unipotent radical of some Borel subgroup
B. Moreover, since W is abelian it lies in the unipotent radical of some Borel
subgroup of CG(u) for each u ∈ W . For each unipotent conjugacy class one
can choose a representative u in U explicitly in such a way that the unipotent
radical of a Borel subgroup of CG(u) is CU (u)◦ [13, 14, Proposition B].

Moreover, fixing a maximal torus T in B (and therefore in G) a parametriza-
tion φu : Ad → CU (u)◦ can be expressed with respect to the root subgroups
determined by T . If Φ+ is the set of positive roots determined by T and
B then U =

∏
α∈Φ+ Uα for a fixed (but arbitrary) ordering of the roots and

where Uα is the root group corresponding to the root α for which we have an
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isomorphism of algebraic groups uα : (k,+) → Uα ⊂ G. With this notation,
φu has the form

φu : kd 3 z = (z1, . . . , zd) 7→
∏
α∈Φ+

uα(Pα(z)),

where Pα(z) are polynomials in z with coefficients in Z. For our calculations,
the ordering of the roots is the one used in [1], and if α is the i-th root, we
write ui instead of uα for brevity as in [13, 14]. Recall also that for U we have
Chevalley’s commutator formula which is extensively used in loc.cit. in order
to obtain the maps φu as well as similar parametrizations for Z(CG(u))◦.

3. DECOMPOSITION OF DOUBLE CENTRALIZERS OF UNIPOTENT ELEMENTS

In this section, we treat the decomposition of the connected component
of Z(CG(u))◦ for a unipotent element u in an exceptional algebraic group G
when p is bad for G. The following proposition allows us to make use of the
parametrization of Z(CG(u))◦ described in [13, 14].

Lemma 3.1. Let H be a connected abelian unipotent group with per(H) = pn

and denote by di the dimension of pn−iH for 0 ≤ i ≤ n. Then H is isogenous
to the product

∏n
i=1W

ai
n−i+1 where ai = di + di−2 − 2di−1.

Proof. Suppose that H =
∏n
j=1W

bj
n−j+1. Under this assumption the de-

composition of H is determined by the bj so it is equivalent to

∀0 ≤ i ≤ n, di = dim pn−iH = dim
n∏
j=1

(pn−iWn−j+1)bj =
n∑
j=1

bj dim(Wi−j+1)

with the convention that Wl = 0 if l ≤ 0. The non-zero terms in the above
sum are those for which j < i+ 1 so di =

∑i
j=1(i− j + 1)bj . It is not difficult

to see that this is equivalent to bj = dj +dj−2−2dj−1 with dl = 0 for all l ≤ 0.

Now, if H is isogenous to a product of Witt groups W =
∏n
j=1W

aj
n−j+1,

choose an isogeny φ : H → W . Since φ(pmH) = pmφ(H) and φ is surjective
the restriction of φ to pmH is itself an isogeny from pmH to pmW . In particular
dim pmH = dim pmW for all m ∈ N. Since these dimensions determine W
uniquely they determine H uniquely up to isogeny. �

Example 3.1. In order to compute piZ(CU (ũ))◦ we can proceed as follows.
Suppose char(k) = 2 and consider the case of the unipotent class D5 in E6. A
representative is ũ = u9(−1)u2(1)u10(1)u7(1)u6(1) [13, Table 6] and a calcula-
tion shows that Z(CG(ũ))◦ has dimension 4 and that it has a parametrization
φ : k4 → U given by

φ(z) = u13(z1)u14(z1)u16(z1)u18(z1)u23(z1)u27(z1 + z2
1)u28(z2)

·u29(z2 + z1 + z2
1)u32(z3)u33(z3 + z1 + z2

1)u35(z3 + z1 + z2
1)u36(z4).
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Calculating, we obtain

φ(z)2 = u28(z2
1)u29(z2

1)u32(z2
1)u33(z2

1)u35(z2
1)u36(z2

1)

and φ(z)22 = 1 which shows that 2Z(CG(ũ))◦ is 1-dimensional and that
22Z(CG(ũ))◦ = 1. So, in this case, by Lemma 3.1, Z(CG(ũ))◦ is isogenous
to W2W

2
1 .

Treating all unipotent conjugacy classes case-by-case we obtain:

Theorem 3.1. Let G be an exceptional algebraic group and suppose that
the characteristic p of k is bad for G. For a unipotent element u ∈ G, the
connected component of the double centralizer Z(CG(u))◦ is isogenous to the
product of Witt groups given in Tables 1 to 5.

