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ON MULTIFUNCTION SPACE 0L(X)

RITU SEN and BISHWAMBHAR ROY

Abstract. In 1982, Christensen [1] studied upper semicontinuous functions and
compact valued set-valued mappings. Following that we have introduced the
notion of f-upper (f-lower) semicontinuous functions. In this paper our main
interest of study is 0L(X), the collection of all #-cusco maps from a Urysohn, H-
closed space X to the space R of real numbers. We first define the multifunction
space 0L(X) and then prove an important embedding theorem.
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1. INTRODUCTION

Historically, there have been two hyperspace topologies of particular impor-
tance: the Vietoris topology and the Hausdorff metric topology, as considered
by Michael [6] in his fundamental article on hyperspaces. Hausdorff [5] first
defined a metric on the collection of all nonempty closed subsets of X, where
X is a bounded metric space. Another very important and classical hyper-
space topology is the Fell topology introduced by J. M. G. Fell [3]. After that,
much of the work has been done on hyperspace topology. In [4] the authors
have introduced a new hyperspace topology on the collection of all #-closed
subsets of X.

In this paper our main interest of study is #L(X), the collection of all 6-
cusco maps from a Urysohn, H-closed space X to the space R of real numbers.
OL(X) can be considered as a subset of §(X x R) of all nonempty 6-closed
subsets of X x R, by identifying each 6-cusco map with its graph. So OL(X)
can inherit the hyperspace topologies from (X x R). Here we first define
the multifunction space §L(X) and investigate its relationship with the real-
valued f-semicontinuous functions. We introduce some hyperspace topologies
and then prove an important embedding theorem that shows that 6(X) can
be considered as a subspace of L(X) with these hyperspace topologies.

2. THE SPACE GL(X) AND 6-SEMICONTINUOUS FUNCTIONS

In this section we study the basic notions of the space §L(X) of multifunc-
tions on a topological space X. We then examine the relationship between the
space L(X) and the real-valued #-semicontinuous functions.
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DEFINITION 1. Let X and Y be nonempty sets. A set-valued mapping or
multifunction from X to Y is a mapping that assigns to each element of X, a
(possibly empty) subset of Y. If T is a set-valued mapping from X to Y, then
its graph is G(T) = {(z,y) e X x Y :y € T(x)}.

Also, if F'is a subset of X x Y and x € X, then define F(z) = {y € Y :
(z,y) € F}. To each subset F of X x Y, a set-valued mapping from X to Y
is defined which assigns F'(x) to each point z € X. Then F is the graph of a
set-valued mapping. Thus, each subset of X x Y is viewed as a multifunction
and every multifunction is viewed as a subset of X x Y by identifying it with
its graph.

DEFINITION 2. Let X and Y be two topological spaces and let T" be a set-
valued mapping from X to Y. Then T is said to be 8-upper semicontinuous
(f-usc) at x € X, if whenever V' is an open subset of Y containing 7'(x), then
V contains T'(z) for each z € clU, where U is a neighbourhood of x. T is said
to be O-upper semicontinuous on X if it is f-usc at each point = € X.

DEFINITION 3 ([8]). A T space X is called H-closed if any open cover of
X by means of open sets in X has a finite proximate subcover i.e., a finite
collection whose union is dense in X.

A set A C X is called an H-set if any open cover {U, : a € A} of A
by open sets of X has a finite subfamily {U,, : ¢ = 1,2,....,n} such that
AC UL, clU,,.

DEFINITION 4. A multifunction T from X to Y is said to be 8-usco on X
if T is a #-usc map such that T'(z) is a nonempty H-set in Y for each x € X.

T is said to be 0-cusc on X if T' is a 6-usc map such that 7'(x) is a nonempty
f-connected subset of Y for each z € X (a subset A of X is called 0-connected
[7] if it is connected in (X, clp)).

T is said to be #-cusco on X if T is both -cusc and 6-usco.

The family of all #-cusco maps from a Urysohn H-closed space X to the
space R of real numbers is denoted by 0L(X).

DEFINITION 5. Let X be a Urysohn space. A subset F' of X x R is said
to be 6-locally bounded at x € X if there exist some positive b € R and a
neighbourhood U of z such that F(z) C [-b,b], for all z € clU. F is said to
be 0-locally bounded on X if it is #-locally bounded at each = € X.

DEFINITION 6 ([8]). A point x € X is said to be a §-contact point of a set
A C X if for every neighbourhood U of x, we get clU N A # ().

The set of all #-contact points of a set A is called the 0-closure of A, and
we denote this set by clgA. A set A C X is called 0-closed if A = clgA. A set
A is called @-open if X \ A is 6-closed.

