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JACK’S LEMMA AND A CLASS OF POLYNOMIAL
INEQUALITIES
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Abstract. We study Jack’s lemma from the point of view of a class of polyno-
mial inequalities involving bound-preserving operators.
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1. INTRODUCTION

Let D denote the unit disc{z € C | |z| < 1} of the complex plane C and
H (D) the set of functions analytic on D. We define for f € H(D)

|flp == sup | f(2)].
zeD

Let also P,, denote the set of polynomials of degree at most n with coeflicients
in C. The inequality (valid for any p € P,,)

(1) |2p'(2)/n = p(2)] + |20/ (2) /n| < Iplp, |2 <1,

is a well-known refinement of the classical Bernstein inequality for polynomials
on the unit disc. The paper [1] contains references concerning various proofs
of (1).

It has been observed by Sheil-Small [7, p. 152] that equality holds in (1) for
any p € P, and any u in the closed unit disc D such that |p(u)| = |p|p. (The
only other case of equality, as proved in [1], occurs when p(z) = Az" + B at
any point u with |u| = 1). This leads to a painless proof of Jack’s lemma for
polynomials: indeed if p € P,, and |p(u)| = |p|p for some |u|, (|u] = 1), then

(2) |up'(w) /n — p(u)| + Jup (u) /n| = [plp = [p(u)]

and (2) is easily seen to amount to

up’ (u)
(3) 0< @ =1

which is a version of Jack’s lemma for polynomials. It has been established in

[4] and [3] that 0 < "5 (/1(;;) unless the polynomial p is constant or equivalently

that % < n unless p is a monomial of degree n. We refer to the book

of Miller and Mocanu [5] concerning Jack’s lemma and its applications in
geometric function theory.
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Let Pj/; denote the class of functions F' in H(D) with F'(0) = 1 and

ReF(z) > % it z € D; let also » denote the usual Hadamard product of
functions in H(D). Ruscheweyh [6, p. 128] proved that for p € P,

(4) W p(2)| + W xp(2)| < Iplp, |2 <1,
where W € P,y N Py /5 and W(z) := 2"W(1/z) € P,. Given the fact that
W(z) = Z;é (1 — %)zk € Pn—1 M P9, we see that (4) is a striking gener-

alization of (1). It was proved in [4] that a corresponding generalization of
Jack’s lemma follows from (4).

Let F(z) :== 1+ Y7, Ayz® € Py )5 where, for a given n > 1, the associated
Toeplitz (n + 1) x (n + 1) determinant D,,(F') with first row (1, Ay,..., A4,)
is strictly positive. We recently established in [2] the existence of a constant
dy, = d,(F) such that 0 < d,,(F) < 1 and for any p € P,

(5) p* F(2)| + dnlp(z) —px F(2)] < [plp, [2] < 1.
In some sense, (5) is an extension of (1) which corresponds to the case where
F(z)=>, (1 — %)zk € P/, with the associated strictly positive Toeplitz
determinant and of course d,,(F) = 1. We define

12 = {F € Pijp | Dn(F) >0 and dy(F) = 1} # 0.
For F € Pl*/2 we have

(6) [px F(2)[ +|p(2) —p* F(2)| < |plp, |2[ <1,

and if for some p € P,, and u € 9D we have |p(u)| = |p|p, we obtain by (6)
p* F(u)] + [p(u) —p* F(u)| = |p(u)]

and clearly

(7) 0< =0 <1 if FePly pePy and [p(u)| = |plp.

In particular 0 < Ay, < 1if F(2) = 1+ > 1, Apz® + o(2"). At first sight, (7)
looks like an exciting extension of Jack’s lemma [1]. The main result of this
note shows that this is not indeed the case. We shall prove

THEOREM 1. The members of Pl*/2 are of the type

Fi(z) = Z (1- t%)zk +o(z")
k=0
with 0 <t < 1.

According to (7), we obtain for any p € P, with |p(u)| = |p|p

p*Ft(U) 1 tup’(u) <1

< —
0 p(uw) np(u) —

i.e., nothing more than (3)!
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2. PROOF OF THE THEOREM

We shall rely on the following

LEMMA 1. For any n > 2, there exists a polynomial p € P, and u € 0D
such that |p(u)| = |plp and % is not real.

Proof. Let p(z) = 1—2z—22. Then [p(el?)| = |1 —el? — e = | —1—2isin(0)|

and clearly |p(i)| = |p|p but (()) i

When n > 2, we set p(z) = (1 + 2)(1 — 2" 1). We have

is not real.

p(e?) = (14 €% (1 — (=10 — 4ei(%9+%) cos (g) sin (2516).
Clearly if p(e?) = £|p|p, then
sin (%9 + %) = cos (%G) =0

and decosgsm nly = :I:(n 2) sm(g) oS (g) = :I:(n 2 sing = 0. This is
P

impossible, because p(1) = p(—l) = 0, and again in this case (2) is not

real. O

L~

N

!