Class p = 2 p = 3
E7 W3W2W

2
1 W 2

2W
3
1

E7(a1) W 2
2W

2
1 W2W

4
1

E7(a2) W 2
2W1 W2W

3
1

E7(a3) W2W
2
1 W2W

2
1

E6 W 2
2 W2W

2
1

E6(a1) W2W1 W 3
1

D6 W2W
2
1 W2W

2
1

E7(a4) W 3
1 W 3

1

D6(a1) W 4
1 W 4

1

D5A1 W 3
1 W 3

1

A6 W 2
1 W 2

1

E7(a5) W 2
1 W 2

1

D5 W 3
1 W 3

1

E6(a3) W 2
1 W 2

1

D6(a2) W 3
1 W 3

1

D5(a1)A1 W 2
1 W 2

1

A5A1 W 2
1 W 2

1

A′5 W 2
1 W 2

1

A4A2 W1 W1

D5(a1) W 2
1 W 2

1

A4A1 W1 W1

D4A1 W2 W 2
1

A′′5 W2W1 W2W1

Class p = 2 p = 3
A3A2A1 W1 W1

A4 W2 W2

A3A
(2)
2 W 2

1 −
A3A2 W1 W2

D4(a1)A1 W 2
1 W2

D4 W2 W 2
1

A3A
2
1 W 2

1 W2

D4(a1) W1 W1

(A3A1)′ W 2
1 W2

A2
2A1 W1 W1

(A3A1)′′ W 2
1 W2

A2A
3
1 W1 W1

A2
2 W1 W1

A3 W 2
1 W2

A2A
2
1 W1 W1

A2A1 W1 W1

A4
1 W1 W1

A2 W1 W1

(A3
1)′ W1 W1

(A3
1)′′ W1 W1

A2
1 W1 W1

A1 W1 W1

Table 1 – Witt decomposition E7.
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Class p = 2 p = 3
F4 W 2

2 W 2
1W2

F4(a1) W 4
1 W 3

1

F4(a2) W 2
1 W 2

1

C3 W1W2 W 2
1

B3 W1W2 W 2
1

F4(a3) W 2
1 W1

C3(a1)(2) W 4
1 −

C3(a1) W 3
1 W2

Ã2A
(2)
1 W 2

1 −
Ã2A1 W1 W1

B
(2)
2 W 3

1 −
B2 W 2

1 W2

A2Ã1 W1 W1

Ã2 W1 W1

A2 W1 W1

A1Ã1 W 2
1 W1

Ã
(2)
1 W 2

1 −
Ã1 W1 W1

A1 W1 W1

Class p = 2 p = 3
E6 W1W2W3 W 4

1W2

E6(a1) W2W3 W 5
1

D5 W 2
1W2 W 4

1

E6(a3) W1W2 W 3
1

D5(a1) W1W2 W 3
1

A5 W1W2 W 3
1

A4A1 W2 W 2
1

D4 W2 W 2
1

A4 W1W2 W1W2

D4(a1) W1 W1

A3A1 W 2
1 W2

A2
2A1 W1 W1

A3 W 2
1 W2

A2A
2
1 W1 W1

A2
2 W2 W 2

1

A2A1 W2 W 2
1

A2 W1 W1

A3
1 W1 W1

A2
1 W1 W1

A1 W1 W1

Table 2 – Witt decomposition F4 and E6.

Class p = 2 p = 3 p = 5
E8 W3W

2
2W1 W3W

5
1 W2W

6
1

E8(a1) W3W
4
1 W2W

5
1 W 7

1

E8(a2) W3W
3
1 W2W

4
1 W 6

1

E8(a3) W3W
2
1 W2W

3
1 W 5

1

E8(a4) W2W
2
1 W2W

2
1 W 4

1

E7 W3W
2
1 W2W

3
1 W 5

1

E8(b4) W2W
2
1 W2W

2
1 W 4

1

E8(a5) W2W1 W2W1 W 3
1

E7(a1) W2W
3
1 W2W

3
1 W 5

1

E8(b5) W2W1 W2W1 W 3
1

D7 W2W1 W2W1 W 3
1

E8(a6) W2 W2 W 2
1

Table 3 – Center of centralizer E8.
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Class p = 2 p = 3 p = 5
E7(a2) W2W