The collection of all f-open sets in X forms a topology 79 on X which is
coarser than the original topology of X. We shall denote (X) ={AC X : A
is nonempty 6#-closed}.
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THEOREM 1. [2] In an H-closed Urysohn space, every H -set is 0-closed and
every 0-closed set is an H -set.

PROPOSITION 1. Let X be a Urysohn, H-closed space. A subset F of X xR
is the graph of a 8-usco map if and only if F' is 8-closed and 6-locally bounded
with F(x) nonempty for each x € X.

Proof. First suppose that F' is the graph of a 6-usco map. Let (z,y) € clpF.
If possible, let(z,y) € F ie., y ¢ F(x). Since X is H-closed, Urysohn and
F(z) is an H-set, it is f-closed. Thus there exist some open set V' containing
F(z) and W containing y such that V. NclW = ). Since F' is #-usco, there
exists a neighbourhood U of x such that F(z) C V, for all z € clU. Thus
(U x clW)NF =0 = cl(Ux W)NF = () which contradicts the fact that
(z,y) € clpF. Hence (z,y) € F and so F is #-closed. Also, since for each
x € X, F(x) is an H-set of R and F is #-usco, F' is 6-locally bounded on X.

Conversely, suppose that F' is a 6-closed, #-locally bounded subset of X x R
with F'(x) nonempty for each x € X. We have to prove that F' is the graph
of a f-usco map at each z € X. If not, then F' is not the graph of a #-usco
map at some x € X. Since F is #-locally bounded at z, there exist some
positive b € R and some neighbourhood U, of x such that F(z) C [-b, ], for
all z € clU,. Also, since F' is not -usco at x, there exists some open set V of
R such that F'(z) C V C [—b, b] and for every neighbourhood U of = contained
in U, there exists some zy € clU with yy € F(xy) \ V. Then the net {yy}
is contained in [—b,b] \ V and so has a #-cluster point y in [—b,b] \ V. Hence
{(zy,yu)} is a net in F' having a @-cluster point (z,y) with (z,y) ¢ F. This
contradicts the fact that F' is 6-closed and so F' is the graph of a #-usco map.
Since for each z € X, F(x) is 6-closed, F'(z) is an H-set (since R is Urysohn,
every f-closed set is an H-set). Hence F' is the graph of a #-usco map. O

COROLLARY 1. Let X be a Urysohn, H-closed space. The set L(X) is the
same as the set of all 0-closed, 0-locally bounded subsets A of X x R such that
A(z) is an interval in R.

We next study some basic properties of real-valued #-semicontinuous func-
tions and investigate their relationship with the space OL(X).

DEFINITION 7. A real-valued function defined on a topological space X is
called @-lower (respectively, 0-upper) semicontinuous if for every x € X and
every real number r satisfying the inequality f(x) > r (respectively, f(x) < r),
there exists a neighbourhood U of z in X such that f(z) > r (respectively,
f(z) <r), forall z € clU.

DEFINITION 8. A topological space X is said to be countably H-closed if
for any countable #-open cover {U,, : n € N} of X, there exists a finite subcol-
lection {U; : i = 1,2, ...,p} such that X = cl(U_, U;).
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PROPOSITION 2. A topological space X is countably H-closed if and only if
every 0-lower (respectively, 0-upper) semicontinuous function on X is bounded
below (respectively, bounded above).

Proof. We prove the result for 6-lower semicontinuous functions. The case
of A-upper semicontinuous functions can be done similarly. First let X be
countably H-closed and f be a -lower semicontinuous function. Now, by 8-
lower semicontinuity of f, U = {f~'(—n,o0) : n € N} is a countable §-open
cover of X and since X is countably H-closed, there exists m € N such that
{f~'—i,00) : i = 1,2,...,m} covers X. Thus, for each z € X, f(z) > —m
and hence f is bounded below.

Conversely, let every 6-lower semicontinuous function on X be bounded
below. We now prove that X is countably H-closed. Let {U, : n € N} be a
countable #-open cover of X. Without loss of generality, let us assume that
U, C Upy1 for each n € N. Let Uy = ). Define a function f : X — R by
f(z) = —nif x € clU, \ clU,—1. Then f is clearly a 6-lower semicontinuous
function, and hence it is bounded below. Therefore there exists m € N such
that for each n > m, clU, = clU,, = X. Hence X is countably H-closed. [

DEFINITION 9. Let A € OL(X). The real-valued functions a; and ay on
X are said to be the 0-lower and 6-upper boundaries for A respectively, if for
each z € X, a1(z) = min{t : t € A(x)} and as(x) = mazx{t : t € A(x)}.