Proof of Theorem 1. We shall prove our Theorem by induction on n > 1.
When n =1, let F(z) =14 A1z + o(2) and p(z) = ag + a1z € Py satisfy (6).
This is easily seen to amount to

lao| + [A1]a1| + |a1| [T — A1| < ao| + |a1]

and since this must hold for an arbitrary polynomial in P, we obtain |A;| 4+
1 — Al <1,ie,0<A; <1. We then have

n
1+ A1z +o(z Zl—t 2K po(z") for n=1 and t=1—A;.
k=0
Let us now assume our result valid for n — 1 and consider Q(z) = 1+

Sh_ ArzF 4 0(2) € Pl*/2 We then have, by the induction hypothesis, for
any p € Pp—1 C Pn

[(Q(2) — Anz") x p(2)| + [p(2) — (Q(2) — Anz") x p(2)]
= Q@+ p(2)| + Ip(2) — Q(2) * p(2)| < |plp

and therefore, for some t € [0, 1],

(8) Q)= (1—tE)F+ A"
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It follows that for any p(z) = apz™ + - -+ in P,

t
Q*p(z) _ p(Z)—anz"—nil(zp/(z)_nanzn)+Ananzn
9) ) = e

_ 1 zp'(2) nz" t
=1- 5755 + S5 [ - 1+ 25 + Aul.

Assuming now that |u| =1 and |p(u)| = |p|p, it follows from (3) and (7) that

0< “5 gg“)b) and 0 < Q;([:S‘ ). We therefore obtain from (9) that ‘;’“&Z; [— 1+ +

An] is real and A,, = 1 —t_-"5, because otherwise would be real; this is a

anpu”
p(u)
violation of Lemma 1, because p is arbitrary. We therefore have 4,, = 1—t-"5

and, by (8),

Q(z) = (1 — t%)zk + (1 — t#)z” + o(2")

(1 — T%)Zk +o(2"),

k=

where 0 < 7 = 2 < 1, because, by (7), 1 — t-"5 > 0. This concludes the
proof of our Theorem. O

[en]

3. CONCLUSION

We first remark that cases of equality in (6) for F' = F} are not difficult to
establish. Indeed, if for some 0 <t <1, u € D and p € P, we have

Iplp = ‘P(U)

)

then
(10) Il = [t(p(u) — “Z) 4 (1~ t)p(u)| + t] 2|

< #(|p(u) = |+ [#EE) 4 (1= 1) ()]

n

<tlplp + (1 —1)plp

and equality holds everywhere in (10). It then follows from our introduction
that either p € P, and |p(u)| = |p|p if 0 < ¢t < 1 or else p(z) = Az" + B with
uedDift=1.

We have so far identified all functions F' satisfying (6) for all p € P,: these
are the functions Fy, 0 < ¢ < 1, introduced in Theorem 1. These functions
also satisfy

F
(11) 0< 20 <1 p ey, [pu) =Iplo-
It is a natural question to ask if other functions F' € H(D) with F'(0) = 1 may
also satisfy (11), since a negative answer would in some sense assert some sort
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of unicity in the statement of Jack’s lemma for polynomials of fixed degree n
(which is equivalent to (7) with F' = F; and 0 <t < 1). As a matter of fact,
the induction argument used in the proof of Theorem 1 can also be used to
prove that only functions of the type F; can satisfy (11). We supply a sketch
of the induction argument.

Let us assume that any F' € H(D) satisfying (11) and F(0) = 1 is of the

type

n

F(z)=> (1-%)2F +0(z")
k=0
for some 0 <t < 1. Let now

(12) 0< S <1, pePusr, Ip(w)=plp

for some G in H(D) with G(0) =1+ -+ + A, 12"+ o(2" ).
Then of course
(G(2) = Ans12™) 5 p(2)
p(u)
for all p € P, with |p(u)| = |p|p. By the induction hypothesis, for some
0<t<1

0<

<1

Z=U

. k
G(z) = <1 - t)zk + Apyp12" 4 o(2"
k=0 "
with

t
(13) Gxg(z) = 9(2)—an+12n+1—E(ZQ/(Z)—(”+1)an+12n+1)+14n+1&n+12n+1
1)t
(nt Dt An+1>

n
for any g € Ppy1 with leading coefficient a,11 # 0. If we also assume that
lg(u)| = |g|p for some u € 9D, it shall follow from (12), (13) and the standard
Jack’s lemma that

angl(iz;“( 1+ ("Jrl) + Ap41) s real,

Because g is arbitrary, this shall contradict our lemma if A, # 1 —
We therefore obtain

n

Gle) = Y- (1= )+ (1= )1 4 ofan )
k=0
n+1

= (1=t5)#" +o(z)
k=0

n+1
Z 1—Tm z +O( 7’L+1)

t
—4) = 120/ + a1+

(n+1)t.
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with 7 = t(nniﬂ) € [0, 1], because, as above,

0< Appr =1y <,
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