2
1 W2W

2
1 W 4

1

E6A1 W2W1 W2W1 W 3
1

(D7(a1))(2) W2W1 − −
D7(a1) W2W1 W2W1 W 3

1

E8(b6) W2 W 2
1 W 2

1

E7(a3) W2W1 W2W1 W 3
1

E6(a1)A1 W2 W 2
1 W 2

1

A
(3)
7 − W 2

1 −
A7 W 2

1 W1 W 2
1

D7(a2) W 2
1 W 2

1 W 2
1

E6 W 2
2 W2W

2
1 W2W

2
1

D6 W2W1 W2W1 W 3
1

(D5A2)(2) W 2
1 − −

D5A2 W 2
1 W 2

1 W 2
1

E6(a1) W2W1 W 3
1 W2W1

E7(a4) W 3
1 W 3

1 W2W1

A6A1 W1 W1 W1

D6(a1) W 3
1 W 3

1 W2W1

A6 W 2
1 W 2

1 W2

E8(a7) W1 W1 W1

D5A1 W 3
1 W 3

1 W2W1

E7(a5) W 2
1 W 2

1 W2

E6(a3)A1 W 2
1 W 2

1 W2

D6(a2) W 2
1 W 2

1 W2

D5(a1)A2 W 2
1 W 2

1 W2

A5A1 W 2
1 W 2

1 W2

A4A3 W1 W1 W1

D5 W 3
1 W 3

1 W2W1

E6(a3) W 2
1 W 2

1 W2

(D4A2)(2) W1 − −
D4A2 W1 W 2

1 W2

Class p = 2 p = 3 p = 5
A4A2A1 W1 W1 W1

D5(a1)A1 W 2
1 W 2

1 W2

A5 W 2
1 W 2

1 W2

A4A2 W1 W1 W1

A4A
2
1 W1 W1 W1

D5(a1) W 2
1 W 2

1 W2

A2
3 W1 W1 W1

A4A1 W1 W1 W1

D4(a1)A2 W1 W1 W1

D4A1 W2 W 2
1 W2

A3A2A1 W1 W1 W1

A4 W2 W2 W 2
1

(A3A2)(2) W1 − −
A3A2 W1 W2 W 2

1

D4(a1)A1 W1 W1 W1

A3A
2
1 W 2

1 W2 W 2
1

A2
2A

2
1 W1 W1 W1

D4 W2 W 2
1 W2

D4(a1) W1 W1 W1

A3A1 W 2
1 W2 W 2

1

A2
2A1 W1 W1 W1

A2
2 W1 W1 W1

A2A
3
1 W1 W1 W1

A3 W 2
1 W2 W 2

1

A2A
2
1 W1 W1 W1

A2A1 W1 W1 W1

A4
1 W1 W1 W1

A2 W1 W1 W1

A3
1 W1 W1 W1

A2
1 W1 W1 W1

A1 W1 W1 W1

Table 4 – Witt decomposition E8 (continued).

Class p = 2 p = 3
G2 W2 W 2

1

G2(a1) W1 W 2
1

Ã
(3)
1 − W 2

1

Ã1 W1 W1

A1 W1 W1

Table 5 – Witt decomposition G2.
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4. CONSTRUCTING WITT OVERGROUPS

In this section, we are interested in the existence of minimal dimensional
connected abelian overgroups W for unipotent elements u ∈ G. As before,
U is the unipotent radical of a Borel subgroup B and u ∈ U . Let pd be the
order of u. If there is a subgroup W of G containing u and isogeneous to a
Witt group then it lies in CG(u)◦. In particular a necessary condition for the
existence of such an overgroup is u ∈ CG(u)◦. But is it sufficient, i.e., can we
choose W to be isogenous to Wd?

We can replace u by a conjugate ũ such that CB(ũ)◦ is a Borel subgroup of
CG(u) [13, 14]. Since by assumption W is connected and unipotent, it will lie
in some Borel subgroup of CG(ũ) which is conjugate (in CG(ũ)) to CB(ũ)◦ so
the existence of W in G reduces to the existance of W in CU (ũ)◦. This shows
that one can restrict to the case where u is distinguished. Indeed, W will have
to be a subgroup of CG(Tu) for some maximal torus Tu of CG(u). Suppose
this is not the case, then since CW (Tu) is a connected group containing u if
[W,Tu] 6= 1 we get a contradiction with the minimality of W .

Below we treat those cases where u ∈ G of type G2, F4 and E6 and we
consider all classes not just the distinguished ones. Before doing so we give
one property which all connected abelian unipotent overgroups of certain u
share. Recall that, for a parabolic subgroup P = LoQ with unipotent radical
Q, an element u ∈ Q is called a Richardson element if the P -conjugacy class
of u is dense in Q.