LEMMA 1. The real-valued functions a1 and as defined on X are the 0-lower
and 0-upper boundaries, respectively, for an A € OL(X) if and only if a; < ag
and a1 and as are 0-lower and O-upper semicontinuous, respectively.

Proof. Let a1 and as be the #-lower and #-upper boundaries for an A €
OL(X). Let z € X. We shall show that ay is f-upper semicontinuous at
x. The argument that a; is f-lower semicontinuous at x is similar. Since
A € 0L(X) is #-locally bounded at z, there exist a neighbourhood U’ of 2 and
a positive b € R such that for every 2/ € clU’, A(z") C [—b,b]. If possible, let
as be not f-upper semicontinuous at x. Then there exists ¢ > 0 such that for
every neighbourhood U of z contained in U’, there exists some zy € clU with
az(zy) > az(x) + €. Then the net {(az(zy)} is contained in [aa(z) + €,b] and
so it has a #-cluster point ¢ > as(x) + €. Then (z,t) is a f-accumulation point
of A, so that t € A(x) i.e., t < az(x), which is a contradiction. Hence ay is
f-upper semicontinuous at x.

Conversely, let a1 and a9 be respectively 6-lower and #-upper semicontinuous
functions such that a1 < as. Define A = {(x,t) € X xR :a1(z) <t < as(z)}.
We shall first show that A is 6-locally bounded. Let z € X. Then by the
definitions of 8-lower and f-upper semicontinuity, there exists a neighbourhood
U of x such that for every 2’ € clU, a1(z) — 1 < a1(2’) < as(2’) < as(x) + 1.
Hence A is 6-locally bounded at z. Next we show that A is f-closed. Let
{(zi,yi)} be anet in A #-converging to (z,y) in X xR. If (z,y) &€ A, then either
y < ai(z) or y > az(x), say the latter. Let s € R be such that as(z) < s <.
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Then z has a neighbourhood U such that for every 2’ € clU, as(z') < s. But
as {z;} is cofinally in clU, y < s, a contradiction. Therefore A is f-closed and
so A € L(X) having a; and ag as its f-lower and #-upper boundaries. O

DEFINITION 10. By M(X), we denote the set of all pairs (f,g) where f, g
are real-valued functions defined on X such that for each x € X, f(x) < g(x).
For (f,g) € M(X), we define the set

W(f,g) ={(z,t) e X xR : f(x) <t < g(z)}.

LEMMA 2. Let (f,g) € M(X). Then f is 0-upper semicontinuous and g is
O-lower semicontinuous if and only if W(f, g) is a -open subset of X x R.

Proof. Similar to that of Lemma, 1. O

PRrROPOSITION 3. For each real-valued continuous function f defined on X,
and a 0-open set W of X xR containing f, there exist a 0-upper semicontinuous
function g and a 0-lower semicontinuous function h on X such that f C

Wi(g,h) CW.

Proof. For each x € X, since (x, f(x)) € W, we can find an open subset U,
of X and a positive r; < 1 such that (z, f(z)) € clUy X [f(x) =74, f(x)+714] C
W and f(clU,) C [f(x) — 7y, f(z) + rg]. Define Wy = (J{clU, x [f(z) —
Ty f(x) + 1] - @ € X}, Then Wy is a #-open subset of X x R such that
for each x € X, Wy(z) is an interval in R. Also, for every x € X, Wy(x) =
U{[f(z) —rs, f(2) + 7] s z € X and = € clU,} C [f(x) — 2, f(x) + 2], which
shows that Wy(x) is bounded for each = € X. Let g and h denote respectively
the @-lower and @-upper boundaries of Wy i.e., for each x € X, g(z) = inf
Woy(z) and h(z) = sup Wy(x). Then Wy = W(g,h) and so by Lemma 2, g is
f-upper semicontinuous and A is 6-lower semicontinuous on X. ]

3. EMBEDDING THEOREM IN HYPERSPACE TOPOLOGY

In this section we first introduce new hyperspace topologies on the collection
0(X) of all nonempty 6-closed subsets of X. We then give a very important
embedding theorem.

DEFINITION 11. Let (X, 7) be a topological space. For U C X, define
Ut={A€f(X):ACU}and U ={A€b(X): ANU # 0}. Then:

(i) The sets of the form V;” NV, N..N V.- N V;" where V4, V5,...,V,, are
open sets and V} is a f-open set, is a base for some topology 7 on 0(X).