Proposition 4.1. Let P = LoQ be a parabolic subgroup and suppose u ∈ Q
is a Richardson element of P . If V ⊆ Q is a connected group containing u
then uG ∩ V is dense in V .

Proof. There are a finite number of unipotent classes in G and V is ir-

reducible so there exists a unipotent class vG such that vG ∩ V = V . By

assumption u ∈ V so u ∈ vG. We may assume that v ∈ V otherwise vG ∩ V is

empty and contradicting vG ∩ V 6= ∅.
Now, u is a Richardson element so uG ∩Q = Q ⊇ V 3 v and therefore

v ∈ uG. It follows that vG = uG so vG = uG since both vG and uG are open
and dense in their closure [16, Lemma 2.3.3] �

We make use of the parametrizations of CU (ũ)◦ obtained with the method
in [13]. The order of u is pd. The existence of a connected abelian unipotent
group of period pd is equivalent to the existence of morphism w : Wd → CG(u)◦

with u ∈ Im(w) and such that the following diagram commutes

Wd ×Wd
⊕ //

w×w
��

Wd
∼= Ad
w
��

CU (ũ)◦ × CU (ũ)◦ µ
// CU (ũ)◦ ∼= An,
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where µ denotes the multiplication in G. Note that the commutativity of
the above diagram implies the commutativity of the diagrams obtained by
restricting to the subgroups piWd for all i ≤ d.

In addition, we aim at constructing w such that w(1, 0, . . . , 0) = u. The
isomorphism CU (ũ)◦ ∼= An allows us to identify the affine algebra of CU (ũ)◦

with k[y1, . . . , yn]. In this setting, the existence of w is equivalent to the
existence of a solution for the system{

(⊕ ◦ w)∗ yi = [(w × w) ◦ µ]∗ yi
with ‘boundary condition’ w(1, 0, . . . , 0) = u,

where, for a morphism of algebraic verieties φ, φ∗ is the comorphism. Finding
all solutions to such a system can be difficult however we are only interested
in finding one solution.

Example 4.1. The C3(a1) class in F4 for p = 2 has to be treated separately
because this is the only class where we do not have a parametrization of
CU (ũ)◦. The representative of the class is as in [13, §5.6] where it is shown
that the ideal of CU (ũ)◦ is (I, x2

9 + x2
11 + x9) with

I = (x1, x2, x5, x6, x8, x11 + x12, x9 + x15, x13 + x18, x16 + x20).

and where the xi are coordinates on U w.r.t the positive roots. Consider
the ideal J = (I, x2

9 + x2
11 + x9, x3, x4, x7, x14, x17, x18, x19, x20, x22, x23, x9 + x10)

which defines a subvariety V of U and the map w : W2 → V given by

w(t1, t2) = u9(t2
1)u10(t2

1)u11(t2
1 + t1)u12(t2

1 + t1)u15(t2
1) ·

u21(t3
1 + t2)u24(t6

1 + t2
2).

One checks that

w(t1, t2)w(s1, s2) = u9(s2
1 + t2

1)u10(s2
1 + t2

1)u11(s1 + t1 + s2
1 + t2

1) ·
u12(s1 + t1 + s2

1 + t2
1)u15(s2

1 + t2
1) ·

u21(s2 + t2 + t1 s1 + s3
1 + t1 s2

1 + t2
1 s1 + t3

1) ·
u24(s2

2 + t2
2 + t2

1 s2
1 + s6

1 + t2
1 s4

1 + t4
1 s2

1 + t6
1)

= w((t1, t2)⊕ (s1, s2)).

So w is a homomorphism with 2-dimensional image. By [12, Proposition
VII.9], the image of w is isogenous to a Witt group of dimension 2.

We now turn to the main result of this section.

Proposition 4.2. Let G be of type G2, F4 or E6. A unipotent element u
of order pd lies in CG(u)◦ if and only if there exists a d-dimensional connected
abelian unipotent group W containing it.

Proof. If the characteristic is good, the result is given in [9]. If there is a
d-dimensional connected unipotent group, then clearly u ∈ CG(u)◦. For the
other implication we consider the unipotent classes of G case-by-case using the
representatives ũ in [13, 14] and the method therein to obtain parametrizations
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of CU (ũ)◦. All cases where ũ lies in CG(ũ)◦ are listed below and we give
explicitly a homomorphism w : Wd → G such that w(1, 0, . . . , 0) = ũ. The
unipotent class C3(a1) in F4 when the characteristic is 2 was treated separately
above. For the class E6(a3) in characteristic 3 we have chosen a different
representative w(1, 0, . . . , 0) given below. For the D4(a1) and D5(a1) classes
it is not difficult to deduce representatives of the subregular elements in a
Levi subgroup of type D4 and D5 respectively. For these two classes we give
the construction with respect to the root system of these Levi subgroups (the
numbering of the positive roots is, as before, the one used in [1]).

G2(a1)
p = 2 W = u2(t1)u5(t1)u6(t2)

p = 3 W = u2(t1)u5(t1)u6(2 t21)

(Ã1)(3)

p = 3 W = u4(t1)u6(t1) diagonally embedded in Z(CG(ũ))◦

F4(a1)

p = 3 W = u2(t1)u4(t1)u7(t1)u6(t1 +2 t21)u5(t1)u8(2 t1 + t21)u9(t1 +2 t21)u11(2 t2 +
+2 t21 + t31)u12(2 t1 + t21)u14(2 t2)u15(2 t2 + t1 +2 t21)u16(2 t2 +2 t1 +2 t21 +2 t31)
u17(t21 + t31 + t41)u18(t2 +2 t1 +2 t21 +2 t41)u19(2 t2 +2 t1 + t21 +2 t31 + t41)
u20(2 t2 + t1 +2 t21 + t31 +2 t51)u21(2 t2 + t1 + t1 t2 +2 t21 +2 t21 t2 +2 t41 + t51)
u22(t2 +2 t1 + t21 +2 t41 + t51)u23(t22 +2 t1 t2 + t21 +2 t21 t2 +2 t31 +2 t31 t2 + t41 +2 t61)
u24(t2 +2 t1 + t1 t2 + t21 +2 t21 t2 + t31 t2 +2 t41 t2 +2 t51 + t71)

F4(a2)

p = 3 W = u1(t1)u4(t1)u9(t1)u10(t1)u11(t1 +2 t21)u12(t1 +2 t21)u15(2 t2 +2 t1 + t21)
u19(2 t2 +2 t1 +2 t21 +2 t31)u21(2 t2 +2 t1 +2 t21 + t31 + t41)u24(t2 +2 t41 + t51)

F4(a3)
p = 2 W = u4(t1)u6(t1)u10(t1)u16(t2 + t1 + t21)u18(t1)u20(t2)u22(t2 + t1 + t21)

u23(t2 + t1 + t31)u24(t1 t2)

p = 3 W = u4(t1)u6(t1)u10(t1)u16(2 t1 + t21)u18(t1)u20(t1 +2 t21)u22(t1 +2 t21)
u23(t2 + t1 +2 t21)u24(t2 + t21 +2 t31)

C3(a1)(2)

p = 2 W = u9(t1)u10(t1)u13(t1 + t21)u15(t1)u16(t1)u18(t1 + t21)u21(t2)u22(t1 + t31)
u23(t2)u24(t2 + t1 + t31)

(Ã2A1)(2)

p = 2 W = u11(t1)u12(t1)u16(t1)u18(t1)u21(t2 + t21)u24(t2)

B
(2)
2

p = 2 W = u9(t1)u15(t1)u16(t1)u18(t1 + t21)u21(t2 + t21)u23(t2)u24(t2 + t31)

Ã
(2)
1

p = 2 W = u1(t1)u20(t1) diagonally embedded in Z(CG(ũ))◦
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D4(a1)
p = 2 W = u4(t1)u1(t1)u7(t1)u6(t1)u8(t2)u9(t2 + t1 + t21)u10(t2 + t1 + t21)

u11(t2 + t1 + t31)u12(t2)

D5(a1)
p = 2 W = u1(t1)u9(t1)u7(t1)u6(t1 + t21)u5(t1)u4(t1)u10(t2 + t1 + t21)

u11(t2 + t1 + t21)u12(t2)u13(t2)u14(t1 + t31)u15(t21 + t31)u16(t2)u17(t2 + t22)
u18(t2 + t21 + t31)u19(t3 + t2 + t1 + t22 + t41)u20(t3 + t1 t2 + t21 t2 + t31 + t41)