(ii) The sets of the form V;- NV, N...NV,, NV;" where Vi, V4,...,V;, are open
sets and Vjp is a #-open set with X \ Vp an H-set, is a base for some topology
Tron 0(X) [4].

(iii) The topology 7y~ on #(X) is generated by a subbase consisting of
all sets of the form G~ where G is open in X. Similarly, the topology 7+
(respectively, co-H-set topology 7y) is generated by all sets of the form VT,
where V' is f-open in X (respectively, whose complement is an H-set in X).
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The supremum 7y,- V 7+ (respectively, 7,— V 7x) is the topology 1y (re-
spectively, 7r) on 6(X).

Note that since 0L(X) C (X x R), 6L(X) can inherit each of the afore-
mentioned hyperspace topologies from 6(X x R).

THEOREM 2. The following statements hold:

) The space 0, (X) is embeddable in 0L, (X).

) The space 07, (X) is embeddable in L., (X).

) The space 07, (X) is embeddable in 0L, (X).

iv) The space (0(X) U {0}),, is embeddable in 0L, (X).

) The space 0-,(X) is embeddable in 0L, (X).

) The space 0., (X) is embeddable in L., (X).
)

The space ((X) U {0});, is embeddable in OL,,(X).
Proof. For each E € 6(X) U {0}, define
Fp = (X x {0) U(E x [0,1))

and the sets F = {Fp: F € 0(X)} and Fy = {Fg: E € (X)U{0}}. Then F
and Fy are contained in §L(X). Define ® : (X )U{0} — 0L(X) by ®(F) = Fg
for each £ € §(X)U {0} and denote the restriction of ® to §(X) by ®¢. Then
® and ®( are one-to-one.

(i) We prove that @ is a homeomorphism from 6. , (X) to 0L, , (X). Let
A € 0(X) and let W+ be an open neighbourhood of Fa in 6L, , (X), where W
is #-open in X x R. Since [0, 1] is an H-set, there exists an open subset U of X
such that A C U and U x [0,1] C W. Now let B € UTN#(X). Then ®y(B) =
Fp € WT. Hence @ is continuous on 6, (X). Next let A € (X) and U be
a 0-open subset of X such that A € UT. Then W = (X x (—1,1))U(U xR) is
a G-open set in R such that F4 € W and WH N ®((X)) C $o(U™T). Hence
®g is a homeomorphism from 60, (X) to 0L , (X).

(ii) We show that ®g is a homeomorphism from 6, (X) to 0L, (X). Let
A € 0(X) and W~ be an open neighbourhood of Fis in 0L, (X), where W
is open in X x R. Let (x,t) € WN Fy. If t =0, then ®5(A(X)) C W~. So
let t # 0 and choose an open neighbourhood U of z and an open interval V'
containing ¢ such that (z,t) € U x V. .C W. Then if B € U~ N #(X), then
Fp € W~. Similarly, if U~ is an open neighbourhood of A € 6(X), then
(U x (3,2))” N ®(0(X)) € ®o(U~). Hence @ is a homeomorphism from
Or, (X) to 0L, (X).

(iii) It follows from (i) and (ii).

(iv) We show that @ is a homeomorphism from (8(X)U{0})., to 6L, (X).
Let F € §(X)U {0} and let K be an H-set of X x R such that Fgp N K = 0.
Without loss of generality, let K C X x [0,1]. Then X (K) ={z € X : (x,t) €
K for t € [0,1]} is an H-set.
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Let A € (X \ X(K))". Then by definition of X(K), for any z € A and
t €[0,1], (z,t) ¢ K. Again since Fp N K = (), (X x {0}) N K = ). Hence
Fy € (K¢ (where K¢ denotes the complement of K) and thus ® is continuous
on (6(X)U{0})s,. To show that @ is open, let Ky be an H-set in X and let £ €
(X\Ko)TNO(X). Let K = Ko x{1}. Then F € (K)TNFy C ®((X\Ko)").
Hence ® is a homeomorphism from (6(X) U{0}),,, to 0L, (X).

(v) It follows from (iv) above.

(vi) It follows from (ii) and (v).

(vii) We prove that ® is a homeomorphism from (8(X)U{0}), to 0L, (X).
Note that for (), any basic open neighbourhood Gt NG~ NFy = GTNFy, where
G is a subset of X x R with G an H-set and Fjy C G and G is a finite family
of open subsets of X x R such that Fp € G~. Then arguing in the same way
as in (iv), ® becomes continuous. Also, by (ii) and (iv), ® is continuous at
each F € 0(X). In a similar way, ® is an open map from (6(X) U {0}),, to
0L, (X). 0
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