E6(a1)
p = 2 W = u1(t1)u2(t1)u9(t1)u10(t1)u7(t1 + t21)u5(t1)u6(t1)u11(t2)u12(t2 + t1 + t21)

u13(t2)u14(t2 + t1 + t21)u15(t2)u16(t2 + t1 + t21)u17(t2 + t21 + t31)u18(t21 + t31)
u19(t21 + t31)u20(t1 + t31)u21(t21 + t31)u22(t2 + t22 + t31 + t41)u23(t3 + t2 + t1 t2 +
+ t21 t2 + t31 + t41)u24(t2)u25(t3 + t22 + t21 + t41)u26(t3 + t2 + t22 + t1 t2 + t21 t2)
u27(t3 + t2 + t21 t2 + t31 + t31 t2 + t51)u28(t3 + t2 + t22 + t1 t2 + t21 t2 + t31 + t41)
u29(t3 + t22 + t21 t2 + t31 + t31 t2 + t41)u30(t3 + t2 + t1 t2 + t21 t2 + t31 + t51)
u31(t3 + t22 + t1 t2 + t31 t2 + t41 + t51)u32(t3 + t22 + t1 t22 + t31 + t21 t22 + t61)
u33(t3 + t32 + t1 t22 + t21 t2 + t31 + t21 t22 + t41 t2 + t61)u34(t3 + t32 + t21 t22 + t31 t2 +
+ t31 t22 + t41 t2 + t61 + t71)u35(t2 t3 + t32 + t1 t22 + t21 t22 + t51 + t71)
u36(t4 + t23 + t2 t3 + t22 + t22 t3 + t1 t2 t3 + t42 + t1 t32 + t21 t2 t3 + t21 t32 + t71 + t81)

p = 3 W = u1(t1)u2(t1)u9(t1)u10(t1)u5(t1)u6(t1)u11(t1 +2 t21)u12(t1 +2 t21)
u13(t1 +2 t21)u14(t1 +2 t21)u15(t1 +2 t21)u16(t1 +2 t21)u17(2 t2 + t21 +2 t31)
u18(t2 + t1 +2 t31)u19(t2 + t1 +2 t31)u20(t2 +2 t1 + t31)u21(t2 + t1 +2 t31)
u22(t2 + t21 +2 t41)u23(t21 +2 t41)u24(t2 + t21 +2 t31)u25(2 t1 + t21 + t31 +2 t41)
u26(t2 +2 t21 + t31)u27(t1 + t21 + t31 +2 t41 + t51)u28(t2 +2 t21 +2 t31 +2 t41)
u29(2 t2 +2 t1 + t21 +2 t31 +2 t41 +2 t51)u30(2 t1 + t21 +2 t41 + t51)u31(2 t2 + t21 +
+ t31 +2 t41 +2 t51)u32(t2 + t1 +2 t22 + t1 t2 + t21 +2 t31 +2 t31 t2 +2 t41)
u33(t2 +2 t22 +2 t1 t2 + t21 + t31 + t31 t2 + t41 +2 t51 + t61)u34(2 t2 + t1 +2 t22 +
2 t1 t2 + t21 + t31 t2 + t41 + t61 +2 t71)u35(t22 + t21 t2 + t41 +2 t41 t2 +2 t51 +2 t61 + t71)
u36(t2 +2 t1 + t22 + t21 + t21 t2 + t31 t2 + t41 + t41 t2 + t61 + t71)

E6(a3)
p = 2 W = u1(t1)u8(t1)u9(t1)u11(t1)u12(t2)u14(t1)u18(t1 + t21)u19(t1)u20(t2 + t1 +

+ t21)u21(t2)u22(t2 + t1 + t21)u23(t1 + t31)u24(t2 + t1 + t21)u26(t1 + t1 t2 + t31)
u28(t2 + t1 + t31)u29(t2 + t1 + t1 t2 + t21)u30(t3 + t1 + t1 t2 + t21 t2 + t31)u31(t2)
u33(t2 + t22 + t21 + t41)u34(t3 + t1 + t22 + t1 t2 + t21 t2 + t41)u35(t3 + t1 + t1 t2 +
+ t1 t22 + t31 t2 + t51)u36(t22 + t1 t22)

p = 3 v = u13(1)u1(1)u15(1)u6(1)u14(1)u4(1)u17(1)u18(2)u20(1)u21(2)u36(1)
W = u13(t1)u1(t1)u15(t1)u6(t1)u14(t1)u4(t1)u17(t21)u18(2 t21)u20(t21)
u21(2 t21)u23(t2)u29(t2)u31(2 t2)u36(t51)

�

Remark 4.1. It appears reasonable to expect that, for all connected re-
ductive algebraic groups G, a unipotent element u ∈ G of order pd lies in a
d-dimensional connected (abelian) subgroup if and only if it lies in CG(u)◦.
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